A new blowing snow scheme for CLM

Alexandra Gossart, Niels Souverijns, Charles Amory, Claudio Scarchilli, Leo Van Kampenhout, Bill Sacks, Nicole van Lipzig and Jan T.M. Lenaerts
Introduction

Importance of blowing snow

- Displacement of particles: local SMB
- Sublimation of particles
- Blue ice and albedo feedback

Image courtesy of Jan Lenaerts
Introduction

Two parts:

Observations: ceilometer at PE station

- An New Algorithm to Detect Blowing Snow from Ceilometers in East Antarctica
 - Session Block, A Seehorn
 - 20.06.2018, 11:00 – 12:30
 - TE-3e - Remote sensing of polar regions

Modelling: implementation of a blowing snow scheme

- A Long-term Hindcast Simulation with COSMO-CLM² over Antarctica
 - Session Block, A Studio
 - 21.06.2018, 14:00 – 15:30
 - AC-3a - High-Latitude Boundary Layers and Model Evaluation

Gossart et al., 2017; Souverijns et al., 2018
Material and methods

- **NM**: frequencies (2012 – 2013 - 2014)
- **D47**: frequencies + transport (2010-2011)
- **D17**: frequencies + transport (2013-2014)
- **TD**: frequencies + transport (2009)
Material and methods

Adaptations to the model to improve the snow pack

- Back porting changes from CLM5.0 to 4.5 (van Kampenhout et al., 2017)
- Density dependence on temperature and wind (van Kampenhout et al., 2017)
- Grain size dependent on wind speed and air temperature (van Kampenhout et al., 2017)
- Runoff/top snow temperature/albedo bug
Material and methods

Simple bulk model (Déry and Yau, 1999)

- Friction velocity (u_*) dependent on horizontal wind speed
- Blowing snow threshold based on air temperature
Material and methods

Simple bulk model (Déry and Yau, 1999)

- Friction velocity \(u_* \) dependent on horizontal wind speed only → dependence on snow density and other mobility parameters (Gallée 2001)

\[
\begin{align*}
 u_* &= u*_{t0} \exp \left(\frac{n}{1-n} + \frac{n_0}{1-n_0} \right) \\
 \text{Snow density / ice density} & \quad \text{Porosity of fresh snow (300 kg/m}^3) \\
 \text{Mobility of snow particles (dendricity and sphericity = 0.5) + drag coefficient for momentum (0.002)}
\end{align*}
\]
Material and methods

Simple bulk model (Déry and Yau, 1999)
– Blowing snow threshold based on air temperature only
Material and methods

Simple bulk model (Déry and Yau, 1999)
– Blowing snow threshold based on air temperature only

Wind speed >

\[A \times t^2m + B \times \text{snow density} \]
Material and methods

Simple bulk model (Déry and Yau, 1999)

- Transport calculation as flux (kg/m^2.s)
- A * wind speed B
Material and methods

D47

D17

TD
Material and methods
Material and methods

![Graphs showing the relationship between wind speed and transport for different datasets (D47, D17, TD, and all). The graphs compare observations with model predictions.](image)
Future work

1) Blowing snow sublimation
2) Add the routine in the coupled COSMO-CLM² model
3) Simulate blue ice