Publications

Cell type prioritization in single-cell data

M. A. Skinnider; J. W. Squair; C. Kathe; M. A. Anderson; M. Gautier et al. 

Nature Biotechnology. 2020-07-20. DOI : 10.1038/s41587-020-0605-1.

Soft Printable Electrode Coating for Neural Interfaces

M. Shur; F. Fallegger; E. Pirondini; A. Roux; A. Bichat et al. 

ACS Applied Bio Materials. 2020-06-26. DOI : 10.1021/acsabm.0c00401.

Ultralong, complexly structured micro- and nanoscale metallic glasses and fibers

F. Sorin; I. Richard; W. Yan; J. Löffler; G. Courtine 

WO2020065551.

2020.

Soft, Implantable Bioelectronic Interfaces for Translational Research

G. Schiavone; F. Fallegger; X. Kang; B. Barra; N. Vachicouras et al. 

Advanced Materials. 2020.  p. 1-10, 1906512. DOI : 10.1002/adma.201906512.

Transcriptional Dynamics Of Neurorehabilitation In Spinal Cord Injury At Single-Nucleus Resolution

C. Kathe; J. Squair; M. Skinnider; L. Baud; K. Matson et al. 

2019-07-01. 37th Annual National Neurotrauma Symposium, Pittsburgh, PA, Jun 29-Jul 03, 2019. p. A154-A155.

Cbp-dependent histone acetylation mediates axon regeneration induced by environmental enrichment in rodent spinal cord injury models

T. H. Hutson; C. Kathe; I. Palmisano; K. Bartholdi; A. Hervera et al. 

Science Translational Medicine. 2019-04-10. Vol. 11, num. 487, p. eaaw2064. DOI : 10.1126/scitranslmed.aaw2064.

Automatic clustering of spinal reflexes evoked by epidural electrical stimulation of the cervical spinal cord in non-human primates

B. Barra; K. Z. Zhuang; S. Conti; G. Schiavone; S. Lacour et al. 

2019. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, July 23-27, 2019.

A system for planning and/or providing neuromodulation

F. Wagner; K. Minassian; M. Capogrosso; G. Courtine; R. Brouns et al. 

WO2019110397.

2019.

A system for planning and/or providing neuromodulation

K. Minassian; F. Wagner; M. Capogrosso; G. Courtine; R. Brouns et al. 

WO2019110400.

2019.

A system for planning and/or providing neurostimulation for a patient

F. Raschella; S. Misera; G. Courtine; T. Milekovic; F. Wagner et al. 

WO2019110401; EP3495019.

2019.

System for planning and/or providing neuromodulation, especially neurostimulation

M. Capogrosso; K. Minassian; F. Wagner; G. Courtine; M. Caban et al. 

WO2019110402.

2019.

System for selective spatiotemporal stimulation of the spinal cord

J. Bloch; G. Courtine; N. Wenger; S. Micera; M. Capogrosso 

US2019344075; US10391309; US10279177; US2017354819; CN106902458; EP3184145; US2017173326.

2019.

Neuroprosthetic Technologies to Evaluate and Train Leg Motor Control in Neurologically Impaired Individuals

C. G. M. Le Goff-Mignardot / G. Courtine (Dir.)  

Lausanne, EPFL, 2019. 

Targeted neurotechnologies enabling walking after paralysis

G. Courtine 

2018-12-01. Conference on Changing the Face of Modern Medicine – Stem Cell and Gene Therapy, Lausanne, SWITZERLAND, Oct 16-19, 2018. p. A6-A6.

Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury

E. Formento; K. Minassian; F. Wagner; J-B. Mignardot; C. G. M. Le Goff-Mignardot et al. 

Nature Neuroscience. 2018-10-31. Vol. 21, p. 1728-1741. DOI : 10.1038/s41593-018-0262-6.

Long-term functionality of a soft electrode array for epidural spinal cord stimulation in a minipig model

G. Schiavone; F. Wagner; F. Fallegger; X. Kang; N. Vachicouras et al. 

2018-10-29. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18-21 July 2018. p. 1432-1435. DOI : 10.1109/EMBC.2018.8512584.

Soft implantable neurotechnology: a translational perspective

G. Schiavone; B. Barra; X. Kang; F. Fallegger; N. Vachicouras et al. 

GRC Neuroelectronic interfaces, Galveston, Texas, USA, 25-30 March 2018.

Optical cuff for optogenetic control of the peripheral nervous system

F. Michoud; L. Sottas; L. E. Browne; L. Asboth; A. Latremoliere et al. 

Journal of Neural Engineering. 2018-01-10. Vol. 15, num. 1, p. 015002. DOI : 10.1088/1741-2552/aa9126.

Closed-loop control of trunk posture improves locomotion through the regulation of leg proprioceptive feedback after spinal cord injury

E. M. Moraud; J. von Zitzewitz; J. Miehlbradt; S. Wurth; E. Formento et al. 

Scientific Reports. 2018-01-08. Vol. 8, num. 1. DOI : 10.1038/s41598-017-18293-y.

Long-term functionality of a soft electrode array for epidural spinal cord stimulation in a minipig model

G. Schiavone; F. Wagner; F. Fallegger; X. Kang; N. Vachicouras et al. 

2018. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). DOI : 10.1109/EMBC.2018.8512584.

Selective Recruitment of Arm Motoneurons in Nonhuman Primates Using Epidural Electrical Stimulation of the Cervical Spinal Cord

B. Barra; C. Roux; M. Kaeser; G. Schiavone; S. P. Lacour et al. 

2018. 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, July 18-21, 21018. p. 1424-1427. DOI : 10.1109/EMBC.2018.8512554.

System to deliver adaptive epidural and/or subdural electrical spinal cord stimulation to facilitate and restore locomotion after a neuromotor impairment

G. Courtine; N. Wenger; E. Martin Moraud; S. Micera; M. Bonizzato 

US2019269917; CN105792886; JP6549137; US10279167; US10265525; US2018093093; JP2016538980; US2016279418; EP3062872; CN105792886; WO2015063127; EP2868343.

2018.

Two-phase calibration of a neuroprosthetic system

T. Milekovic; M. Capogrosso; G. Courtine; E. Martin Moraud; F. Wagner et al. 

US10668280; EP3315168; DE17197913; US2018117318; EP3315168.

2018.

A neurostimulation system for central nervous stimulation (cns) and peripheral nervous stimulation (pns)

S. Wurth; G. Courtine; S. Micera 

DE17163191; CN108744270; JP2018164730; US2018280700; EP3381506.

2018.

Apparatus comprising a support system for a user and its operation in a gravity-assist mode

J. Von Zitzewitz; J. B. Mignardot; C. G. M. Le Goff; G. Courtine; H. Vallery et al. 

EP3500336; CN109843371; WO2018033591; WO2018033591.

2018.

A sensory information compliant spinal cord stimulation system for the rehabilitation of motor functions

E. Formento; M. Capogrosso; S. Micera; G. Courtine; K. Minassian 

US2020086116; EP3558448; CN110121375; WO2018114906.

2018.

Targeted neurotechnology restores walking in humans with spinal cord injury

F. B. Wagner; J-B. Mignardot; C. G. Le Goff-Mignardot; R. Demesmaeker; S. Komi et al. 

Nature. 2018. Vol. 563, num. 7729, p. 65-71. DOI : 10.1038/s41586-018-0649-2.

Applying Whole Organ Clearing Techniques To Spinal Cord Injury: A Survey Of Techniques

N. Cho; L. Batti; S. Pages; T. Laroche; O. Burri et al. 

2018. 3rd Joint Symposium of the International-and-National-Neurotrauma-Societies-and-AANS/CNS-Section on Neurotrauma and Critical Care, Toronto, CANADA, Aug 11-16, 2018. p. A51-A52.

Required growth facilitators propel axon regeneration across complete spinal cord injury

M. A. Anderson; T. M. O’Shea; J. E. Burda; Y. Ao; S. L. Barlatey et al. 

Nature. 2018. Vol. 561, num. 7723, p. 396-400. DOI : 10.1038/s41586-018-0467-6.

Reducing neuronal inhibition restores locomotion in paralysed mice

G. Courtine 

Nature. 2018. Vol. 561, num. 7723, p. 317-318. DOI : 10.1038/d41586-018-06651-3.

Inhaling xenon ameliorates l -dopa-induced dyskinesia in experimental parkinsonism

J. Baufreton; T. Milekovic; Q. Li; S. McGuire; E. M. Moraud et al. 

Movement Disorders. 2018. Vol. 33, num. 10, p. 1632-1642. DOI : 10.1002/mds.27404.

Cortico–reticulo–spinal circuit reorganization enables functional recovery after severe spinal cord contusion

L. Asboth; L. Friedli; J. Beauparlant; C. Martinez-Gonzalez; S. Anil et al. 

Nature Neuroscience. 2018. Vol. 21, num. 4, p. 576-588. DOI : 10.1038/s41593-018-0093-5.

Configuration of electrical spinal cord stimulation through real-time processing of gait kinematics

M. Capogrosso; F. B. Wagner; J. Gandar; E. M. Moraud; N. Wenger et al. 

Nature Protocols. 2018. Vol. 13, num. 9, p. 2031-2061. DOI : 10.1038/s41596-018-0030-9.

Brain-controlled modulation of spinal circuits improves recovery from spinal cord injury

M. Bonizzato; G. Pidpruzhnykova; J. DiGiovanna; P. Shkorbatova; N. Pavlova et al. 

Nature Communications. 2018. Vol. 9, num. 1, p. 3015. DOI : 10.1038/s41467-018-05282-6.

Advantages of soft subdural implants for the delivery of electrochemical neuromodulation therapies to the spinal cord

M. Capogrosso; J. Gandar; N. Greiner; E. M. Moraud; N. Wenger et al. 

Journal of Neural Engineering. 2018. Vol. 15, num. 2, p. 026024. DOI : 10.1088/1741-2552/aaa87a.

Brain-Controlled Neuroprosthetic Therapies And Mechanisms Of Recovery After Spinal Cord Injury

G. Pidpruzhnykova / G. Courtine (Dir.)  

Lausanne, EPFL, 2017. 

A Computational Framework for the Design of Spinal Neuroprostheses

M. Capogrosso; E. Bezard; J. Bloch; G. Courtine; S. Micera 

2017. 3rd International Conference on NeuroRehabilitation (ICNR), Segovia, SPAIN, OCT 18-21, 2016. p. 23-27. DOI : 10.1007/978-3-319-46669-9_5.

A multidirectional gravity-assist algorithm that enhances locomotor control in patients with stroke or spinal cord injury

J-B. Mignardot; C. G. Le Goff; R. Van Den Brand; M. Capogrosso; N. Fumeaux et al. 

Science Translational Medicine. 2017. Vol. 9, num. 399, p. eaah3621. DOI : 10.1126/scitranslmed.aah3621.

System for selective spatiotemporal stimulation of the spinal cord

J. Bloch; G. Courtine; N. Wenger; S. Micera; M. Capogrosso 

US2019344075; US10391309; US10279177; US2017354819; CN106902458; EP3184145; US2017173326.

2017.

Apparatus to apply forces in a three-dimensional space

J. Von Zitzewitz; H. Vallery; G. Courtine 

DE16733117; US2018193217; EP3316844; CN107666892; WO2017005661.

2017.

Biodegradable scaffolds promote tissue remodeling and functional improvement in non-human primates with acute spinal cord injury

J. R. Slotkin; C. D. Pritchard; B. Luque; J. Ye; R. T. Layer et al. 

Biomaterials. 2017. Vol. 123, p. 63-76. DOI : 10.1016/j.biomaterials.2017.01.024.

Electronic Dura Mater Meddling in the Central Nervous System

J. Bloch; S. P. Lacour; G. Courtine 

Jama Neurology. 2017. Vol. 74, num. 4, p. 470-475. DOI : 10.1001/jamaneurol.2016.5767.

Long-term usability and bio-integration of polyimide-based intraneural stimulating electrodes

S. Wurth; M. Capogrosso; S. Raspopovic; J. Gandar; G. Federici et al. 

Biomaterials. 2017. Vol. 122, p. 114-129. DOI : 10.1016/j.biomaterials.2017.01.014.

Pdms-based stretchable multi-electrode and chemotrode array for epidural and subdural neuronal recording, electrical stimulation and drug delivery

J. Vörös; G. Courtine; A. Larmagnac; P. Musienko 

US10130274; EP2582289; US2013303873; EP2582289; WO2011157714.

2016.

System to deliver adaptive epidural and/or subdural electrical spinal cord stimulation to facilitate and restore locomotion after a neuromotor impairment

G. Courtine; N. Wenger; E. Martin Moraud; S. Micera; M. Bonizzato 

US2019269917; CN105792886; JP6549137; US10279167; US10265525; US2018093093; JP2016538980; US2016279418; EP3062872; CN105792886; WO2015063127; EP2868343.

2016.

Pharmacological stimulation to facilitate and restore standing and walking functions in spinal cord motor disorders

G. Courtine; Q. Barraud; P. Musienko 

US10632105; US2016158204; WO2015000800; EP2821072.

2016.

Apparatus and method for restoring voluntary control of locomotion in neuromotor impairments

G. Courtine; S. Micera; J. Von Zitzewitz 

KR102116589; EP3241586; US10406056; US10391015; JP6379087; US9968406; IL235827; US2017326018; US2017325719; EP3241586; AU2013269175; EP2854939; CN104363955; HK1207326; JP2015519138; US2015190200; EP2854939; CN104363955; KR20150017747; IL235827; AU2013269175; CA2874101; WO2013179230.

2016.

Synthetic skin for recording and modulating physiological activities

I. R. Minev; A. Hirsch; P. Musienko; G. Courtine; S. P. Lacour 

EP3242720; US2018001081; EP3242720; WO2016110564.

2016.

Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors

J. Digiovanna; N. Dominici; L. Friedli; J. Rigosa; S. Duis et al. 

Journal Of Neuroscience. 2016. Vol. 36, num. 40, p. 10440-10455. DOI : 10.1523/Jneurosci.4343-15.2016.

A brain-spine interface alleviating gait deficits after spinal cord injury in primates

M. Capogrosso; T. Milekovic; D. Borton; F. Wagner; E. Moraud et al. 

Nature. 2016. Vol. 539, num. 7628, p. 284-+. DOI : 10.1038/nature20118.

Influence of Spinal Cord Integrity on Gait Control in Human Spinal Cord Injury

L. Awai; M. Bolliger; A. R. Ferguson; G. Courtine; A. Curt 

Neurorehabilitation And Neural Repair. 2016. Vol. 30, num. 6, p. 562-572. DOI : 10.1177/1545968315600524.

Materials and technologies for soft implantable neuroprostheses

S. Lacour; G. Courtine; J. Guck 

Nature Reviews Materials. 2016. Vol. 1, p. 16063. DOI : 10.1038/natrevmats.2016.63.

Rehabilitative Soft Exoskeleton for Rodents

J. M. Florez Marin; M. Shah; E. Martin Moraud; S. M. M. Wurth; L. Baud et al. 

IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2016. Vol. 25, num. 2, p. 107-118. DOI : 10.1109/TNSRE.2016.2535352.

Mechanisms Underlying the Neuromodulation of Spinal Circuits for Correcting Gait and Balance Deficits after Spinal Cord Injury

E. Moraud; M. Capogrosso; E. Formento; N. Wenger; J. Digiovanna et al. 

Neuron. 2016. Vol. 89, num. 4, p. 814-828. DOI : 10.1016/j.neuron.2016.01.009.

A neurorobotic platform for locomotor prosthetic development in rats and mice

J. Von Zitzewitz; L. Asboth; N. Fumeaux; A. Hasse; L. Baud et al. 

Journal of Neural Engineering. 2016. Vol. 13, num. 2, p. 026007. DOI : 10.1088/1741-2560/13/2/026007.

Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury

N. Wenger; E. M. Moraud; J. Gandar; P. Musienko; M. Capogrosso et al. 

Nature Medicine. 2016. Vol. 22, num. 2, p. 138-145. DOI : 10.1038/nm.4025.

Neuroprosthetic technologies to augment the impact of neurorehabilitation after spinal cord injury

R. van den Brand; J-B. Mignardot; J. von Zitzewitz; C. Le Goff; N. Fumeaux et al. 

Annals of Physical and Rehabilitation Medicine. 2015. Vol. 58, num. 4, p. 232-237. DOI : 10.1016/j.rehab.2015.04.003.

Muscle Spindle Feedback Directs Locomotor Recovery And Circuit Reorganization After Spinal Cord Injury

A. Takeoka; I. Vollenweider; G. Courtine; S. Arber 

2015. 33rd Annual National Neurotrauma Symposium, Santa Fe, NM, JUN 28-JUL 01, 2015. p. A140-A141.

Decoding bipedal locomotion from the rat sensorimotor cortex

J. Rigosa; A. Panarese; N. Dominici; L. Friedli; R. Van Den Brand et al. 

Journal of Neural Engineering. 2015. Vol. 12, num. 5, p. 056014. DOI : 10.1088/1741-2560/12/5/056014.

Lack of additive role of ageing in nigrostriatal neurodegeneration triggered by alpha-synuclein overexpression

M. Bourdenx; S. Dovero; M. Engeln; S. Bido; M. F. Bastide et al. 

Acta Neuropathologica Communications. 2015. Vol. 3, p. 46. DOI : 10.1186/s40478-015-0222-2.

Pronounced species divergence in corticospinal tract reorganization and functional recovery after lateralized spinal cord injury favors primates

L. Friedli; E. S. Rosenzweig; Q. Barraud; M. Schubert; N. Dominici et al. 

Science Translational Medicine. 2015. Vol. 7, num. 302, p. 302ra134-302ra134. DOI : 10.1126/scitranslmed.aac5811.

Leveraging biomedical informatics for assessing plasticity and repair in primate spinal cord injury

J. L. Nielson; J. Haefeli; E. A. Salegio; A. W. Liu; C. F. Guandique et al. 

Brain Research. 2015. Vol. 1619, p. 124-138. DOI : 10.1016/j.brainres.2014.10.048.

The impact of anxiety and reward-seeking traits on social competition and the role of the mesolimbic dopaminergic system

L. Lozano Montes / C. Sandi (Dir.)  

Lausanne, EPFL, 2015. 

Defining Ecological Strategies in Neuroprosthetics

G. Courtine; J. Bloch 

Neuron. 2015. Vol. 86, num. 1, p. 29-33. DOI : 10.1016/j.neuron.2015.02.039.

Research Update: Platinum-elastomer mesocomposite as neural electrode coating

I. R. Minev; N. Wenger; G. Courtine; S. P. Lacour 

APL Materials. 2015. Vol. 3, num. 1, p. 014701. DOI : 10.1063/1.4906502.

Biomaterials. Electronic dura mater for long-term multimodal neural interfaces

I. R. Minev; P. Musienko; A. Hirsch; Q. Barraud; N. Wenger et al. 

Science (New York, N.Y.). 2015. Vol. 347, num. 6218, p. 159-63. DOI : 10.1126/science.1260318.

Wireless Neurosensor for Full-Spectrum Electrophysiology Recordings during Free Behavior

M. Yin; D. A. Borton; J. Komar; N. Agha; Y. Lu et al. 

Neuron. 2014. Vol. 84, num. 6, p. 1170-1182. DOI : 10.1016/j.neuron.2014.11.010.

Muscle Spindle Feedback Directs Locomotor Recovery and Circuit Reorganization after Spinal Cord Injury

A. Takeoka; I. Vollenweider; G. Courtine; S. Arber 

Cell. 2014. Vol. 159, num. 7, p. 1626-1639. DOI : 10.1016/j.cell.2014.11.019.

Development of a Database for Translational Spinal Cord Injury Research

J. L. Nielson; C. F. Guandique; A. W. Liu; D. A. Burke; A. T. Lash et al. 

Journal Of Neurotrauma. 2014. Vol. 31, num. 21, p. 1789-1799. DOI : 10.1089/neu.2014.3399.

Neuroprosthetic system to restore locomotion after neuromotor disorder

N. Wenger / G. Courtine (Dir.)  

Lausanne, EPFL, 2014. 

Neuroprosthetic rehabilitation and translational mechanism after severe spinal cord injury

L. F. Friedli Wittler / G. Courtine (Dir.)  

Lausanne, EPFL, 2014. 

Gait Control and Locomotor Recovery after Spinal Cord Injury

L. Awai / M. E. Schwab; A. Curt; G. Courtine (Dir.)  

ETH Zurich, 2014. 

Closed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury

N. Wenger; E. Martin Moraud; S. Raspopovic; M. Bonizzato; J. DiGiovanna et al. 

Science Translational Medicine. 2014. Vol. 6, num. 255. DOI : 10.1126/scitranslmed.3008325.

Domains Of Neural Control Of Walking In Human Spinal Cord Injury

L. Awai; M. Bolliger; A. R. Ferguson; G. Courtine; A. Curt 

2014. 32nd Annual National Neurotrauma Symposium, San Francisco, CA, JUN 29-JUL 02, 2014. p. A53-A54.

Neuroprosthetic rehabilitation and use-dependent plasticity following severe spinal cord injury

J. Beauparlant / G. Courtine (Dir.)  

Lausanne, EPFL, 2014. 

Modeling Spinal Cord Injury In The Primate

J. C. Bresnahan; E. A. Salegio; E. Rosenzweig; J. Nielson; C. Sparrey et al. 

2014. 11th Symposium of the International-Neurotrauma-Society. p. A58-A58.

Corticospinal neuroprostheses to restore locomotion after spinal cord injury

D. Borton; M. Bonizzato; J. Beauparlant; J. Digiovanna; E. M. Moraud et al. 

Neuroscience Research. 2014. Vol. 78, p. 21-29. DOI : 10.1016/j.neures.2013.10.001.

Better features for image categorization and segmentation

R. Rigamonti / P. Fua; V. Lepetit (Dir.)  

Lausanne, EPFL, 2014. 

[Neuronal control of posture and locomotion in decerebrated and spinalized animals]

P. Musienko; O. Gorskii; V. Kilimnik; I. Kozlovskaia; G. Courtine et al. 

Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova. 2013. Vol. 99, num. 3, p. 392-405.

A real-time platform for studying the modulatory capacity of epidural stimulation after spinal cord injury

E. M. Moraud; N. Wenger; J. Gandar; J. Digiovanna; P. Musienko et al. 

2013. 6th International IEEE EMBS Conference on Neural Engineering (NER), San Diego, CA, NOV 06-08, 2013. p. 1449-1452.

Soft Robot for Gait Rehabilitation of Spinalized Rodents

Y. S. Song; Y. Sun; R. Van Den Brand; J. Von Zitzewitz; S. Micera et al. 

2013. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). p. 971-976. DOI : 10.1109/IROS.2013.6696468.

High-precision force control using selective compliant mechanisms

J. von Zitzewitz; H. Vallery; A. Hasse; G. Courtine 

2013 International Workshop on Soft Robotics and Morphological Computation (SoftRobot2013), Ascona, Switzerland, July 14-19, 2013.

A Computational Model for Epidural Electrical Stimulation of Spinal Sensorimotor Circuits

M. Capogrosso; N. Wenger; S. Raspopovic; P. Musienko; J. Beauparlant et al. 

Journal Of Neuroscience. 2013. Vol. 33, num. 49, p. 19326-19340. DOI : 10.1523/Jneurosci.1688-13.2013.

Personalized neuroprosthetics

D. Borton; S. Micera; J. d. R. Millán; G. Courtine 

Science Translational Medicine. 2013. Vol. 5. DOI : 10.1126/scitranslmed.3005968.

Results of the “Survey – Journals @ EPFL for the scientists of the Brain Mind Institute (BMI)”

P. Devaud; I. Kratz 

2013

Network Activity and Plasticity

V. Delattre / H. Markram (Dir.)  

Lausanne, EPFL, 2013. 

Undirected compensatory plasticity contributes to neuronal dysfunction after severe spinal cord injury

J. Beauparlant; R. Van Den Brand; Q. Barraud; L. Friedli; P. Musienko et al. 

Brain. 2013. DOI : 10.1093/brain/awt204.

Multisystem Neuroprosthetic Training Improves Bladder Function After Severe Spinal Cord Injury

M. Horst; J. Heutschi; R. Van Den Brand; K-E. Andersson; R. Gobet et al. 

Journal Of Urology. 2013. Vol. 189, num. 2, p. 747-753. DOI : 10.1016/j.juro.2012.08.200.

Brain–machine interface: closer to therapeutic reality?

G. Courtine; S. Micera; J. DiGiovanna; J. d. R. Millán 

The Lancet. 2013. Vol. 381, num. 9866, p. 515-517. DOI : 10.1016/S0140-6736(12)62164-3.

Somatosensory control of balance during locomotion in decerebrated cat

P. Musienko; G. Courtine; J. E. Tibbs; V. Kilimnik; A. Savochin et al. 

Journal of Neurophysiology. 2012. Vol. 107, num. 8, p. 2072-2082. DOI : 10.1152/jn.00730.2011.

Methods for Functional Assessment After C7 Spinal Cord Hemisection in the Rhesus Monkey

Y. S. Nout; A. R. Ferguson; S. C. Strand; R. Moseanko; S. Hawbecker et al. 

Neurorehabilitation and Neural Repair. 2012. Vol. 26, num. 6, p. 556-569. DOI : 10.1177/1545968311421934.

Animal Models of Neurologic Disorders: A Nonhuman Primate Model of Spinal Cord Injury

Y. S. Nout; E. S. Rosenzweig; J. H. Brock; S. C. Strand; R. Moseanko et al. 

Neurotherapeutics. 2012. Vol. 9, num. 2, p. 380-392. DOI : 10.1007/s13311-012-0114-0.

Response to Comment on “Restoring Voluntary Control of Locomotion After Paralyzing Spinal Cord Injury”

G. Courtine; J. Heutschi; R. Van Den Brand 

Science. 2012. Vol. 338, num. 6105, p. 328. DOI : 10.1126/science.1226274.

Restoring Voluntary Control of Locomotion after Paralyzing Spinal Cord Injury

R. Van Den Brand; J. Heutschi; Q. Barraud; J. Digiovanna; K. Bartholdi et al. 

Science. 2012. Vol. 336, num. 6085, p. 1182-1185. DOI : 10.1126/science.1217416.

Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders

N. Dominici; U. Keller; H. Vallery; L. Friedli; R. Van Den Brand et al. 

Nature Medicine. 2012. Vol. 18, num. 7, p. 1142-1147. DOI : 10.1038/nm.2845.

Multi-system neurorehabilitative strategies to restore motor functions following severe spinal cord injury

P. Musienko; J. Heutschi; L. Friedli; R. van den Brand; G. Courtine 

Experimental neurology. 2012. Vol. 235, num. 1, p. 100-109. DOI : 10.1016/j.expneurol.2011.08.025.

Unconstrained three-dimensional reaching in Rhesus monkeys

D. L. Jindrich; G. Courtine; J. J. Liu; H. L. McKay; R. Moseanko et al. 

Experimental Brain Research. 2011. Vol. 209, num. 1, p. 35-50. DOI : 10.1007/s00221-010-2514-x.

Controlling specific locomotor behaviors through multidimensional monoaminergic modulation of spinal circuitries

P. Musienko; R. van den Brand; O. Märzendorfer; R. R. Roy; Y. Gerasimenko et al. 

The Journal of neuroscience : the official journal of the Society for Neuroscience. 2011. Vol. 31, num. 25, p. 9264-78. DOI : 10.1523/JNEUROSCI.5796-10.2011.

Spinal cord injury: time to move

G. Courtine; R. van den Brand; P. Musienko 

Lancet. 2011. Vol. 377, num. 9781, p. 1896-8. DOI : 10.1016/S0140-6736(11)60711-3.

Phase-dependent modulation of percutaneously elicited multisegmental muscle responses after spinal cord injury

C. J. Dy; Y. P. Gerasimenko; V. R. Edgerton; P. Dyhre-Poulsen; G. Courtine et al. 

Journal of neurophysiology. 2010. Vol. 103, num. 5, p. 2808-20. DOI : 10.1152/jn.00316.2009.