
Statistical methods in atomistic computer simulations
Prof. Michele Ceriotti, michele.ceriotti@epfl.ch

Piero Gasparotto, piero.gasparotto@epfl.ch

Hands-on exercises on a Lennard-Jones 38 cluster

The system that will be examined is a clusters of 38 atoms interacting with a simple
Lennard-Jones (LJ) potential:

U (r) = 4ε
[(σ

r

)12
−
(σ
r

)6
]

where ε is the well depth and 2 1
6σ is the equilibrium separation for a diatomic molecule.

This potential describes dipole fluctuation attractive interactions that decay as r−6, and a
somewhat arbitrary r−12 repulsive wall at short inter-atomic separations, that models the
Pauli repulsion between electron clouds. The Lennard-Jones potential is a good model for
the interaction between noble gases atoms, but here we will use it just as an inexpensive
model of an isotropic pair-wise interaction between atoms. In all the exercises reduced
units will be used, that correspond to measuring energies in units of ε, distances in units
of σ, time in units of t∗ =

√
mσ2/ε, and temperature in units of T ∗ = (ε/kB). In practice

this amounts at setting to one most constants: in principle all results can be scaled to the
physical values for a particular system by setting the appropriate mass, well depth and
equilibrium distance.
A LJ cluster provides a particularly useful model system since for small LJ clusters

a complete enumeration of the minima and transition states allows a detailed view of
the potential energy landscape [1]. In particular the LJ38 , the cluster which we study
here, has a double-funnel landscape: the global minimum is a face-centered-cubic (fcc)
truncated octahedron (Fig. 1(a)) and the second lowest energy minimum is an incomplete
Mackay icosahedron (Fig. 1(b)).

Figure 1: (a) The LJ38 global minimum, an fcc truncated octahedron. (b) and (c) Second
lowest energy minimum of LJ38. Figure adapted from [2].

There is thus a solid–solid transition at moderate temperatures and a subsequent solid–
liquid transition at higher temperatures. The solid–solid transition occurs because the
energy landscape in the high-temperature phase is flatter, resulting in a larger entropic
contribution to the free energy of this structure, and to its stabilization at moderate
temperatures relative to the fcc minimum [3]. Figure 2 shows a few selected configurations
for this system, together with the free energy computed close to the solid-liquid transition

temperature. The stability of different configurations depends dramatically on the sim-
ulation temperature, and the time scales for transitions is long, but accessible to direct
simulation thanks to the small size and inexpensive potential. This makes LJ38 an ideal
example to show the strength and pitfalls of different sampling techniques in atomistic
simulations.

Figure 2: A number of representative configurations of the LJ38 cluster are projected
together with the free energy surface computed at 0.18T ∗. Figure adapted from [3]

General remarks
These exercises are structured as a hands-on tutorial, in which you are given simple,

rudimentary programs that (should) already work. You are encouraged to look at the
source code to understand how things work, and you are more than welcome if you want
to clean up the code, include better comments or more explanatory error messages.
You should be able to finish most of the exercises in two hours. Please keep your results

in order, as you will be asked to put them together in a short report in which you explain
what you learned from each part of the tutorial, and since at times you will have to
compare results obtained from different exercises.
Always change the random number seed in the example input files before you run:

in this way each one will have statistically independent results, and it will be possible to
combine the results of different groups to get more converged statistics. It is expected for
you to be familiar with running programs from a UNIX shell. If this is not the case, it
is highly recommended that you follow one of the many excellent tutorials that can be
found on-line before you start.

2

Utility programs
The programs used to run simulations have been developed specifically for this course,

and are distributed as a package together with these notes. However, a few utilities will
be used to post-process the simulation output – for instance to compute histograms and
autocorrelation functions. These should be downloaded from their git repositories, and
then compiled:

$ git clone https://github.com/cosmo−epfl/toolbox.git
$ cd toolbox/src
$ make
$ cd ..

You may need to create a make.in file based on make.in.example, and to install lapack
and fftw3 to have access to all the features of this set of utilities. On a Debian/Ubuntu
system, you should be able to do so by running

$ cp make.example.in make.in
$ sudo apt−get install libfftw3−dev liblapack−dev

For the last exercise, you will also need the sketchmap suite of dimensionality reduction
programs. You should be able to get it from the repository

https://github.com/cosmo-epfl/sketchmap.git

Lastly, in some steps you will be asked to visualize your structure trajectories using the
vmd command. In order to use it, you’ll have to install it from its webpage

http://www.ks.uiuc.edu/Development/Download/download.cgi?PackageName=VMD

3

1 Monte Carlo
This exercise is meant to be a simple introduction to Metropolis Monte Carlo (MC),

and a way to get familiar with the LJ38 system and with the programs we will use to
post-process the simulation data. You will find the source code in the src/ directory,
that contains

mcnvt.f90 The main file, containing the initialization of the
system and the Metropolis MC algorithm

routines.f90 The module containing the principal functions and
subroutines used in the mcnvt.f90 file, such as the
calculation of the energy, the i/o routines, ...

random.f90 Routines to sample a uniform and Gaussian ran-
dom numbers

Makefile The file containing the compilation parameters

First, try to familiarize yourself with the source, which is heavily commented and should
allow you to easily follow the algorithms. Compilation is straightforward:

$ pwd
~/exercises/ex1
$ cd src
$ make
$ cd ..

This will generate a binary file called mcnvt, that you will use to run the exercises. The
input file for mcnvt contains the following options:

&inp
seed = 1357 Initial seed for the random number generator
temp = 0.23 Target temperature
dataxyz = ’lj38.xyz’ Starting configuration (xyz format)
nstep = 10000000 Number of steps to be performed
stridetrj = 10000 Output stride for the trajectory
stridelog = 100 Output stride for the simulation logs
mcstep = 0.001 Variance of the Gaussian random numbers used to

generate trial configurations
outputf = ’out.xyz’ Output trajectory file
&end

1.1 MC equilibration
In this exercise we will study the equilibration of the system in the NVT ensemble. The

proposed target temperature is 0.23T ∗. The starting initial configuration contained in
the file lj38.xyz is the fcc truncated octahedron relaxed to 0T ∗.
Launch the program with the following command:

$../src/mcnvt input > log &

This will output the statistics in the file log and will run the calculation in background
so you can monitor the equilibration of the system using gnuplot. For instance, to plot
the potential energy as a function of the number of MC steps:

$ gnuplot

4

gnuplot> p 'log' u 1:2 w l
(alternatively: gnuplot> plot 'log' using 1:2 with line)

• Observe how the potential energy converges to the equilibrium value
• Look at the trajectory file using

$ vmd out−023.xyz

and experiment with the visualization options of vmd (particularly in the menu
graphics -> representations).

• Check how the equilibration varies when changing the input parameters, such as
mcstep and the target temperature

• The transient that is observed at the beginning of the equilibration is related to the
sampling efficiency (because of the connection between relaxation to equilibrium and
fluctuations in the equilibrium ensemble). The sampling efficiency can be estimated
by computing the autocorrelation time.
– use the autocorr tool to compute the autocorrelation function from one of the

logs

$ tail −n +10000 log | awk '!/#/{print $2}'
| autocorr −maxlag 10000 −timestep 100 > acf

The -maxlag option specifies the time window in which to calculate the auto-
correlation function, while the -timestep flag is used to set the unit of time
based on the stride and timestep used for the trajectory, so that the time scale
output from autocorr corresponds to the correct simulation time. Note that
we use tail to remove the first part of the trajectory (which consists of the
equilibration, so the number of dropped lines should be adjusted depending on
the length of the transient!), and awk to pick the column that corresponds to
the potential energy.

– the program returns extensive statistical data about the trajectory. The header
contains the average and standard deviation of the data set, the autocorrelation
time and an estimate of the error in the mean obtained from the variance of
the data, the autocorrelation time and the the length of the trajectory.

$ head acf
...
computed with time unit: 1.0000000e+02
mean: −1.5525889e+02 +− 2.9949957e−01
sigma: 2.4443721e+00
a.c. time: 4.5166879e+05
...

Then, a series of time-dependent diagnostics follows, where the first line indicate
the time and the second column the value of the autocorrelation function – you
can ignore the other columns. Plot the autocorrelation function using gnuplot,
and observe how the decay to zero varies with the MC step.

– compute the autocorrelation function of trajectories of different length. See how
the autocorrelation function requires very long trajectories to reach convergence,
and how the tail of the function tends to be noisy. Since autocorr evaluates the
autocorrelation time as the integral up to the maximum time lag, the -maxlag
option should be set to be long enough for the function to converge to zero,
but not much longer, to avoid picking noise from the tail, which would affect
the estimate of the correlation time.

5

1.2 Optimization of the MC step
Since the autocorrelation time directly relates to the statistical efficiency of sampling,

it is crucial to choose a MC step that minimizes the autocorrelation time. Here we will
perform a systematic study using many different values in order to understand the trend
of τA as a function of the the mcstep. We will also see how the optimal correlation time
compares with the acceptance ratio α = accepeted moves

total moves .

• Perform a series of separate runs changing the value of the mcstep parameter, and
compute for each of the runs the autocorrelation time. Start with the examples pro-
vided. Make sure that the simulation is long enough to converge the autocorrelation
function, and that the maximum lag is not much longer than the autocorrelation
time itself. Also, keep track of the acceptance ratio, which is printed out at the end
of each run as a comment in the log file:

$ tail −n 6 log−0.05
##
Total moves: 50000
Accepteed moves: 11277
##
Ratio: 0.22553999999999999
##

• Write down in a text file the autocorrelation time and the acceptance ratio as a
function of the mcstep. You can then use gnuplot to generate a plot and store it in
an image that you can use when you write your report. To export graphs produced
by gnuplot, you can just specify a terminal, which also determines the format of
output file. gnuplot supports terminals for various formats including png, jpg, gif
and postscript. For instance,

gnuplot> set terminal png size 400,300 enhanced font "Sans,20"
gnuplot> set output "mcstep.png"

In this example we used the png output format, but you can either use jpg, ps
and pdf. The other options used – size, enhanced, font – let you to control the
appearance of the exported plot.

• Which value of mcstep corresponds to the shortest autocorrelation time? What is
the corresponding α?

1.3 Exploiting local moves
[OPTIONAL] The program is implemented using the detail balance Metropolis condition

as transition rule :
η < e−β(V new−V new)

where η is a number between zero and one sampled from a uniform distribution, while
V new − V newis the energy difference of the entire system after and before the move. Since
we are using a simple pairwise LJ potential and since we move just one particle per move,
this is a wasteful way to proceed: the potential is evaluated as a sum of pair terms

V ({r1, . . . , rN}) = 1
2
∑
ij

v (|ri − rj |) ,

and so moving just one particle leaves most of the pair-wise terms untouched. In fact, one
can show that if the k-th particle has been moved, the difference between the potential

6

before and after the move is just

V new − V old =
∑
i

v (|ri − rnew
k |)−

∑
i

v
(∣∣ri − rold

k

∣∣) .
You can try to modify the code to use this trick to reduce the cost of performing each MC
step, and see how the wall-clock execution time changes.

2 Molecular dynamics.
This exercise focuses on using Molecular Dynamics (MD) to sample the constant tem-

perature canonical ensemble. Enclosed is a simple MD program that will give you the
possibility to run simulations in the NVE and NVT ensemble for a Lennard-Jones cluster.
In order to couple the system with a thermal bath, three thermostat are implemented:
Andersen, white-noise Langevin (WNL) and colored-noise Generalized Langevin Equation
(GLE). All the source code files are provided in the src/ directory, that contains

mdcode.f90 The main file, containing the initialization of the
system and the MD loop

routines.f90 The module containing the principal subroutines
used in the mdcode.f90 file, such as the
calculation of energies and forces, i/o routines and
basic thermostats

glecn.f90 The module containing routines for the
colored-noise Langevin thermostat

random.f90 Routines to sample a random number from a
Gaussian distribution with zero mean.

Makefile The file containing the compilation parameters

To compile the program just type make as already seen for the MC code. This will
generate a binary file called mdcode. The input file is as follows:

&inp
seed = 1357 Initial seed for the random number generator
temp = 0.20 Target temperature
dataxyz = ’lj38.xyz’ Starting configuration
dt = 0.001 Integration time step
nstep = 20000 Number of steps to be performed
langevinWNtau = 10 Relaxation time of the white-noise Langevin

thermostat. If set to 0, or if the keyword is not
present, this thermostat will not be applied

gleafile = ’gle-A.dat’ The file containing the drift matrix A required by
the colored-noise Langevin thermostat. If set to
an empty string or if the keyword is not present
this thermostat will not be applied

mstep = 1 Apply the Langevin thermostats in a multiple
time step fashion

andersentau = 10 Relaxation time of the Andersen thermostat If set
to 0, or if the keyword is not present, this
thermostat will not be applied

stridetrj = 50000 Stride outputting the trajectory
stridelog = 1 Stride outputting the simulation logs
outputf = ’out.xyz’ Output trajectory file
&end

7

Note that using langevinWNtau = 0, gleafile = ” and andersentau = 0 one can
perform constant-energy microcanonical dynamics in the NVE ensemble.

2.1 NVE dynamics and energy conservation.
In MD, Hamiltonian systems of differential equations are numerically integrated to evolve

the system in time following the prescriptions of classical, Newtonian dynamics. The
integrator implemented in mdcode is the simple (but effective) velocity-Verlet algorithm.
Such a method does not conserve energy exactly along the trajectory, thus leading to
a discretized trajectory that diverges from the one that would be obtained by exact
integration of the dynamics. However, although it does not conserve the energy, when
using a sufficiently small time step, the velocity-Verlet integrator maintains the system’s
total energy in a narrow band around the true energy and yields remarkably stable
trajectories with essentially no significant energy drift.
A word of caution: while one can achieve near-perfect energy conservation by reducing the

time step, working with an excessively small time step may result in waste of computer time.
A practical compromise would allow for small energy fluctuations and slow energy drifts,
as a price to pay to work with a reasonably large dt. Concerns about the conservation of
total energy are less serious when using a thermostat, as it will be discussed below.
As a first example of molecular dynamics, we will run NVE simulations starting from a

configuration frozen in the fcc ground state structure, and try to melt it as we did with
Monte Carlo. Use the example file called input in the directory pt1/ .
To run the program:

$../src/mdcode input > log &

Before starting the exercise take a brief look at the log file:

$ head log
MD code.
Natoms: 38
Timestep: 1.00000000000000002E−002
Temperature: 0.23000000000000001
##
Step, Temp, Ekin, Epot, Etot, Conserved quantity
0 0.2397 0.1330 −173.9225 −160.6201 −160.6201
10 0.8079 4.4842 −165.0655 −160.5812 −160.5812
20 0.1119 6.2140 −166.8071 −160.5931 −160.5931

• Use gnuplot to monitor the potential, kinetic and total energies:

gnuplot> p 'log' u 1:3 w l
gnuplot> p 'log' u 1:4 w l, 'log' u 1:5 w l

• Try running with increasing values of the time step. What happens? Visualize the
trajectory using vmd.

– What is the highest usable timestep?
– How do energy fluctuations and drift vary with dt?

Now, choose the best timestep you found and run a simulation at T ∗=0.20 lasting for 3
million steps. Look at the trajectory using vmd. Plot the potential energy and compare
the results with those from MC simulation at the same target temperature, starting from
the same configuration.

8

• What can you say about the equilibration and energy trend comparing the MD plot
with the MC one?

• Compute the average temperature and the average configurational energy.

$ tail −n +5000 log | awk '!/#/{t+=$2;pot+=$4; n++}
END{print"T=",t/n;print"Epot=",pot/n}'

What is the value of 〈T ∗〉? And 〈V 〉? Are they comparable with the chosen target
temperature and with 〈V 〉 obtained from the MC simulation?

2.2 Constant temperature MD
NVE molecular dynamics does not yield sampling consistent with the target temperature

– particularly if the simulation is initialized from a configuration which is not compatible
with the ensemble. Three thermostat are implemented in mdcode to perform ergodic
trajectories within the NVT ensemble. Go into the directory pt2 and run a first simulation
using the provided example file (do not change the target temperature).
You should also run the GLE simulation from (2.4) since the simulation should last for an
hour.

• Plot the total energy (or the configurational energy) and compare it with the one from
the NVE run. What happens switching on the thermostat? Plot also the conserved
quantity (column 6). Is it (approximately) conserved? See that its fluctuations
decrease if you reduce the time step further.

• Run a new simulation using as starting configuration the final snapshot from the
previous trajectory:

$ tail −n 40 out.xyz > ljnew.xyz &

Remember to change the input file setting dataxyz = ’ljnew.xyz’.

$ sed "s/lj−oct−ok/ljnew/" input > input.new &

– Is the equilibration transient changed? If yes, why?

• Now try to increase a bit dt (let’s say dt=0.01) and, again, plot the conserved
quantity and the total energy together.

– What happens to the conserved quantity increasing dt?
– Does the mean total energy change significantly (use autocorr to compute a

mean value with errorbars)?

• Compute the autocorrelation function for the potential energy and plot it. Can you
see the multiple time scales at play here? Compute the autocorrelation time and
compare it to the efficiency of Monte Carlo in terms of energy evaluations needed to
obtain an uncorrelated sample. Is this a fair comparison?

• [OPTIONAL] Test the Andersen thermostat and compare the resulting total energy
with the one using the WNL from the previous simulation. What the difference
between the two? How does the Andersen’s one look like?

– What happens choosing a big relaxation time for the Andersen thermostat?
And a really small one?

9

2.3 Assessing the sampling efficiency of the WNL ther-
mostat

The sampling efficiency of a thermostat can be assessed quantitatively evaluating the
autocorrelation times relative to the observables we are interested in. Since the behavior
of the WNL thermostat is controlled tuning its relaxation time (langevinWNtau), we will
now perform a systematic study in order to discover the relaxation time that minimizes
the (configurational) energy autocorrelation time (τV).

• Go into the directory pt3 and run different simulations at T ∗ = 0.20, changing the
value of the langevinWNtau (0.01,0.1,1,10,100).
N.B.: Start using configuration extracted from a previously equilibrated run at
T ∗ = 0.20. Use the following command:

$ tail −n 40 out.xyz > lj.xyz &

Make sure that the number of steps that you will choose for the simulations is long
enough to converge the autocorrelation functions (the a.c. function should converge
to zero and should not be too much noisy); use the given input file as a prototype
for your runs. Since you have to run several simulations and to analyze them, you
would probably want your simulation lasting not too much. Also avoid to output
the logs every steps, otherwise you will rapidly fill up all your disk free space. An
example of the parameters you should use in this example is: nstep=20000000 and
stridelog=50.

• Compute for each run the autocorrelation time using autocorr. Plot the a.c.
functions in a comparative graph and save it to a file (that will be part of your final
report). Be extremely careful here: as already said, you must choose a maxlag value
assuring you that the a.c. functions will converge to zero, to get reliable results. You
might need to choose different values depending on the simulation parameters

• Plot the trend of τV (as already seen in the MC part, you can find the a.c. time in
the autocorr output header!) as a function of the WNL relaxation time and save
it in a file for your report. Use the logarithmic scale to better see the trend of the
variation.

• What is the optimal relaxation time for the WNL thermostat at the chosen condition?
• [OPTIONAL] What do you think will happen when changing the target temperature?

Will the langevinWNtau you found still be the best at any T ∗? Compare with
correlation times found at another temperature (T ? = 0.23 for example).

2.4 Colored-noise Langevin thermostat
You should now know that finding the best parameters for the WNL thermostat is

definitely not trivial. Multiple time scales are at play, and applying a different WNL
thermostat to different molecular coordinates would require in-depth knowledge of the
dynamics of the system, which is often impractical and computationally demanding. A
good solution is to use the so called colored-noise, Generalized Langevin Equation (GLE)
thermostat. This thermostat is based on a stochastic technique that automatically adapts
and enforces ergodic sampling on all the normal modes of the system. In this way the
GLE thermostat assure an “optimal sampling” avoiding you the effort to find the best
relaxation time for the particular system you’re studying at. Keep in mind that for this
particular set-up, with simple L.J. potential, the numerical cost of the GLE thermostat is
not negligible and the simulation should run for about an hour.

• Go into the directory pt4 and run a simulation using the example file.

10

• Compute the energy autocorrelation functions and compare it with the ones you
obtained using the WNL thermostat.

• What about the GLE thermostat a.c. time compared with conventional Langevin?
Consider that you did not need to optimize any parameter here!

3 Free energy and transition state theory
The program is a modified version of the simple MD code of the previous exercise. It only

implements white-noise Langevin (WNL), but contains additional routines to evaluate
collective variables, and a separate program to perform a committor analysis

mdcode.f90 The main file, containing the initialization of the
system and the MD loop

mdcommitt.f90 Computes the committor for a number of atomic
configurations, given in input

routines.f90 The module containing the principal subroutines
used in the mdcode.f90 file, such as the
calculation of energies and forces, i/o routines and
basic thermostats

structure.f90 The module with the routines to evaluate
coordination numbers

random.f90 Routines to sample a random number from a
Gaussian distribution with zero mean.

Makefile The file containing the compilation parameters

Both programs can be compiled in the usual way. This will generate two files: mdcode,
that you will use to run constant-temperature MD trajectories, and mdcommitt, that you
will use for the subsequent analysis. The modified MD program also outputs two collective
variables that make it possible to distinguish different structures:

nc =
N∑
i=1

e− (ci−c)2

2σ2 ,

where ci is the coordination number of atom i, defined in turn as

ci =
∑
j

C (|qi − qj |) , C (d) =


0 d > r0

1 d < r1

(y − 1)2 (2y + 1) r1 < d < r0, y = d−r1
r0−r1

.

The variable nc corresponds approximately to the number of atoms in the structure with
a coordination number around the value c.

Note that each run in exercise 3.2 and 3.3 should last about 30 minutes so you might
want to launch most of them in advance. The input file for the mdcode program is as
follows:

11

&inp
seed = 1357 Initial seed for the random number generator
temp = 0.168 Target temperature
dataxyz = ’lj38.xyz’ Starting configuration
dt = 0.01 Integration time step
nstep = 100000000 Number of steps to be performed
langevinWNtau = 10 Relaxation time of the white-noise Langevin

thermostat. If set to 0, or if the keyword is not
present, this thermostat will not be applied

mstep = 10 Apply the Langevin thermostats in a multiple
time step fashion

stridetrj = 20000 Stride outputting the trajectory
stridelog = 2000 Stride outputting the simulation logs
r0=1.5, r1=1.25, sig=0.5 Parameters for the evaluation of CVs (r0, r1, σ)
stridecv = 200 Stride outputting the collective variables
outputf = ’out.xyz’ Output trajectory file
outputcv = ’out.cv’ File to output CV information
clist(1)=6, clist(2)=8 Chooses two coordination numbers a and b for

which to compute nc.
sela(1)=18, sela(2)=25 Intervals for selecting structures with

sela(1) < na < sela(2). Does not perform a check
if sela(1)<0

selb(1)=-1, selb(2)=-1 Intervals for selecting structures with
selb(1) < nb < selb(2). Does not perform a check
if selb(1)<0

seloutf = ’sel.xyz’ File to output selected configurations
&end

3.1 Computing free energies
In the first part of this exercise we will run a constant-temperature simulation, compute

free energies relative to different collective coordinates and verify that they can distinguish
between different meta-stable structures. Example input files are given in pt1/, and can
be run with

$../src/mdcode input > log &

Besides the usual diagnostics and a series of snapshots collected along the trajectory, the
program will also print out a outputcv file containing the values of n6, n8 and the values
of the one-dimensional flux factors φ8 (q) and φ6 (q) computed for the corresponding
configurations. It will also print out a file with configurations selected according to their
value of (n6, n8).
One can then compute the free energy associated with the two collective variable

separately, by computing the histograms of h (n8) and h (n6). The corresponding free
energy is then just F (nc) = − 1

β ln h (nc). A script is provided that computes F (n8) and
F (n6), as well as the free energy relative to the joint distribution of n6 and n8 and the
average flux factors

φ (nc) = 〈δ (nc (q)− nc)φc (q)〉
〈φc (q)〉 .

A script is provided that computes all of these quantities using (nd)histogram at once
(assuming that the file names have not been changed!):

12

$../src/mkfes.sh 0.168 &

• Run the simulation, monitoring the value of the collective variables with gnuplot.
• Compute the free energies (make sure to understand what the script is doing!)
• Look at the free energy for n6 and see that there is a meta-stable state for n6 & 18.

By inspecting the selected atomic configurations using vmd, see what structure this
corresponds to. Note that there are also some configurations that look quite different.
This is a sign that n6 is not sufficient to identify the fcc cluster.

• You might want to have a look at F (n6, n8) that clarifies what is going wrong.
However, we will keep using just n6 for a while...

gnuplot> set pm3d map; sp 'n6n8.fes' w pm3d

• Estimate the transition state theory rate by combining the free energy information
with the average flux factor at n6 = 18

3.2 Committor analysis
To assess the quality of the collective variable n6 in studying the fcc-liquid transition, let

us try to single out the transition state ensemble and to perform a committor analysis.
To this aim, we will use the mdcommitt code, that is just a simplified version of the MD
code with the following options

&inp
seed = 1357 Initial seed for the random number generator
temp = 0.168 Target temperature
dataxyz = ’ts.xyz’ Sequence of configurations for which the

committor is to be computed
dt = 0.01 Integration time step
nstep = 250 Number of steps to be performed for each

trajectory
nshoot = 100 Number of trajectory that must be generated

from each configuration
r0=1.5, r1=1.25, sig=0.5 Parameters for the evaluation of CVs (r0, r1, σ)
stridecv = 200 Stride outputting the collective variables
cvoutf = ’out.finalcv’ Print out the final CVs for each trajectory
clist(1)=6, clist(2)=8 Chooses two coordination numbers a and b for

which to compute nc.
sela(1)=0, sela(2)=1.8 Interval defining the product region

(sela(1) < n6 < sela(2)). Does not perform a
check if sela(1)<0

selb(1)=-1, selb(2)=-1 Interval defining the product region
(selb(1) < n8 < selb(2)). Does not perform a
check if selb(1)<0

&end
The committor is computed by running multiple trajectories from each configuration,

and counting how many times the trajectory ends up in the defined product region. The
code will print out for each configuration the initial value of the two CVs and the value of
the committor. Example input files are given in pt2/.

• Start a (long) trajectory using the input.md file. The sela parameters should pick
a region in the vicinity of the maximum of the free energy relative to n6. This should
be something around n6 = 18.

13

$../src/mdcode input.md > log.md &

• The simulation will print out configurations that fulfill these constraints, into the
ts.xyz file. Look at the values of the collective variables along the trajectory, making
sure that there actually are transitions between the fcc minimum and the molten
states of the cluster. Inspect the file with vmd.

• When enough snapshots have been accumulated (it might take a long time before
the MD simulation is over, so you may want to start playing around before the run
is finished. Make sure not to overwrite files while the MD is still running!) you can
run the actual committor analysis.

$../src/mdcommit input.comm > log.comm &

It will take some time before there is any output in the file – this is because the
output is buffered, and so lines will appear only when the buffer is flushed.

• Look at the position of the initial configurations and the value of the committor.
This can be done with gnuplot using

gnuplot> p 'log.comm' u 5:7:2 w p pt 7 lt pal

• Compute the histogram of committors for the transition state ensemble

$ awk '!/#/{print $2}' log.comm
| histogram −xi 0 −xf 1 −n 100 −t 0.1 −whard > histo.comm

Is this a good collective variable?

3.3 Committor analysis in 2D
Look carefully at the 2D free energy surface computed on one of the MD runs. It should

be clear why n6 is not too bad to distinguish reactants and products, but is a terrible CV
to describe the transition state. You can try to repeat the committor analysis using both
n6 and n8 to define the transition state region. Example input files are given in pt3/.

• Run the MD trajectory outputting the configurations that conform to the 2D
definition of the transition state ensemble (tentative ranges for n6 and n8 are already
given, but feel free to experiment).

• Run the committor analysis on this new set of transition states. It is somewhat
better than before, but not much better. LJ38 is much harder than it looks like!

4 Reweighing and biased sampling
Statistical reweighing promises to extract much more information from a single MD

run, by gathering thermodynamic averages at different temperatures, or by correcting the
distortion of the ensemble statistics which is due to the use of a biasing potential. To
do so, one has to weight observables by the ratio of the target probability distribution
and the distribution that was sampled during the simulation. The code for this exercise
has been modified to output the energy and bias together with the values of collective
variables, i.e. the file specified in outputcv contains

Step.Index Na PhiA Nb PhiB V Bias

Note that Metadynamics (4.2) and Well-tempered metadynamics (4.3) would need one
hour to run so you might want to launch them in advance.

14

4.1 Temperature reweighing
Perform two runs at T ? = 0.17 and T ? = 0.19.

$../src/mdcode input.17 > log.17 &
$../src/mdcode input.19 > log.19 &

• Compare runs at different temperatures. Use re-weighting to recover evaluate the
mean potential energy at temperatures that differ from those of the actual run. You
can use the script given in the src/ directory, but make sure to understand what it
is doing.

$../src/mkrwavg.sh 0.17 < log.17 > vavg.17
$../src/mkrwavg.sh 0.19 < log.19 > vavg.19
$../src/mkrwavg.sh 0.17 0.19 < log.17 > vavg.17to19
$../src/mkrwavg.sh 0.19 0.17 < log.19 > vavg.19to17

• Note that the converged result from reweighing the run at T ? = 0.17 is actually
within statistical error of the average computed at T ? = 0.19, and vice versa. Try to
reweigh from T ? = 0.17 to T ? = 0.23, and from T ? = 0.19 to T ? = 0.23. Note that
the final averages differ a lot, and that the cumulative average for 0.17 → 0.23 is
much more irregular up to large times. This is a manifestation of the pathological
statistics of reweighed sampling. Try to compute the fluctuations of the log-weight
as a function of the target temperature, and estimate the range on which reweighing
can be expected to work decently.

• Use another script to compute reweighed free energies

$../src/mkrwfes.sh 0.17 < out.17.cv > n6.17
$../src/mkrwfes.sh 0.19 < out.19.cv > n6.19
$../src/mkrwfes.sh 0.17 0.19 < out.17.cv > n6.17to19
$../src/mkrwfes.sh 0.19 0.17 < out.19.cv > n6.19to17

• Try to experiment with different temperatures. Look at the time evolution of n6
and see how often transitions happen between the fcc and the liquid basin. If the
objective was to sample thoroughly the transition state region, do you think that
temperature reweighing could help?

4.2 Metadynamics
The code provided for these exercises also implement metadynamics using the two selected

collective variables. In addition to the options of previous days, a few options that are
specific to metadynamics are also included:

wmeta = 0.1 Height of each deposited hill
sigmameta = 0.25 Width of the repulsive hills
stridemeta = 10000 Stride for depositing new repulsive hills
outhillsf = ’out.hills’ Filename for saving the centers of repulsive hills

deposited during the simulation

• Perform a metadynamics run, using the example presented in pt2/. Visualize the
position of the hills and the bias as the simulations goes on.

$../src/mdcode input.meta > log.meta &
...
gnuplot> p 'out.hills' u 2:3:6 w p pt 7 ps 2 lt pal
gnuplot> p 'log.meta' u 1:5 w l

15

• As the simulation proceeds, transitions between the fcc cluster and liquid-like clusters
will become more and more likely.

• You can follow the build-up of the bias by using the sumhills utility to post-process
the outhillsf file. The -t nh option allows you to plot the bias including only the
first nh hills.

$ awk '{print $2,$3,$4,$5}' out.hills | head −n 1000 |
../src/sumhills −nci 0,0 −ncf 25,16 −b 0.1,0.1 > bias.splot
...
gnuplot> set pm3d map; sp 'bias.splot' w pm3d

– Note that at any instant in time there is a residual roughness on the FES as
estimated from the negative of the bias, and that the width of the hills effectively
set a limit to the resolution at which the free energy can be reconstructed

– Try to run with a reduced hill height, and more frequent deposition. Is the
runtime getting longer? This is actually the case – for such a simple system the
evaluation of the repulsive bias can be as expensive as the physical forces. The
evaluation of the bias gets slower as the simulation progresses, since the sum
extends over all the configurations visited in the past. Efficient implementations
of metadynamics typically represent the bias on a grid, which means that the
cost does not vary with simulation time.

• Since metadynamics relies on an assumption of local equilibrium, one can also obtain
the free energy or any observable by reweighing the trajectory, to subtract the effect
of the bias. Since the bias grows continuously, however, only the last part of the
trajectory contributes significantly to the averages, which means that convergence of
averages is exceedingly slow. See for instance the trend of the cumulative average of
the potential. In fact, extracting Boltzmann weights from a metadynamics trajectory
can be made more efficient by “equalizing” the weight of different parts of the
trajectory – an advanced technique that we will not discuss here.

$../src/mkrwavg.sh 0.168 < log.meta > vavg.rw
$../src/mkrwfes.sh 0.168 < out.cv > n6.rwfes

– Compare the free energy with that computed from an unbiased run

4.3 Well-tempered metadynamics
The problem of residual roughness in the bias generated by metadynamics can be

addressed by reducing systematically the height of the repulsive hills. The “well-tempered”
metadynamics strategy does so by scaling the deposition rate by an exponential function
of the already-deposited bias e−B(s(t),t)/∆T . This behavior can be specified in our code by
specifying a non-zero ∆T using the option

wttemp = 0.5 Effective temperature used in the well-tempered
damping of bias deposition rate

• Run a simulation using well-tempered metadynamics. Compare the growth of the
bias with conventional metadynamics and with damped deposition rate.

• Compare the rate of transitions with the two approaches. Well-tempered metady-
namics is somewhat less effective. This comes because

1. the well-tempered bias does not flatten the free energy completely.
2. the continued accumulation of bias in conventional metadynamics pushes the

system around, accelerating diffusion even on a flat free energy surface. This is

16

however dangerous, as it leads to hysteresis effects and might systematically
bias the estimation of the FES.

• Compare the final bias using sumhills, with that computed on the conventional
metadynamics run.

– Remember that the free energy in well-tempered metadynamics is

F (s) = −B (s) T + ∆T
∆T + C.

You can apply this scaling directly from gnuplot, e.g.

gnuplot> sp 'bias.splot' u 1:2:(−$3*(1+0.168/0.5)) w pm3d

• Compute reweighted quantities. See how cumulative averages converge better than
with conventional metadynamics, since the bias is now smoothly converging. Note
that a more sophisticated analysis that balances the different parts of the trajectory
would still be very beneficial.

5 Dimensionality reduction
In this exercise we will focus on post-processing the results of previous simulations to

determine machine-learning collective variables (CV) that can give you a better under-
standing of the configuration space of LJ38, and of the shortcomings of conventional CVs
even in such a simple system.
We will use the sketch-map method [3], and the suite of programs that can be downloaded

from http://cosmo-epfl.github.io/sketchmap.
We will first extract a set {Xi} of reference configurations, described in terms of the

set of all coordination counts between 4 and 13, and find their sketch-map projection by
minimizing the objective function

χ2 =
N∑

i,j=1
[s (|Xi −Xj |)− s (|xi − xj |)]2 . (5.1)

Having obtained this map, one can more easily find the out-of-sample embedding of the
remaining points, and analyze the simulation based on the map obtained by machine-
learning.
Note that a commands text file is provided to avoid any misspelling in the following
command lines but keep in mind that it’s better to understand what they mean.

5.1 Extracting landmark points
Since the cost of minimizing iteratively Eq. (5.1) grows quickly with the number of

reference points, so it is important to select a sub-set of the data from which one wants
to build the map. Get the out.all data file from the first of the exercises on transition
state theory, or run mdcode to generate it

$../../ex3/src/mdcode input.cv > log

Then, use dimlandmark to extract 500 reference points from the dataset:

$ awk '{if (NR%10==0) print $0}' out.all | dimlandmark −D 10 −n 500
−w −unique −mode staged −gamma 0.5 −wgamma 0.5 > lj38.lm

17

Read the help string of the program (dimlandmark -h) to get a description of the options.
Note that we pre-select a subset of the data set to speed up the evaluation. The staged
mode of selecting the landmarks is a two-step procedure in which a larger set of points is
chosen, approximately uniformly spaced one from another. Then, the probability density
in the D dimensional space is estimated, and it is used to select the n landmark points
according to P (X)γ . You can try to visualize the selected landmarks with gnuplot,
superimposing them to a free-energy surface for n6 and n8, to see how they change when
the value of γ is modified

gnuplot> sp 'n6n8.fes' w pm3d, 'lj38.lm' u 3:5:(3) w p

5.2 Analyzing the distribution of data points
Before starting this section you might want to run sketch-map (5.3) and the out-of-sample

embedding (5.4) because dimproj utility might need one hour and a half to run.
Sketch-map is based on restricting the similarity matching that underlies MDS methods
to the range of distances that characterize adjacent meta-stable states. Compute the
distribution of individual CVs, e.g. by

$ awk '{print $3}' out.all | histogram −xi 0 −xf 25 −n 500 −t 0.1 > n6

and look at the amplitude of fluctuations around maxima of the histogram in each
dimension. Note that there are multiple scales in the fluctuations in probability density –
sharp peaks with a width of about 3 units, superimposed with broad features with much
larger breadth of about 5 units. This is a common problem when analyzing atomistic data
in a glassy free-energy landscape – multiple shallow minima are grouped together to form
extended regions of similar, closely-related structures. Also, consider that fluctuations in
D dimensions are approximately

√
D times broader than their one-dimensional projections,

so depending on the resolution one wants to achieve one might want to select a threshold
parameter for sketch-map between 1.5 and 10 units.
You may also want to compute the histogram of D-dimensional distances. Typically

one wants to select a cutoff somewhere before the maximum of the distribution, which is
dominated by long-range features

$ awk '{if (NR%10==0) print $0}' out.all > tmp
$ dimdist −D 10 −P tmp −maxd 20 −nbin 200 −lowmem > lj38.histo

Sketch map uses a sigmoid function defined as

s (r) = 1−
(

1 +
(

2a/b − 1
)

(r/σ) a
)

−b/a.

You may want to plot it superimposed with the histogram of pairwise distances to get a
feeling of how different sets of distances are transformed by the function:

gnuplot> f(r,s,a,b)=1−(1.0+(2**(a*1.0/b)−1)*(r/s)**a)**−(b*1.0/a)
gnuplot> p 'lj38.histo' u 1:($2*10) w l, f(x,5,8,1)

5.3 Run sketch-map
Being an iterative minimization scheme, sketch-map requires a decent starting configura-

tion and an optimizer that can get out of local minima to approach a global optimum.
Without getting into details, you can use a simple script that takes care of the optimization
procedure. Remember to delete the two-lines header of lj38.lm before proceeding.

18

$ sketch−map.sh
Please enter the dimensionality of input data 10
Do we have a similarity matrix ? n
Are points weighted [y/n]? y
Should I use the dot−product ? n
Please enter the periodicity of input data [0 if non−periodic] 0
Please enter the input data file name lj38.lm
Please enter the output data prefix lj38.5_8_1−5_2_2
Please enter high dimension sigma, a, b [e.g. 6.0 2 6] 5 8 1
Please enter low dimension sigma, a, b [e.g. 6.0 2 6] 5 2 2

You can then remove intermediate files and diagnostics, and assemble a file with just the
low-dimensional coordinates of the landmarks.

$ rm log global.* lj38.5_8_1−5_2_2.*[0−9]
$ awk '!/#/{print $1, $2}' lj38.5_8_1−5_2_2.gmds > lj38.ld

• Visualize the projected points, and verify by coloring how the sketch-map coordinates
separate clearly points with different nks

gnuplot> p '< paste lj38.ld lj38.lm' u 1:2:5 w p pt 7 lt pal

• [OPTIONAL] Try to run projections with different parameters – σ, a, b – and verify
how much the projection changes

5.4 Out-of-sample embedding
Having obtained a map that assigns to each of the high-dimensional landmark points a

corresponding embedding, one can proceed to project all the data in the original trajectory.
You should use the utility dimproj todo so, specifying the high and low-dimensional
references, the sketch-map parameters and giving in input the full trajectory:

$ dimproj −D 10 −d 2 −P lj38.lm −p lj38.ld −w −grid 15,16,151
−cgmin 3 −fun−hd 5,8,1 −fun−ld 5,2,2 < out.all > out.proj 2> /dev/null

Make sure to discard the error log: this is development code and outputs a lot of junk
that you don’t need to worry about at this stage.

• Compute the free energy from the sketch-map projection. A (long) one-liner to do
this is as follows

$ awk '{print $1, $2}' out.proj | ndhistogram −d 2 −g −xi −15,−15
−xf 15,15 −n 150,150 −t 0.2,0.2 −adaptive 0.25 |
awk −v kt=0.168 'BEGIN{print "# s1 s2 F(s1,s2)" }
!/#/{ if (NF==0) print ""; else printf "%15.7e %15.7e %15.7e\n",
$1, $2, −kt*log($3) } ' > smap.fes

19

Figure 3: Sketch-map projection of the transition-state configurations obtained in 3.3,
overlaid on the free energy surface and colored according to the value of the committor.

5.5 Analyzing the transition state ensemble
We can then see how sketch-map coordinates work to describe high-energy states and

the transition state ensemble between the fcc and liquid-like states. You can find a file
with the configurations saved from the exercises in 3.3, or you can use one from your own
runs. You should first project the data points

$ awk '{for (i=3; i<=NF; i++) printf "%s ", $i; print "" }' ts.all |
dimproj −D 10 −d 2 −w −P lj38.lm −p lj38.ld −grid 15,16,151
−cgmin 3 −fun−hd 5,8,1 −fun−ld 5,2,2 > ts.proj 2> /dev/null

And then do some gnuplot magic to overlay the sketch-map free energy and the projection
of the transition state data, colored according to the committor.

gnuplot> set table 'contours.dat';
gnuplot> set view map; set contour; unset surface;
gnuplot> set cntrparam levels incremental 0.5,0.1,1.5;
gnuplot> sp 'smap.fes' w l; unset table; res; set view map
gnuplot> sp 'contours.dat' w l, '<paste ts.proj ts.all' u 1:2:(1):6 w p lt pal pt 7 ps 0.5

The result should look similar to Fig. 3. Note that the value of the committor is different
from zero or one in the region that is a saddle point on the sketch-map free energy –
although a large portion of it is not sampled because the region we had selected based on
just n6 and n8 did not describe properly the transition state ensemble.

5.6 Transferability of sketch-map
[OPTIONAL] This far you have used a thorough sampling of the accessible configuration

space to build the initial map, and then projected additional data samples onto this map.
In most cases, however, one does not have the luxury of complete sampling and so it is
interesting to see how sketch-map can “fill in the blanks” and give reasonable description
of the unexplored parts of the configurations space.
You can repeat the landmark selection and sketch-map construction using as input only

the data samples from the transition state ensemble, and then project the whole trajectory
from out.all onto this partial map. Can you still recognize the most important features
of the energy landscape?

20

Bibliography
[1] David Wales. Energy landscapes: Applications to clusters, biomolecules and glasses.

Cambridge University Press, 2003.
[2] Jonathan P. K. Doye, Mark A. Miller, and David J. Wales. The double-funnel energy

landscape of the 38-atom lennard-jones cluster. The Journal of Chemical Physics,
110(14):6896, 1999.

[3] Michele Ceriotti, Gareth A. Tribello, and Michele Parrinello. Demonstrating the
transferability and the descriptive power of sketch-map. Journal of Chemical Theory
and Computation, 9(3):1521–1532, March 2013.

21

