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1 Sampling in atomistic simulations
Here we will cover a particular set of problems that arise when one wants to model

the behavior of a compound, a material, or a bio-molecule at the level of its atomic
constituents. In all that follows we will assume 1. that the dynamics of the electronic
degrees of freedom is completely decoupled from that of the nuclei, and that the electrons
occupy the ground state at for each configuration q of the nuclei (Born-Oppenheimer
approximation) 2. that the nuclei behave as classical, distinguishable particles, subject to
the Hamiltonian

H (p,q) =
∑
i

p2
i

2mi
+ V (q) ,

mi and pi being the mass and the momentum of each nucleus, respectively1. It will
be assumed that the interaction potential V (q) between the atoms is well-understood,
given by an empirical force field or obtained from first principles by solving the electronic
structure problem with clamped nuclei.
We will focus on the problem of generating configurations of the atoms that are consistent

with the given thermodynamic conditions, and computing (mostly) static thermodynamic
properties that require averaging over such configurations. This is an issue that occurs
very often in atomistic simulations, either because the equilibrium configuration of the
atoms is not (fully) known experimentally, or because is not well defined (e.g. for liquids or
amorphous materials), or because the property one wants to compute depends dramatically
upon thermal fluctuations around the equilibrium geometry.

1.1 Sampling the canonical ensemble
Different thermodynamic ensembles are introduced by considering two thermodynamic

parameters (energy, pressure, temperature, volume, . . . ) to be fixed, and to define the
macroscopic state of the system. Here we will consider only the canonical (NVT ) ensemble,
in which temperature T , volume V and number of atoms N are assumed constant. This
ensemble often corresponds to experimental conditions, and allows us to discuss most of
sampling issues and the techniques to solve them. We will not discuss the derivation of
the canonical ensemble, but just state that it implies that the probability of observing a
configuration (p,q) corresponds to

P (p,q) = e−βH(p,q)/Z, Z =
ˆ

dpdqe−βH(p,q), (1.1)

where we have introduced the inverse temperature β = 1/kBT , and the canonical partition
function Z.
An important feature of the (classical) canonical ensemble – one that simplifies con-

siderably analytical and numerical treatment – is that position and momentum are not
correlated, so that the p and q parts of the partition function and of the probability
distribution can be factored exactly, and treated separately

P (p,q) = P (p) · P (q) = e
−β
∑

i

p2
i

2mi

´
dpe−β

∑
i

p2
i

2mi

· e−βV (q)´
dqe−βV (q) . (1.2)

Note that P (p) is just a multi-variate Gaussian, so the distribution of momenta is trivial
and the normalization can be computed analytically. The difficulty is in determining the

1At times we will just use expressions such as p/m to mean the vector whose elements are piα/mi.
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configurational part P (q) = e−βV (q)/
´

dqe−βV (q), that depends on the potential and
which is typically a very complicated function of the atomic coordinates.
Knowing P (q) is important because the expectation value of any configuration-dependent

property A (q) (structure factors, average bond lengths, . . . ) can be computed as an
integral over the configurational probability distribution:

〈A〉 =
ˆ

dqA (q) P (q) =
´

dqA (q) e−βV (q)´
dqe−βV (q) . (1.3)

For simple, low-dimensional problems, computing an integral of the form (1.3) by some
kind of quadrature (e.g. computing the value of the integrand on a grid of q points) is
a sensible proposition, but it becomes completely impractical as the number of atoms
increases: even with just two grid points per degree of freedom, the evaluation of the
integrand on a grid requires 23N points.

1.2 Importance sampling and Monte Carlo methods
The exponential increase of the computational cost involved in an integration by quadra-

ture can be in principle circumvented by using a Monte Carlo integration strategy. Without
entering into the details of the general idea, one can generate a series of M random config-
urations qi, and approximate 〈A〉 as

〈A〉 ≈
∑
iA (qi) e−βV (qi)∑

i e
−βV (qi)

.

The problem with this approach is that typically P (q) has a very erratic behavior, with
sharp peaks over the regions of configuration space that correspond to a low value of
the potential, and a minute, negligible value for the vast majority of configurations that
would correspond to fairly random arrangements of atoms and would therefore have a very
large value of the potential energy. Hence, one would need to generate a huge quantity
of random configurations to pick any one with a non-negligible value of e−βV (q), not to
mention to converge accurately the value of the integral [1].

Figure 1: Panel (a) demonstrates randomly selected configuration points, while panel (b)
demonstrates importance sampling relative to the probability distribution P (q).

One possible solution to this problem is to generate a sequence of points that are precisely
distribute according to P (q) (a strategy known as importance sampling, see Figure 1).
In that case, points would naturally concentrate in regions with a high value of P (q),
and few or no points would be present where the probability distribution has a negligible
value. Expectation values could then be obtained from this sequence of points simply as
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〈A〉 ≈ 1
M

∑
iA (qi) , since the exponential Boltzmann factor would be implicitly accounted

for by the uneven distribution of samples. The problem is then how to generate a set of
atomic configuration consistent with the canonical distribution.
In general, techniques to generate this canonically-distributed set of points proceed itera-

tively, by taking one point qi and providing a rule to generate a new point qi+1 = P (qi),
in such a way that for any pair of points in the sequence P (q) /P (q′) = e−β(V (q)−V (q′)).
In most cases the rule that generates a new configuration is not deterministic, but is
characterized by a probability distribution p (q→ q′) = p (qi+1 = q′|qi = q). A necessary
condition for this to be the case is that the canonical distribution itself is left invariant
under the action of the operation that generates the sequence of points, i.e. thatˆ

dqP (q) p (q→ q′) = P (q′) . (1.4)

A more stringent, sufficient condition that is however easier to prove in most cases is that
of detailed balance, that relates the probabilities of performing a move q→ q′ and that of
the reverse move q′ → q to the relative probability of the initial and final configurations:

P (q) p (q→ q′) = P (q′) p (q′ → q) . (1.5)

It is easy to show that Eq. (1.5) implies Eq. (1.4), by integrating both sides over q and
realizing that the probability of going anywhere starting from q′ has to integrate to one.

Metropolis Monte Carlo A simple strategy to construct a transition rule that satisfies
the detailed balance condition is to split the rule in a generation step and an accept/reject
step, so that the overall probability of doing the q → q′ move is the product of the
generation and acceptance probabilities, p (q→ q′) = g (q→ q′) a (q→ q′). In the
simplest scenario, the generation step is characterized by a symmetric probability of
giving rise to the forward or backward move, g (q→ q′) = g (q′ → q). For instance,
one could add a Gaussian random number with mean zero and a small variance to the
coordinates of a randomly-selected atom. Then, one has to decide whether to accept the
new configuration, or reject it and return to the original configuration that must be counted
as a new sample2 in order to compute averages correctly.
A common approach to construct the acceptance probability so that the detailed balance

is satisfied is to apply the Metropolis criterion [2], a (q→ q′) = min (1, P (q′) /P (q)). In
fact,

• if P (q′) > P (q), p (q→ q′) = g (q→ q′) and p (q′ → q) = g (q′ → q)P (q) /P (q′)
– that implies detailed balance provided that the generation probability is symmetric
• if P (q′) < P (q), p (q→ q′) = g (q→ q′)P (q′) /P (q) and p (q′ → q) = g (q′ → q)
– that is again consistent with Eq. (1.5).

Note that what makes this approach doable is that the acceptance criterion only depends on
the ratio of P (q′) and P (q). Looking back at Eq. (1.2), it is clear that the difficult part of
P (q) is the normalization, and that the ratio of the two probability is just e−β(V (q′)−V (q)),
which is as easy to evaluate as the energy of the tentative new configuration.
One could then wonder what is the most efficient way to design an effective strategy

for the moves. We will discuss later a quantitative approach to evaluate the statistical
2It is simple to convince oneself that in case of rejection the initial configuration must be counted one

more time. Imagine a system that can exist in two discrete states, A and B, with P (A)� P (B). The
simplest generation rule is just to jump to the different state. Clearly, in order to be consistent with the
ratio of the probabilities, most attempts to go from A to B should be rejected, whereas most reverse
attempts should be accepted. However, if rejections did not contribute an extra sample to the averages,
this procedure would just create an alternating sequence ABABABAB . . ., which is clearly inconsistent
with the relative probabilities of the two states.
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efficiency of a sampling strategy. Now let us just hand-wavingly state that a good Monte
Carlo step should make the system “move” a lot in configuration space. So, taking the
simple example of moving one atom by adding a Gaussian random number with variance
σ to its Cartesian coordinates, one would like to take large steps and so to pick a very
large σ. However, if the atom is moved by a large amount, it is likely that in the process
a chemical bond will be broken, or that the atom will end up in very close proximity of a
second one. In both cases, the energy associated with the final configuration will be much
larger than the initial one, and the ratio between the final and initial probabilities will be
very close to zero, so that the move will almost invariably be rejected. In practice there is
a trade-off between how large is the step taken and the probability it will be accepted.
This leads us to a more fundamental drawback of Monte Carlo methods. Consider a

system composed of 100 atoms. Clearly, in order for the system to visit a configuration
that bears no resemblance with the starting configuration, all the atoms will need to
move. This means that one will need to perform 100 times more steps to generate a truly
un-correlated configuration than if there was a single atom: unless the potential can be
broken into local contributions, these 100 moves will imply the full cost of computing 100
times the system’s potential energy. Now, one may think to move more than one atom at
a time. To see why this would not really solve the problem, imagine having tuned the
step size for a single-atom move so that the acceptance probability is on average 0.5. Now,
create a copy of the system, that does not interact with the first copy, and move one atom
by the same amount. The probability of accepting the combined move of the two systems
is the square of the probability of moving just one, so the overall acceptance is reduced
to 1/4. This though experiment demonstrates that Monte Carlo methods do not scale
well with system size – as one needs to compute the energy for the whole system just to
move a small subset of the particles. Clearly, this is not a problem in cases where one can
compute inexpensively the change in energy determined by a local move, and can be more
than compensated in cases in which one can generate smart moves that evolve the system
across high free-energy barriers.

1.3 Molecular dynamics
Let’s consider a different approach to generate a series of configurations consistent with

the canonical ensemble. Let us consider what happens if we choose a configuration of
position and momentum (p,q) that is consistent with Boltzmann statistics, and evolve it
in time based on Hamilton’s equations

q̇ = ∂H

∂p = p
m
, ṗ = −∂H

∂q = −∂V
∂q . (1.6)

Integration of Eqs. (1.6) for a finite time step can be regarded as a discrete Monte Carlo
step: this is sort of a peculiar rule to generate new configurations, in that it is deterministic
and the acceptance is one. The initial conditions at time zero determine a trajectory
(Pp (p,q; t) ,Pq (p,q; t)) in phase space, so that

p ((p,q)→ (p′,q′)) = δ ((p′,q′)− (Pp (p,q; t) ,Pq (p,q; t))) .

Note that because of time-reversal symmetry of the momentum, this move does not satisfy
the detailed balance condition Eq. (1.5) – loosely speaking, one would have to flip the
sign of the final momentum in order to have a reverse move that brings one back to the
initial (p,q). One can prove [3] that in actuality MD satisfies a simple generalization of
detailed balance. However, it is more instructive to show that a MD time step fulfills the
more general necessary condition (1.4).

Conservation of density and phase-space volume First, let us define the position
of an atomistic system in phase space as the 6N -dimensional vector x = (p,q) that
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Figure 2: Evolution of a configuration in phase space and of the corresponding volume
element along a molecular dynamics simulation.

combines position and momentum of all the N atoms. Then, it is easy to see that the
MD trajectory conserves the probability distribution, a

dP

dt
∝ e−βH dH

dt
,

dH

dt
= ∂H

∂p · ṗ + ∂H

∂q · q̇ = −∂H
∂p ·

∂H

∂q + ∂H

∂q ·
∂H

∂p = 0. (1.7)

In order to be able to perform the integral (1.4) one also needs to work out how the volume
element dx (0) is transformed to dx (t). Here it is useful to imagine the evolution of the
volume element as that of a swarm of trajectories starting off around x (0) – a picture
that is very useful as it naturally links a description of dynamics in terms of trajectories
in phase space to one that deals with the time evolution of a probability density. The
change of variables x (0)→ x (t) is associated with the Jacobian determinant [4]

J (t) = det M, Mij = ∂xi (t)
∂xj (0) .

Clearly, Mij (0) = δij , so J (0) = 1. Then, the point is showing that J ′ (t) = 0, to
prove that the volume of the phase space element is conserved by Hamiltonian dynamics.
One can use Jacobi’s formula3 to get J ′ (t) = J (t) Tr

(
M−1M′) . Then, one can see that(

M−1)
ij

= ∂xi (0) /∂xj (t) since∑
k

∂xi (0)
∂xk (t)

∂xk (t)
∂xj (0) = ∂xi (0)

∂xj (0) = δij ,

as the left-hand side is just a chain-rule sum. Considering also that M ′ij = ∂ẋi (t) /∂xj (0),

Tr
(
M−1M′) =

∑
ij

∂xi (0)
∂xj (t)

∂ẋj (t)
∂xi (0) =

∑
ijk

∂xi (0)
∂xj (t)

∂xk (t)
∂xi (0)

∂ẋj (t)
∂xk (t) .

The sum over i corresponds to MM−1 = 1, so

Tr
(
M−1M′) =

∑
k

∂ẋk (t)
∂xk (t) = ∂

∂p · ṗ + ∂

∂q · q̇ = ∂

∂p ·
(
−∂H
∂q

)
+ ∂

∂q ·
∂H

∂p = 0

The conservation of the Hamiltonian and of the phase space differential means that the
probability distribution is conserved by the MD propagation, i.e. that the necessary
condition for canonical sampling is satisfied:ˆ

dpdqe−βH(p,q)δ ((p′,q′)− (Pp (p,q; t) ,Pq (p,q; t))) = e−βH(p′,q′).

3Alternatively, starting from the definition of the determinant of a matrix M as the product of
the eigenvalues µi, it is easy to see that ln det M =

∑
i

lnµi = Tr ln M, so formally d
dt
eTr ln M =

eTr ln M Tr
(

M−1 d
dt

M
)
.
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Velocity Verlet integrator Having established that integrating Hamilton’s equations,
let us now get on to how they can be integrated on a computer. Despite being relatively
simple first-order differential equations, Eqs. (1.6) cannot be integrated analytically except
for the simplest problems, so one has to resort to an approximate scheme to evolve the
system along a MD trajectory. Many more or less complicated integrators (algorithms
to perform evolve Eqs. (1.6) over a finite time step dt) have been used and proposed,
but the simplest and in many ways effective integrator is probably the symmetric-split
velocity Verlet algorithm [5, 6]. In this algorithm, the momentum p and the position q
are propagated in turns according to a linearization of Hamilton’s equation:

p←p− ∂V

∂q
dt

2
q←q + p

m
dt

p←p− ∂V

∂q
dt

2 .

(1.8)

Note that even though it appears that the force has to be computed twice in Eqs. 1.8,
in practice the force computed at the end of one step can be re-used at the beginning
of the following step. The reason why it is useful to split in two the propagation of the
momentum is that in this form the finite-time velocity Verlet propagator is explicitly
time-reversible and symplectic. This can be seen by writing explicitly the propagators for
q and p – we will use a one-dimensional example to make notation less cumbersome:

Pq (p, q; dt) = q′ = q+ p

m
dt− V ′ (q) dt

2

2m Pp (p, q; dt) = p′ = p− V ′ (q) dt2 − V
′ (q′) dt2 .

(1.9)
It is simple to write the time-reversed step, starting from (q′,−p′) and evolving for
−dt. For instance, from Eqs. (1.9) one can obtain V ′ (q′) dt2 = p − p′ − V ′ (q) dt2 and
V ′ (q) dt2 = p+ m

dt (q − q′). Using these it is easy to see that

Pq (−p′, q′;−dt) = q′ + p′

m
dt− V ′ (q′) dt

2

2m = q,

and that similarly Pp (−p′, q′;−dt) = p. In order to prove that the velocity Verlet step
is also exactly symplectic it is sufficient to compute the elements of the Jacobian matrix
from Eq. (1.9): Mqq = 1−V ′′ (q) dt

2

2m , Mqp = dt
m , Mpp = 1−V ′′ (q′) dt

2

2m , Mpq = V ′′ (q) dt2 −
V ′′ (q′) dt2

(
1− V ′′ (q) dt

2

2m

)
and see that the determinant is J = MqqMpp −MqpMpq = 1.

Energy conservation Even though the velocity Verlet integrator fulfills exactly two of
the properties Hamiltonian dynamics, yet it is not exact. The use of a finite time step
entails necessarily an integration error, which – in a sufficiently large, chaotic system – will
lead to the discrete trajectories to diverge exponentially from the trajectory that would be
obtained by exact integration of the dynamics. In practice, provided that the time step is
sufficiently small, the molecular dynamics trajectory is still sampling an ensemble which
is extremely close to the target one, and also exhibit very similar dynamical properties.
This is at times explained in terms of the existence of a “shadow Hamiltonian”, which
would generate precisely the trajectory that is obtained by finite time step integration, and
that is very close to the actual Hamiltonian. The hypothetical existence of this shadow
Hamiltonian explains why it is important to use an integration algorithm that fulfills the
symmetries of Hamiltonian dynamics.
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Figure 3: Energy conservation for a simulation of liquid water at room temperature, using
a velocity Verlet integrator with three different values of the time step.

The most straightforward manifestation of integration errors is the fact that the total
energy is not conserved along the MD trajectory. It is tedious but straightforward to write
V (q′) + p′/2m in terms of a Taylor expansion around the initial value of q and p, finding
that the leading error term in the expansion is O

(
dt3
)
. One can exploit the fact that

energy conservation is violated because of the finite time step integration to monitor the
accuracy of the trajectory – under the assumption that a simulation with poor energy
conservation will contain sizable errors in average and dynamical observables. As shown
in Figure 3, the for small values of the time step dt, the total energy fluctuates around a
constant value, with fluctuations getting smaller as dt is decreased. For too large values,
instead, H exhibits a systematic drift – a sign of a very substantial violation of energy
conservation, that should be avoided. On a longer time scale, it is common to observe a
drift even with reasonable choices of dt. In the case of constant-temperature simulations
(that will be discussed in Chapter 2) a small drift is generally acceptable.

1.4 Ergodicity and autocorrelation functions
In order to compute ensemble average by generating a sequence of configurations, it

is not sufficient that these configurations are distributed according to the probability
distribution function of the ensemble. The trajectory {Ai} must also satisfy an ergodic
hypothesis, i.e. it must be true that

lim
M→∞

1
M

∑
i

A (qi) =
ˆ

dqP (q)A (q) . (1.10)

To see how a set of configurations that satisfy the requirements given in the previous
sections could break the assumption (1.10), imagine a situation in which the configuration
space is divided in two disconnected regions, so that transitions between any pair of points
satisfy detailed balance, but there is zero probability of having a transition between the
two regions. A single trajectory starting on one of the two areas would never visit the
other half of configuration space, and hence the trajectory average would differ from the
ensemble average.
This is all but an academic concern: in a practical case, one does not only require that

Eq. (1.10) holds in the M → ∞ limit, but also would like convergence to be fast, to
evaluate averages accurately within the limited time available for the simulation. To see
how to get a quantitative measure of the efficiency of sampling, consider obtaining a large
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number of independent trajectories with M samples each, and compute the average of
these independent averages:〈

1
M

∑
i

Ai

〉
= 1
M

∑
i

〈Ai〉 = 〈A〉 .

Unsurprisingly, the average of the means is the target average value. Here we intend 〈·〉
to represent an ensemble average, so there are no ergodicity concerns and the fact that
〈Ai〉 = 〈A〉 follows from the fact that at each instant in time the samples are by hypothesis
distributed according to the target distribution.

Figure 4: Change of summation variables to obtain a relation between the error in the
mean and the correlation time.

Now, let us evaluate the error in the mean:

ε2A (M) =
〈(

1
M

∑
i

Ai − 〈A〉

)2〉
= 1
M2

〈
M−1∑
i,j=0

(Ai − 〈A〉) (Aj − 〈A〉)
〉
.

One can start by re-arranging the summation so that the summation goes over the variables
∆ = j − i and k (see Figure 4), that leads to

ε2A (M) = 1
M2

〈 −1∑
∆=−(M−1)

M−1∑
k=|∆|

(Ak − 〈A〉) (Ak+∆ − 〈A〉) + .

+
M−1∑
∆=0

M−1−|∆|∑
k=0

(Ak − 〈A〉) (Ak+∆ − 〈A〉)
〉

Then, the crux is assuming that the process that generates the trajectory is stationary,
i.e. that the relation between two points in the sequence only depends on the difference
between their position in the sequence and not on their “absolute” location within the
sequence. So the dependence on k becomes immaterial when the ensemble average is
brought inside the summation, and one gets

ε2A (M) = 1
M2

M−1∑
∆=−(M−1)

〈(A0 − 〈A〉) (A∆ − 〈A〉)〉 (M − |∆|) =

= σ2 (A)
M

M−1∑
∆=−(M−1)

cAA (∆)
(

1− |∆|
M

)
,

(1.11)

9



where we have introduced the autocorrelation function

cAA (t) = 〈(A0 − 〈A〉) (At − 〈A〉)〉 /σ2 (A) , σ2 (A) =
〈
A2〉− 〈A〉2 . (1.12)

The autocorrelation function cAA (t) describes how quickly the trajectory loses memory of
fluctuations away from the mean. It starts off at 1 for t = 0, and (except for cases with
pathological behavior) decays to zero for t→∞. An analogous expression can be derived
for a continuous trajectory, with the summation being replaced by an integral over time.
Approximating the sum in (1.11) with the autocorrelation time 2τA =

∑∞
t=−∞ cAA (t)

(which is the limit for M →∞), one obtains that ε2A (M) ≈ σ2 (A) 2τA/M .
Hence, there is a very direct relation between how quickly the trajectory forgets about

past fluctuations of an observable and how rapidly the error in the mean decreases. The
autocorrelation time can therefore be taken as a rigorous measure of the ergodicity of a
trajectory, and in general one would want to manipulate the sampling strategy to minimize
τA for the observables of interest. It is worth however listing some caveats:

• different observables might have very different correlation times, so having a short
correlation time for one observable does not guarantee that the trajectory is ergodic
for any other observable;
• a single observable can exhibit multiple time scales – this is typical for instance of
observables that sum many contributions (e.g the potential energy of a complex
system). In these cases, one might be misled by the fast initial decay of cAA (t), and
miss a long-time tail that can contribute a lot towards τA;
• computing τA from an actual simulation is not a trivial exercise – in general the
simulation should be hundreds of times longer than τA itself;
• in the (many) cases in which the mean value of the observable 〈A〉 is not know
exactly, and is computed from the same trajectory, the estimator4 for cAA (t)

cAA (t) ≈ 1
M − t

1
σ2
A

M−1−t∑
k=0

(Ak − 〈A〉) (Ak+t − 〈A〉) (1.13)

is a biased estimator, and the resulting autocorrelation time will be under-estimated.
One can again think to the case of two disconnected regions of phase space: computing
cAA from a trajectory that only visits one of the regions will under-estimate the
fluctuations, and miss the fact that the estimate of cAA should not decay to zero
(since the mean obtained from the trajectory differs from 〈A〉 averaged over the
totality of phase space). Whenever it is possible, one should verify the ergodicity of
the trajectory computing correlation functions of observables whose mean value is
analytically known – e.g. when it should be zero by symmetry.

4It is possible to compute the correlation function more efficiently by using fast Fourier transforms, see
e.g. Ref. [1].
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2 Constant temperature molecular dynamics
The molecular dynamics approach described in Section 1.3 samples (apart from finite

time step errors) the constant energy microcanonical ensemble. In other terms, even
though it does conserve the canonical ensemble, and so a collection of independent
trajectories starting from uncorrelated points consistent with the finite-temperature
Boltzmann distribution would yield correct averages, a single trajectory is highly non-
ergodic (it does not allow fluctuations of H!), and there is no guarantee that it would yield
averages consistent with the target experimental conditions. Fortunately, it is relatively
simple to modify Hamilton equations (1.6) to allow for energy fluctuations, so as to obtain
ergodic sampling of the canonical ensemble. These changes to Hamiltonian dynamics are
generally referred to as thermostats.

2.1 Andersen thermostat
A very simple – and in many ways elegant – idea to to obtain ergodic trajectories

from Hamiltonian dynamics exploits the factorization of the canonical distribution in
position and momentum-dependent parts (1.2). Since the momentum distribution is just
a multivariate Gaussian, it is easy to obtain at any time a new random value of the
momentum consistent with the ensemble. So, the Andersen thermostat [7] simply amounts
at performing segments of Hamiltonian dynamics, and re-sampling a new value of the
momentum p from the target distribution every now and then – either at regular intervals
or probabilistically. Every time the momentum is re-sampled from p to p′ the total energy
changes by p′2/2m− p2/2m, so that the trajectory can explore different constant-energy
surfaces and ultimately achieve ergodic sampling. Note that the Andersen thermostat
lends itself to a straightforward physical analogy: re-sampling the momentum is equivalent
to the atoms in the system interacting at once with an ideal gas at the target temperature.

Defining a conserved quantity In Section 1.3, we discussed how the total energy can
be used to monitor the accuracy of the integration of a molecular dynamics trajectory. It is
useful to introduce a conserved quantity that can be used to the same aim in the presence
of a thermostat. In the case of the Andersen thermostat – and of all the thermostat that
will be discussed here – it is simple to do so. Each segment of Hamiltonian dynamics
conserves the total energy, so the problem is keeping track of the changes in H that occur
when the momentum is changed by application of the thermostat equations. In practice,
one can accumulate ∆H ← ∆H + p2/2m − p′2/2m, where p and p′ is the momentum
just before and just after the step that correspond to the application of the thermostat.
Then, H̃ = H+ ∆H would be perfectly conserved along the trajectory if the time step was
infinitesimally small, and so one can monitor H̃ to assess the accuracy of the integration [8].
In practice, it is often the case that a considerably larger drift can be tolerated in the
presence of a well-designed thermostat than with purely Hamiltonian dynamics.

2.2 Local and global, stochastic and deterministic ther-
mostats

Before looking into the details of how it is possible to improve the effectiveness of a
thermostat to perform ergodic sampling, it is perhaps useful to briefly review the different
approaches that exist to manipulate Hamiltonian dynamics into performing canonical
sampling. Andersen thermostat can be deemed to be the archetype of so-called local
thermostats, that modify the velocities of individual degrees of freedom enforcing the
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Figure 5: A schematic representation of the action of a global and a local thermostat on a
system of particles which is initially strongly out of equilibrium.

prescribed e−βp2
iα/2mi canonical distribution.

Even before the introduction of the Andersen thermostat, it was customary to peri-
odically re-scale the velocities of the system in such a way that p2/m = 3NkBT . This
method (velocity rescaling) and a version with smoothly varying velocities (Berendsen
thermostat [9]) do not guarantee canonical sampling, but can be considered the model
for global thermostats, that do not couple to individual degrees of freedom but to the
total kinetic energy of the system, enforcing its distribution to be the one dictated by the
canonical distribution:

P (K) ∝
ˆ

dpe−βp2/2mδ
(
K − p2/2m

)
.

By transforming to spherical coordinates 1, and by transforming into an integral in dK,
one gets

P (K) ∝
ˆ

dp p3N−1e−βp
2/2mδ

(
K − p2/2m

)
∝ K3N/2−1e−βK . (2.1)

A simple and effective approach to perform velocity rescaling in a way that is consistent
with (2.1) has been for instance discussed in Ref. [8]. The advantage of a global thermostat
is that it typically introduces minor changes to the dynamical properties of the system, so
that one can reliably evaluate time-dependent observables without having to run multiple
constant-energy trajectories starting off different equilibrated configurations. The main
problem of coupling the thermostat to the total kinetic energy of the system, is that one
has to assume that internal equilibration will be reached quickly thanks to the inherent
dynamics of the system. The problem is schematically represented in Figure 5: if one
started off with half of the system frozen at zero temperature, and the other half at
twice the target temperature, the overall kinetic energy would be consistent with (2.1),
and a global thermostat would not accelerate internal equilibration. What is more, the
resulting dynamics might exhibit long correlations for observables that depend on the
energy partitioning among different degrees of freedom. In general, global thermostats
tend to be very effective for internally ergodic systems such as liquids, but they can be
problematic for solids, or in general for problems that contain weakly coupled subsystems.
For both local and global schemes, two radically different philosophies have been used to

obtain a canonical distribution at a prescribed temperature. Thermostats such as Andersen
that rely on (pseudo)random numbers are classified as stochastic. The thermostats that

1In the presence of multiple masses it is convenient to work in mass-scaled units p̃ = p/
√
m, which

only introduce a multiplicative factor in the integral.
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will be discussed in this chapter belong to this category, which has as an advantage relative
simplicity – since the complexity of describing an infinite, ergodic bath is modeled by
obtaining uncorrelated variates from the appropriate distribution. However, stochastic
thermostats did not have an associated conserved quantity, which made somewhat harder
to assess the accuracy of finite-dt integration and of the resulting averages. Because of
this, considerable effort has been devoted to the derivation of deterministic thermostatting
schemes, which are more or less explicitly based on an extended-Lagrangian formulation,
in which additional degrees of freedom are added to mimic the behavior of the bath. The
first example of such a thermostat was devised by Nosé and Hoover [10, 11], based for a
one-dimensional problem on equations of the following kind

q̇ = p

m
, ṗ = −∂V

∂q
− pps

Q
, ṗs = p2

m
− kBT, ṡ = ps

Q
. (2.2)

Here s and ps are fictitious “position” and “momentum” of an additional degree of freedom
of mass Q, whose dynamics is such that canonical sampling is enforced on the physical
variables that are coupled to it. Nosé-Hoover thermostats exist in both a global and
local form, the latter having the formally displeasing features of not being invariant with
respect to a rigid rotation of the physical system. Furthermore, when applied to poorly
ergodic systems such as a harmonic crystal, Nosé-Hoover thermostats do not help much
enhancing the efficiency of exploration of phase space, and it is necessary to include further
fictitious degrees of freedom, forming chains of thermostats [12] that require more complex
integrators.

2.3 Langevin dynamics
A simple and elegant approach to achieve Boltzmann sampling in molecular dynamics is

based on the Langevin equation [13]. Langevin dynamics was initially obtained as a model
for Brownian motion, and consists in the introduction of a viscous friction and noisy force
terms on top of Hamilton’s equations. In one dimension,

q̇ = p

m
, ṗ = −∂V

∂q
− γp+

√
2mγ/βξ, 〈ξ (t) ξ (0)〉 = δ (t) , (2.3)

where β = 1/kBT , γ is a friction term, and ξ is uncorrelated in time. It is not obvious to
define the meaning of Eq. (2.3), particularly for what concerns the noisy force ξ, which
varies discontinuously from time to time. In order to give a more precise meaning to the
Langevin equation, it is useful to introduce a few concepts from the theory of random
processes and stochastic differential equations [3].

Random processes and the Fokker-Planck equation Consider a system whose
state is described by the value of a vector x (e.g. the momentum and position (p,q)),
which can evolve in time according to an unknown law, possibly characterized by a degree
of random behavior. We now assume that we have collected several realizations of this
process. We will refer to each trajectory as a sample path x (t). We let Ω be the set of all
such paths, and label each path according to some index ω. One can then describe the
random process in terms of the distribution of the points in phase space at a given time,
and hence construct a probability density2 (figure 6)

P (x, t) ∝
ˆ
δ (xω (t)− x) dω.

This probability, however, does not characterize the random process completely, since
one only has knowledge on the “snapshots” of the collection of sample paths at different

2The integral here is just used to mean some “averaging” procedure to be performed over all the
realizations of the random process.
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Figure 6: A collection of sample paths for a random process. Also shown is how the
one-time probability density P (x, t) can be constructed as the distribution of the points
of all the sample paths at a given time.

times. No information regarding the identity of the paths in the different snapshots has
been collected. One could compute the joint probability for a sample path to be at x1 at
time t1, and at x2 at time t2,3

P (x1, t1; x2, t2) ∝
ˆ
δ (xω (t1)− x1) δ (xω (t2)− x2) dω. (2.4)

One could then define a hierarchy of n-point probability densities. Fortunately, it is often
justified to make a number of assumptions on the form of the joint probability (2.4) so
as to bring it in a more treatable form. A first simplification requires the process to be
stationary in time, i.e. that the two-times joint probabilities only depend on the time
difference,

P (x1, t1; x2, t2) = P (x1, t1 − t2; x2, 0) . (2.5)
Let us now introduce the conditional probability P (x1, t1|x2, t2), which is defined as the
probability of the system being at x1 at a given time t1, given that it was as x2 at time
t2. Its relation to the joint probability is

P (x1, t1|x2, t2) = P (x1, t1; x2, t2) /P (x2, t2) . (2.6)

A random process is said do be Markovian if the joint conditional probability densities
only depend on the most recent time frame, e.g.:

P (x1, t1; . . . ; xk, tk|xk+1, tk+1; . . . ; xn, tn) = P (x1, t1; . . . ; xk, tk|xk+1, tk+1) . (2.7)

This ansatz means that at each time the model has no memory of the past history, and
that further evolution is (probabilistically) determined uniquely by knowledge of the status
at a given instant4. The description of the stochastic process is thus enormously simplified.
Using the definition of conditional probability (2.6), one can write

P (x1, t1; x2, t2; x3, t3) =P (x1, t1|x2, t2; x3, t3)P (x2, t2; x3, t3) =
=P (x1, t1|x2, t2)P (x2, t2|x3, t3)P (x3, t3) ,

3We will assume times to be ordered according to t1 ≥ t2 ≥ . . ..
4This might seem to be a very crude assumption, but it holds true at least approximately for a large

number of physically-relevant problems.
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i.e. any joint probability can be broken down to a product of the initial, single-time
distribution and a series of conditional probabilities. If the process is also stationary, the
conditional probability will depend only on the time difference, and hence its evolution is
completely determined by the initial probability distribution and by the unique two-point
conditional probability P (x, t|x0, 0).
One can see that under mild conditions on the form of P (x, t|x0, 0) (e.g. that it arises from

a Markovian, stationary process, with continuous sample paths), the most general way to
describe the time evolution of P (x, t|x0, 0) is given by the Fokker-Planck equation [14, 3]:

∂
∂tP (x, t|x0, 0) = −

∑
i
∂
∂xi

[ai (x, t)P (x, t|x0, 0)] + ← drift
+ 1

2
∑
ij

∂2

∂xi∂xj
[Dij (x, t)P (x, t|x0, 0)] ← diffusion (2.8)

Showing the link between a Fokker-Planck equation and Langevin dynamics would require
one to first define the meaning of a stochastic differential equation, which can be done for
instance by Itō calculus (see e.g. Ref. [3]). Here we will consider the stochastic differential
equation

ẋ = a (x, t) + B (x, t) ξ, (2.9)

with B (x, t) B (x, t)T = D (x, t), to be just a short-hand for the associated Fokker-Planck
equation (2.8).

Liouville equation While in the general case showing the connection between Eqs. 2.9
and 2.8 requires the use of stochastic calculus, the deterministic case for which B = 0
can be discussed more easily. Consider an arbitrary test function f (x), and define
〈�〉 =

´
dx�P (x, t|x0, 0). From any given sample path, one can obtain that

∂

∂t
f (x) = ∇f · ẋ = ∇f (x) · a (x, t) ,

and 〈
∂

∂t
f (x)

〉
=
∑
i

ˆ
dx ∂f

∂xi
P (x, t|x0, 0) ai (x, t) =

= −
ˆ

dx f (x)
∑
i

∂

∂xi
[ai (x, t)P (x, t|x0, 0)] ,

(2.10)

integrating by parts and knowing that the boundary term must be zero if P is to be
normalizable. At the same time, by exchanging the integral and the time derivative one
gets

∂

∂t
〈f (x)〉 =

ˆ
dx f (x) ∂

∂t
P (x, t|x0, 0) . (2.11)

Since the right hand sides of (2.10) and (2.11) are equal for any test function f , the drift
part of the Fokker-Planck equation (2.8) follows. Taking the case of Hamiltonian dynamics,
that has no explicit dependence on time, and that in this context can be formulated as

∂

∂t
(p,q) = a (p,q) = (−∇V (q) ,p/m) ,

one gets the Liouville formulation of classical mechanics in terms of a probability density
of trajectories,

∂

∂t
P ((p,q) , t| (p0,q0) , 0) = ∇V · ∇pP −

p
m
· ∇qP.
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Free-particle limit of the Langevin equation The free-particle limit of the Langevin
equation can be easily integrated using its Fokker-Planck form. In one dimension, it reads
just ṗ = −γp+

√
2mγ/βξ, that corresponds to the Fokker-Planck equation

Ṗ (p, t|p0, 0) = γ
∂

∂p
(pP ) + mγ

β

∂2P

∂p2 . (2.12)

First, it is easy to find the stationary probability by taking Ṗ = 0. One integral can
be done straight away, and the integration constant has to be zero for P to be positive
definite. One is left to solve

∂P

∂p
= − β

m
pP ⇒ P (p) ∝ e−β

p2
2m ;

at equilibrium, the momenta of a system evolving under a free-particle Langevin equation
are canonically distributed. Note that the friction γ does not enter the stationary solution,
as it only governs the relaxation dynamics and not the equilibrium properties. The
finite-time solution with a boundary condition P (p, 0|p0, 0) = δ (p− p0) is

P (p, t|p0, 0) ∝ exp− β

2m
(p− p0e

−γt)2

1− e−2γt ,

as it can be checked by direct substitution into (2.12). Note that this expression provides
an explicit finite-time propagator to obtain a sequence of momenta consistent with the
(free-particle) Langevin equation: starting from p0, the sample path at time t is a Gaussian
centered in p0e

−γt, with variance m
β

(
1− e−2γt): given the initial momentum p (0) one

can obtain

p (t) = e−γtp (0) +
√
m/β

√
1− e−2γtξ, 〈ξ〉 = 0,

〈
ξ2〉 = 1,

where ξ is a Gaussian variate with zero mean and unit variance.

The harmonic oscillator As a slightly more complex example, let’s now consider a
harmonic oscillator. For simplicity, we will work in mass-scaled units, i.e. p← p/

√
m and

q ← q
√
m. Then, the Langevin equation can be written in a matrix form

∂

∂t

(
q
p

)
= −

(
0 −1
ω2 γ

)(
q
p

)
+
(

0 0
0
√

2γ/β

)(
0
ξ

)
that corresponds to the Fokker-Planck equation

∂

∂t
P ((p, q) , t|(p0, q0) , 0) =

[
−p ∂

∂q
+ ω2q

∂

∂p
+ γp

∂

∂p
+ γ

]
P + γ

β

∂2P

∂p2 .

It is easy to check by direct substitution that the Boltzmann distribution for the oscillator
P (p, q) ∝ exp−β

( 1
2ω

2q2 + 1
2p

2) is stationary.
Working out the time-dependent solution without using stochastic calculus techniques is

very tedious, so we will just state the results for the matrix generalization of the Langevin
equation – a Ornstein-Uhlenbeck process

u̇ = −Au + Bξ, (2.13)

and the associated Fokker-Planck equation is

∂

∂t
P (u, t|u0, 0) =

∑
ij

Aij
∂

∂ui
[ujP (u, t|u0, 0)] + 1

2
∑
ij

Dij
∂2

∂ui∂uj
P (u, t|u0, 0) , (2.14)
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where D = BBT . The finite-time propagator can be shown to be [3]:

u (t) = e−tAu (0) +
√

C− e−tACe−tAT ξ, 〈ξi〉 = 0, 〈ξiξj〉 = δij , (2.15)

where C is the static covariance matrix (C =
〈
uuT

〉
) that satisfies AC + CAT = BBT .

Sampling efficiency for a harmonic oscillator Having an analytical expression 2.15
for the finite-time evolution of the stochastic differential equation for a Langevin harmonic
oscillator means that in principle one can compute any static or dynamic quantity describing
the stochastic dynamics. In particular, it is possible to evaluate autocorrelation times of
different observables as a function of the frequency of the oscillator ω and the friction γ –
so that the impact of the Langevin term on the ergodicity of sampling can be assessed
quantitatively. In particular, one can get the autocorrelation time for the potential V , the
kinetic energy K and the total energy H:

τV = 1
γ

+ γ

ω2 , τK = 1
γ
, τH = 2

γ
+ γ

2ω2 . (2.16)

Figure 7: Autocorrelation time for different observables for a harmonic oscillator of fre-
quency ω, as a function of the Langevin friction γ. Both the friction and the autocorrelation
times are expressed in terms of the intrinsic time scale of the oscillator.

Apart from the kinetic energy, for any value of γ these quantities grow as 1/ω2 – which
is reasonable since 1/ω corresponds to a characteristic time scale for the dynamics of the
oscillator. It is therefore more convenient to assess the efficiency using the a-dimensional
quantity κ = 2/ωτ :

κV = 2
(
ω

γ
+ γ

ω

)−1
, κK = 2 γ

ω
, κH = 2

(
2ω
γ

+ γ

2ω

)−1
.

As shown in Figure 7, there is an optimal range of frictions close to critical damping γ = ω
for which the correlation time is minimum, and the dynamics is most ergodic. Lower
values of the friction would yield under-damped dynamics, with the oscillator going back
and forth with very slow changes in amplitude. Higher values lead to an over-damped
regime, in which the dynamics becomes sluggish, and configuration space exploration
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is greatly slowed down. Figure 7 can also be read keeping the friction constant and
varying the frequency: oscillators with frequency much different from γ would be samples
sub-optimally. This poses a problem when one wants to apply a Langevin thermostat to a
real system, in which many different time scales will be present at the same time: one
would need to use a different friction for each normal mode in the system, in order to
obtain the most ergodic sampling.

2.4 Colored-noise generalized Langevin dynamics
Applying a different white-noise Langevin thermostat to different molecular coordinates

require knowing the normal modes of the system, which is often impractical and com-
putationally demanding. The question is therefore whether it is possible to obtain a
thermostatting technique that automatically adapts to the different time scales, and en-
forces ergodic sampling on all of them. One possibility is to generalize Langevin dynamics
by making it non-Markovian, i.e. by allowing a degree of memory of the past history of
the dynamics to influence the evolution of the trajectories. Such an equation could be
written (for a one-dimensional system and using mass-scaled coordinates)

q̇ =p

ṗ =− V ′ (q)−
ˆ t

−∞
K (t− s) p (s) ds+ ζ,

(2.17)

where K (t) is a memory kernel describing the friction, and ζ (t) is a Gaussian random
process whose time correlation function is H (t) = 〈ζ (t) ζ (0)〉. Analytical treatment of
this kind of stochastic differential equations is even more complex than the Markovian
case. However, it is possible to map this history-dependent dynamics onto a Markovian
dynamics in an extended phase space. We supplement the dynamical variables (q, p) by a
set of n additional momenta s, which will be bilinearly coupled to the physical momentum
p, so as to construct a Markovian Langevin equation:

q̇ =p(
ṗ
ṡ

)
=
(
−V ′(q)

0

)
−
(
app aTp
āp A

)(
p
s

)
+
(
bpp bTp
b̄p B

)(
ξ

)
,

(2.18)

where ξ is a vector of n+ 1, uncorrelated Gaussian numbers, i.e. 〈ξi (t) ξj (0)〉 = δijδ (t).
Using a Mori-Zwanzig [15] formalism, one can show that the trajectories generated

by (2.18) are equivalent to those generated by (2.17), with the memory kernel K (t) =
2appδ(t) − aTp e−|t|Aāp. The details of this formalism are well beyond the scope of the
present introduction. Figure (8) shows a simplified picture of how a non-Markovian
dynamics can be represented by a Markovian dynamics in an extended phase space.
The crucial aspect of this generalized Langevin equation formalism is that Eqs. (2.18)

closely resemble the Ornstein-Uhlenbeck process (2.13), and actually in the case of a
harmonic potential represent precisely an Ornstein-Uhlenbeck process that can be solved
analytically. One can compute sampling efficiencies κ (ω) as a function of the many
parameters of the stochastic dynamics, that can be optimized to yield constant and high
sampling efficiency over a range of frequencies that encompasses all of the frequencies
that are relevant for the system being studied. Figure (9) demonstrates how the GLE
parameters can be optimized to give efficient sampling for many different time scales at
once – which is crucial whenever one needs to extract as much statistics as possible from
a simulation of limited length [16, 17].

Integrating the (generalized) Langevin equation Despite their apparent complex-
ity, integrating Eqs. (2.18) is not difficult. The idea is to modify the velocity Verlet
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Figure 8: A schematic representation of how a Markovian trajectory in an extended
phase space can represent a non-Markovian trajectory in a reduced-dimensional space.
The two trajectories in the (q, p) subspace cannot clearly be obtained from a Markovian
formulation, since they cross at (q0, p0): since a Markovian deterministic dynamics is
uniquely determined by the starting conditions, there can be just one trajectory evolving
forward in time from any given point of phase space. However, if the trajectories are
considered as projections of a higher-dimensional dynamics, the two paths could actually
correspond to different values of the additional parameter s, so that they could well be
generated by a Markovian, deterministic dynamics in this (q, p, s) space.

Figure 9: Sampling efficiency for a harmonic oscillator subject to a colored-noise thermostat
that has been optimized to yield large, constant sampling efficiency over a broad range
of frequencies. The panels, from bottom to top, contain the results fitted over frequency
ranges spanning two, four and six orders of magnitude around ω = 1 respectively. Blue,
continuous lines correspond to matrices with n = 4, while the red, dashed lines are for
n = 2.The curve for a white-noise Langevin thermostat is shown as reference, in black.
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integrator (1.8) to include a propagator of the free-particle version of (2.18). This ap-
proach can be derived with a Trotter splitting of the Liouville operator, and preserves the
time-reversal symmetry of velocity Verlet

piα ←P [(piα, siα) , dt/2]

p←p− ∂V

∂q
dt

2
q←q + p

m
dt

p←p− ∂V

∂q
dt

2 .

piα ←P [(piα, siα) , dt/2]

(2.19)

The exact finite-time propagator is applied to individual components of the momentum
separately – there is a set of additional momenta siα for each momentum component piα –
and it corresponds to the propagator derived for the Ornstein-Uhlenbeck process (2.15):

P [(p, s) , dt]T = T(dt) (p, s)T +
√
mS(dt)ξT (2.20)

where ξ is a vector of n+ 1 uncorrelated Gaussian numbers, and the matrices T and S
can be computed once, at the beginning of the simulation and for all degrees of freedom.
The relations between T, S, and the inverse temperature β = 1/kBT is

T = e−dtAp , SST = 1
β

[
1− e−dtApe−dtA

T
p

]
Ap =

(
app aTp
āp A

)
.
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3 Rare events and transition state theory
It is often the case that atomistic simulations have to deal with systems which can exist

in multiple (meta)stable states. This is for instance the case of compounds undergoing
a chemical reaction, or materials whose functioning depends on the transition between
different phases. This is a scenario that is particularly challenging to both molecular
dynamics and Monte Carlo methods, because the stability of the various configurations
means that they are long-lived, and that transitions between them happens only rarely.
A typical situation is schematically represented in Figure 10, that also explains why

rare events are hard to deal with: the time scale of the transition δt is fast (and the time
step needed to integrate Hamilton’s equations is typically even shorter), but the time ∆t
one has to wait between transitions, observing uninteresting thermal fluctuations, can
be several orders of magnitude longer. Often it is just impossible to extract information
on the time scale of a transition by waiting for it to happen in a molecular dynamics
trajectory, and one has to resort to different techniques that are based on a equilibrium
picture of the reactive event.

Figure 10: Schematic representation of the time evolution of a molecule that can exist in
two meta-stable states. The molecule spends most of the time oscillating around one of
the stable conformations, and only rarely a transition between the two states take place.
The ratio between the “waiting” time ∆t and the time it takes to complete a successful
transition δt can be huge.

3.1 Potential energy landscapes
A first, essential task when studying transitions between stable configurations of a

system is to identify the regions of configuration space that can be considered to be
representative of the different meta-stable states. In many cases – particularly for the
simpler problems – it is possible to partition configuration space based on the underlying
potential energy function V (q) Wales [18]. This approach is reasonable, because the
Boltzmann distribution e−βV (q) will be peaked in regions with low values of the potential
energy, and so knowing the minima of V (q) can give insight on what are the most highly
populated conformations of a molecule, and the most probable paths that might be taken
to transform from one state to another.
One can characterize points on the potential energy surface (PES) based on a Taylor

expansion around each point q0:

V (q) ≈ V (q0) + g (q0) · (q − q0) + 1
2 (q − q0)T H (q0) (q − q0) +O

(
|q − q0|3

)
,
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Figure 11: A cartoon of a 2D potential energy surface, with the critical points marked
as large dots. Minima are marked as black dots, maxima as white dots, and first-order
saddle points as checkered dots. The figure also displays a few steepest descent paths,
three of which (in black) are also minimum energy paths.

where gi (q) = ∂V (q) /∂qi is the gradient and Hij (q) = ∂2V (q) /∂qi∂qj is the Hessian
matrix. Critical points on the PES are those with |g| = 0, and can be classified based on
the eigenvalues of H: points for which all the eigenvalues are positive are minima – that
will typically correspond to maxima in the Boltzmann distribution, and hence to stable
configurations – points for which all the eigenvalues are negative are local maxima, and
points for which all the eigenvalues are positive except for m negative ones are saddle
points of order m. Saddle points of order 1 are particularly important, as they often
correspond to the point of least probability along a path connecting two minima, and
play a crucial role in determining the rate at which transitions between stable states can
happen.
Another important concept in analyzing the PES is that of steepest descent paths –

trajectories that join any point q to a local minimum that are at each point tangent to the
gradient. The steepest descent path that starts from a point q0 satisfies the conditions

rq0 (0) = q0, ṙq0 (s) = −g (rq0 (s)) / |g (rq0 (s))| .

Each steepest-descent path eventually arrives at a local minimum, and so steepest descent
paths provide a natural criterion to partition configuration space in a set of adjacent
regions: each local minimum q̄ corresponds to a region Ωq̄ that contains all the points q0
whose steepest descent path converges onto q̄: Ωq̄ = {q : lims→∞ rq (s) = q̄}. Steepest
descent paths that join a first-order saddle point to a minimum are also known as minimum
energy paths, and are thought to be representative of the sequence of configurations that
correspond to a reaction pathways, since they are at all points the configurations with
maximum probability in all directions apart from the direction leading to the saddle point
dividing the two regions of configuration space (see Figure 11).

3.2 Transition state theory
Having given an idea of how one could use the potential energy surface to identify regions

of configuration space that correspond to meta-stable conformations of the system being
studied, let us see how one can obtain information on the time scale of the transformation
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Figure 12: A simplified representation of the partitioning of configuration space that is
used to define the transition state theory. The right-hand side explains how the reactive
flux can be defined in terms of an integral over the dividing surface, within the transition
state approximation.

between a reactants state A and a products state B based (almost) exclusively on
equilibrium, time-independent information. Let us define the characteristic function of
the reactants region

θA (q) =
{

1 q ∈ ΩA
0 q /∈ ΩA

The microscopic transition rate kAB for the A→ B reaction can be defined based on the
equilibrium concentration of the reactants xA and the probability that a configuration
starting in A will be found outside of A in an infinitesimal time interval dt, PAB (dt) =
kABxAdt (see Figure 12). The equilibrium concentration of the reactants can be defined
as a configurational ensemble average

xA = 〈θA (q)〉 =
´

dq θA (q) e−βV (q)´
dqe−βV (q) ,

while the transition probability can be obtained by considering the trajectories starting
close enough to the dividing surface σAB and having a velocity with the appropriate
orientation relative to the surface normal σ̂AB (q) :

PTST
AB (dt) =

´
dpe−βK(p) ´

σAB
dS e−βV (q)

[
σ̂TAB (q) M−1pdt

]
θ
(

σ̂TAB (q) M−1p
)

´
dpe−βK(p)

´
dqe−βV (q) ,

where M is a diagonal matrix having the masses corresponding to individual degrees
of freedom on the diagonal, and θ (x) is the Heaviside step function, and is meant to
select trajectories that are oriented from A to B (see Figure 12). Note that here we are
assuming that all the trajectories that cross the dividing surface in the infinitesimal time
dt and are oriented towards the products will give rise to a long-lived product specie. This
assumption gives rise to a transition state theory expression of the rate, that combines the
definition of xA and PAB to give a definition of the rate in terms of ensemble averages.

kTST
AB =

´
dpe−βK(p) ´

σAB
dS e−βV (q)

[
σ̂TAB (q) M−1p

]
θ
(

σ̂TAB (q) M−1p
)

´
dpe−βK(p)

´
dq θA (q) e−βV (q) (3.1)

This expression can be simplified further by integrating out the p dependence, computing
´

dpe−β 1
2 pTM−1p

[
σ̂TAB (q) M−1p

]
θ
(

σ̂TAB (q) M−1p
)

´
dpe−βK(p) .
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One first goes into mass-scaled coordinates p̃←M−1/2pto get
√

det M
´

dp̃e−β 1
2 p̃T p̃

[
σ̂TAB (q) M−1/2p̃

]
θ
(

σ̂TAB (q) M−1/2p̃
)

√
det M

´
dp̃e−β 1

2 p̃T p̃ ;

then, one has to realize that e−β 1
2 p̃T p̃ is spherically symmetric, that σ̂TAB (q) M−1/2

is just a vector of length
∣∣∣σ̂TAB (q) M−1/2

∣∣∣ along which the scaled momentum is being
projected. So, one can integrate out the 3N − 1 orthogonal directions (that cancel out
with the denominator) and just consider explicitly the integrals along the direction of
σ̂TAB (q) M−1/2:∣∣∣σ̂TAB (q) M−1/2

∣∣∣ ˆ ∞
0

p̃e−
1
2βp̃

2
dp̃
/ˆ ∞

0
p̃e−

1
2βp̃

2
dp̃ =

√
1

2πβ

∣∣∣σ̂TAB (q) M−1/2
∣∣∣ ,

which leaves the configurational average

kTST
AB =

√
1

2πβ

´
σAB

dS e−βV (q)
∣∣∣σ̂TAB (q) M−1/2

∣∣∣´
dq θA (q) e−βV (q) (3.2)

Harmonic transition state theory The transition state theory rate (3.1) is not very
useful without a working definition of the reactants region and the dividing surface.
One could use an analysis of the PES to define the region assigned to the minimum
corresponding to the reactants, along the lines discussed above, and also define the
dividing surface σAB as the (hyper)surface that passes through the saddle point between
the two minima and is orthogonal to the minimum energy path. It would be very hard
to parameterize this hypersurface, not to mention the complexity of evaluating high-
dimensional integrals that was the original motivation for using importance sampling
or molecular dynamics. However, one can work out a simple expression for kTST

AB by
performing a harmonic expansion of the potential around the minimum A, and around the
transition state – assuming that there is just one saddle point along the dividing surface
between the reactants and products. The denominator is easily evaluated by expanding
V (q) ≈ VA + 1

2 (q − qA)T HA (q − qA), and assuming that the Boltzmann probability
for this approximate quadratic form vanishes outside ΩA:ˆ

dq θA (q) e−βV (q) ≈ e−βVA
ˆ

dq e−β 1
2 qTHAq = e−βVA√

det M

ˆ
dq̃ e−β 1

2 q̃TDAq̃,

where we have changed the reference frame to be centered around qA, have transformed
to mass-scaled coordinates and have introduced the dynamical matrix (DA)iαjα′ =
(HA)iαjα′

/√
mimj . Then, the eigenvalues of DA are the squared frequencies of the sys-

tem’s normal modes in theAminimum,
(
ωAi
)2, and the integral yields (2π/β)3N/2

/∏3N
k=1 ω

A
k .

The integral over the dividing surface can be evaluated in a similar way, noting that
the dividing surface can be approximated as the hyperplane that is orthogonal to the
single negative eigenvalue of the Hessian matrix HAB at the saddle point. Transforming
in mass-scaled coordinates, expanding in normal modes coordinates and integrating over
the whole space while excluding the negative eigenvector direction one gets

ˆ
σAB

dS e−βV (q)
∣∣∣σ̂TAB (q) M−1/2

∣∣∣ ≈ e−βVAB√
det M

ˆ
σAB

dS̃ e−β 1
2 q̃TDAB q̃ =

= e−βVAB√
det M

(
2π
β

)(3N−1)/2 1∏3N−1
k=1 ωABk

.
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Combining all the pieces together, one gets the familiar expression for the reaction rate in
terms of an exponential term that depends on the energy barrier and a pre-factor with
the units of a frequency:

khTST
AB = 1

2π e
−β(VAB−VA)

∏3N
k=1 ω

A
k∏3N−1

k=1 ωABk
= ν?e−β∆V (3.3)

3.3 Collective variables and free energy surface
At times it is just not practical to perform a thorough investigation of the potential

energy surface, when studying disordered systems, liquids, or reactions taking place in
these disordered environment. In these cases there can be an enormous number of shallow
local minima, which are nearly impossible to map, and which make it hard to identify
properly what is the reactant region or the transition state. In these cases, it is useful to
introduce a coarse-grained description of the system in terms of one or more collective
variables, order parameters that are meant to differentiate between stable states and
reaction pathways. Simple collective variables to describe reactive events might be bond
lengths, coordination numbers, order parameters that can differentiate between ordered
and disordered environments, etc. Having defined a set of collective variables s (q), it is
customary to introduce the concept of a free energy

F (s) = − 1
β

ln
ˆ

dqe−βV (q)δ (s− s (q)) . (3.4)

The free energy is to the collective coordinates s what the potential is to the position q,
as the canonical probability density of finding a configuration which takes the collective
variables value s is P (s) ∝ e−βF (s).
For simplicity, here we will discuss the case where one can find a single collective variable
s (q) that can distinguish between reactants and products for a reaction of interest, i.e.
s (q) = 0 gives the dividing surface, s (q) > 0 identifies the products and s (q) < 0 the
reactants. In this context, the transition-state rate (3.1) can be written as

kTST
AB =

´
dpe−βK(p) ´ dqe−βV (q)δ (s (q))

[
∇s (q)T M−1p

]
θ
(
∇s (q)T M−1p

)
´

dpe−βK(p)
´

dqe−βV (q)θ (−s (q))
where θ is the Heaviside step function. Let us show an alternative treatment of the
momentum integral, based on a Fourier representation of the Heaviside function

θ (x) = 1
2 − P

ˆ ∞
−∞

e−ixt

2πit dt.

The constant term in the Fourier representation of θ integrates to zero because K (p) is
even in p and

[
∇s (q)T M−1p

]
is odd. We are left with

−P
ˆ ∞
−∞

1
2πit

ˆ
e−it[∇s(q)TM−1p]e−β 1

2 pTM−1p
[
∇s (q)T M−1p

]
dpdt.

The integral in p reads can be written by spelling out the scalar product between ∇s (q)
and q̇:

∑
iα

∇iαs (q)
mi

ˆ
piαe

−it∇iαs(q)
mi

piαe
−β

p2
iα

2mi dpiα
∏

jα′ 6=iα

ˆ
e

it
∇
jα′s(q)
mj

pjα′ e
−β

p2
jα′

2mj dpjα′ =

=
∑
iα

−it
βmi

√
2πmi

β
∇iαs (q)2

e
−∇iαs(q)2t2

2βmi
∏

jα′ 6=iα

√
2πmj

β
e
−
∇
jα′s(q)2t2

2βmj .
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where we have completed the square in the integral in dpiα. Let us drop the
√

2πmj/β
terms, as they are canceled by the p integral at the denominator. We are left to compute
a term that corresponds to the flux through the dividing surface at q, that accounts also
for the distortion of the metric that arises because of the use of s to define the different
regions of the system

−1
2πit

−it
βmi
∇s (q)T M−1∇s (q)

ˆ ∞
−∞

e−
t2
2β∇s(q)TM−1∇s(q)dt =

√
∇s (q)T M−1∇s (q)

2πβ = φ (q) .

This leaves an expression equivalent to (3.2):

kTST
AB (t) =

´
dqe−βV (q)δ (s (q))φ (q)´

dqe−βV (q)θ (−s (q))
, (3.5)

which only involves equilibrium averages. This can also be rewritten in a form that shows
more clearly the definition in terms of the free energy (3.4):

kTST
AB (t) = e−βF (0)´

ds e−βF (s)θ (−s)
φ (s) , φ (s) =

´
dqe−βV (q)δ (s (q))φ (q)´

dqe−βV (q)δ (s (q))
. (3.6)

The crucial step to evaluate the rate is therefore to define an effective collective coordinate
and to compute the free energy surface relative to it. The flux is just the mean value of
φ (q) at the transition state, and can be evaluated by averaging the values of φ (q) for the
configurations observed during the trajectory that have |s (q)| < ε.

Figure 13: Trajectories that re-cross the dividing surface reduce the overall reaction rate,
and are not accounted for within transition state theory. Bennett-Chandler rate theory
allows to express the correction in terms of a transmission coefficient, that starts off at
1 (the transition-state theory is the τ → 0+ limit of Bennett-Chandler rate theory) and
levels off to a plateau value after an intermediate transient.

3.4 Bennett-Chandler rate theory
In introducing transition state theory we have observed that an assumption was being

made that all the trajectories starting at the A/B dividing surface, with the velocity
oriented towards the products, would have ended up in a successful reactive event, i.e.
they would have stayed in B for a very long time (Figure 13). This is usually a good
assumption for simple systems that can be treated within the harmonic transition state
theory approximation, but it can fail dramatically for more complex systems, and when the
transition is described in terms of imperfect collective variables. In these cases, trajectories
may re-cross the dividing surface and go back to the reactants region: one should define
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a time-dependent rate that describes the probability that a trajectory initiated at the
dividing surface will be in the product region at a later time τ :

kAB (τ) =

´
dpe−βK(p) ´ dqe−βV (q)δ (s (q))

[
∇s (q)T M−1p

]
θ (Pq ((p,q) , τ))´

dpe−βK(p)
´

dqe−βV (q)θ (−s (q))
.

It is actually convenient to re-write this expression as kAB (τ) = kTST
AB κ (τ), the product

of the transition-state theory rate (3.5) and the transmission coefficient

κ (τ) =

´
dpe−βK(p) ´ dqe−βV (q)δ (s (q))

[
∇s (q)T M−1p

]
θ (Pq ((p,q) , τ))´

dpe−βK(p)
´

dqe−βV (q)δ (s (q))φ (q)
. (3.7)

In fact, Eq. (3.7) can be easily computed by choosing n starting configurations q(i)
0 among

those that are within ε of the dividing surface (these are typically obtained in the process
of computing the transition-state rate), and shooting m short trajectories out of those
starting configurations, by generating random momenta p(j)

0 in the forward direction, and
counting the fraction of trajectories that are in the product region at each time τ :

κ (τ) ≈ 1
nm

n∑
i=1

m∑
j=1

[
∇s
(

q(i)
0

)T
M−1p(j)

0

]
θ
(
Pq

((
p(j)

0 ,q(i)
0

)
, τ
))

.

Partitioning the rate in these two components makes it possible to perform enhanced
sampling techniques to evaluate kTST

AB and to collect initial configurations from the transi-
tion state region, and then perform only short constant-energy trajectories to compute
the correction due to recrossings. The typical behavior of the transmission coefficient
with time is shown in Figure 13: by construction, limτ→0+ κ (τ) = 1, and after a transient
period the transmission coefficient converges to a plateau value. This is the value that
typically should be used to define a macroscopic rate. In principle, the Bennett-Chandler
formalism should give the same overall plateau value of the rate constant independent on
the precise choice of the dividing surface, since the transmission coefficient corrects for
the recrossings due to a poor choice of collective variable to describe the transition. In
practice, evaluating κ (τ) accurately gets harder and harder as the plateau value decreases
to zero, and so the efficiency of the calculation depends crucially on the choice of collective
variables.

Committor analysis The Bennett-Chandler formalism also provides a very robust
method to assess the quality of a collective variable in terms of being able to describe the
A→ B transition, by an analysis of the distribution of the committor in the transition
state ensemble. The committor function is defined for each configuration q̄ as the fraction
of trajectories that start at q̄ and end up in the product region after a time interval τ :

pB (q̄, τ) = 〈δ (q − q̄) θB (Pq ((p,q) , τ))〉
〈δ (q − q̄)〉 (3.8)

The committor distribution relative to a collective variable s is then defined as the
histogram of the values of the committor for configurations that have the specified value
of s (q):

IB (s, p) = 〈δ [p− pB (q, τ)] δ (s− s (q))〉
〈δ (s− s (q))〉 .

One can then look at the histogram of committors for the transition state ensemble,
IB (0, p) in our one-dimensional collective variable example. Ideally, points at the transition
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Figure 14: Schematic representation of a good (left) and bad (right) choice of a collective
variable to describe a transition on a two-dimensional potential energy surface. Blue dots
represent sample configurations from the transition-state ensemble. With a good collective
variable, the histogram of committors I (p) for the transition state ensemble is peaked
around p = 0.5, while for a bad collective variable it has peaks towards 0 and 1.

state should have a 50% probability to evolve towards the products or to go back into
the reactants region, so the histogram of committors should be peaked at 0.5. In fact,
the committor (3.8) could in principle be used to define an ideal (but impractical)
collective variable, where the transition state ensemble corresponds by construction to the
configurations with pB (q̄, τ) = 0.5. In the case of a bad collective coordinate (right panel
of Figure (14)) points at the transition state ensemble have a large probability of recrossing
back into the reactants region, and IB (0, p) has peaks for p ≈ 0 and p ≈ 1. Note that this
can happen even though the collective variable does a decent job differentiating reactants
and products region, because it fails at describing the transition in the high-potential
region in the vicinity of the “true” transition state.
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4 Reweighing and biased sampling
The basic sampling methods discussed in Chapter 1, as well as the enhanced thermostat-

ting techniques introduced in Chapter 2 make it possible to explore phase space efficiently
in the vicinity of a (meta)stable configuration, but typically do not help much when
it comes to the study of rare events. The rate theory introduced in Chapter 3 makes
it possible to express dynamical properties such as transition probabilities in terms of
ensemble averages, but gives no clue as to how one could evaluate more efficiently averages
that depend on configurations that are only visited rarely. One could try to modify
the ensemble that is being sampled, i.e. to sample according to a modified probability
distribution P̃ (q) in which transition-state configurations have a much more significant
weight than they have in the original Boltzmann distribution P (q). The question is then
whether one can recover ensemble averages relative to P by sampling performed based on
P̃ [19, 20]. It is very easy to see that if one wants to compute the mean of an observable
A (q) relative to P , it is sufficient to compute〈

A
P

P̃

〉
P̃

=
ˆ

dqA (q) P (q)
P̃ (q)

P̃ (q) =
ˆ

dqA (q) P (q) = 〈A〉P .

Note that a very important point is that in the right-hand side the average is corrected
by a weight factor that is the ratio between the two probability distributions. This
means that in practice one does not need to know the normalization of P and P̃ , which
would be exceedingly difficult to obtain. In practice, one can just obtain a sequence of
configurations {qi} distributed according to P̃ by importance sampling (be it Monte Carlo
or thermostatted molecular dynamics), and compute

〈A〉P = lim
M→∞

∑
iA (qi)P (qi) /P̃ (qi)∑

i P (qi) /P̃ (qi)
=
〈
AP/P̃

〉
P̃〈

P/P̃
〉
P̃

. (4.1)

For instance, one could perform a simulation at a higher temperature (lower inverse
temperature β̃), at which the system diffuses faster over free energy barriers, and obtain
statistics at a the desired inverse temperature β. The expression for the reweighed average,

〈A〉β ≈
∑
iA (qi) e−(β−β̃)V (qi)∑

i e
−(β−β̃)V (qi)

, (4.2)

is deceptively simple, as will be discussed in the next section. A very similar expression
appears when one samples using a potential energy function Ṽ , and wants to compute
averages relative to V :

〈A〉V ≈
∑
iA (qi) e−β(V (qi)−Ṽ (qi))∑

i e
−β(V (qi)−Ṽ (qi)) .

This is useful, for instance, when one wants to assess how observables are changed by
small modifications to the model (e.g. changing the partial charge on an atom), or when
one samples using an inexpensive potential to obtain truly uncorrelated configurations,
and then uses these to compute averages consistent with a more expensive potential.

4.1 Statistics of reweighing
It is quite easy to convince oneself that, although formally correct, Eq. (4.1) cannot

be universally applicable. If it were, one could take an ideal gas as a reference and
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compute inexpensively averages for complex electronic structure calculations. Intuitively,
the problem is that in a paradoxical case like this there would be no single configuration
from the ideal gas that resembles a reasonable arrangement of covalently-bound atoms,
and so the average would be computed over structures with completely negligible weights
in the target ensemble. It is possible to give a much more quantitative spin to this analysis,
framing the problem in terms of the statistical efficiency of sampling. Similarly to what we
did in Section 1.4, the point is performing a large number of independent simulations and
computing the mean the fluctuations of the averages, to evaluate statistical and (possibly)
systematic errors.
One should start by considering in the abstract the joint probability distribution of the

observable A and the weight W = P/P̃ , p (A,W ). Then, one assumes that all the samples
are perfectly uncorrelated (as time correlation efficiency can be dealt with in terms of the
autocorrelation time, as discussed in Section 1.4), and considers

〈
Ān
〉

=
〈∑

iAiWi∑
iWi

〉
= n

〈
AW

W +
∑n
i=2Wi

〉
, (4.3)

since all the samples are equivalent and so one can single one out in the sum. Then, one
proceeds by using the moments in the distribution of W to compute the moments of the
sum of n− 1 variates, that are uncorrelated from both W and A. The procedure is far
from trivial [21], but one can eventually obtain the asymptotic expression

〈
Ān
〉
≈ 〈AW 〉
〈W 〉

+
〈AW 〉

〈
W 2〉− 〈W 〉 〈AW 2〉
n 〈W 3〉

.

This shows that if A and W are correlated the reweighed mean of a finite number of
samples is a biased estimator of the true value 〈AW 〉 / 〈W 〉, i.e. that it bears a systematic
error that decreases with the number of sample points. To convince oneself that (4.3) is a
biased estimator it suffices to consider that

〈
Ā1
〉

= 〈A〉 6= 〈AW 〉 / 〈W 〉, since the weight
at the numerator and denominator cancel out.

Figure 15: Schematic representation of cumulative reweighed averages for cases with low
(red), medium (black) and large (blue) variance of the difference Hamiltonian.
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What is more, the systematic error term is associated with a large statistical error. What
makes it hard to converge reweighed average is that the weight is often the exponential of a
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difference Hamiltonian H = − lnW , which is obtained from a sum of random (or chaotic)
terms, and that in many cases has quasi-Gaussian statistics. Hence, the weight has a
log-normal distribution, i.e. the distribution of the exponential of a Gaussian variate. The
log-normal distribution has a pathological behavior, with very large tails, which means
that the distribution of W will be plagued by very large outliers. This becomes apparent
when one computes cumulative averages out a trajectory, i.e. the mean of the first n
terms in the trajectory as a function of n. Pathological cases are apparent because the
cumulative average shows large jumps whenever a new outlier with a large weight appears
in the data set. In the worst cases, these discontinuities are still evident after hundreds of
thousands of uncorrelated samples.
Under the assumptions thatW is precisely log-normal, and that p (A,H) is a multivariate

Gaussian with A having variance σ2 (A), H = − lnW having mean zero and variance
σ2 (H), and the cross-correlation between A and H being 〈AH〉, one can evaluate the
asymptotic expressions

〈
Ān
〉
≈ 〈A〉 − 〈AH〉+ 〈AH〉 e

σ2(H)

n
(4.4)

σ2 (Ān) ≈ (σ2 (A) + 〈AH〉2
) eσ2(H)

n
. (4.5)

Both the systematic error and the statistical variance of the mean, decrease asymptotically
(for a large number of uncorrelated samples) with n, but the prefactor grows exponentially
with the variance of the difference Hamiltonian. These estimates are based on the
assumption of a Gaussian distribution of the difference Hamiltonian, and are often
somewhat pessimistic. However, every time one performs a simulation that involves some
kind of reweighing, it is essential to evaluate σ2 (lnW ), and to perform more in-depth
checks every time the fluctuations are larger than a few units. It might very well be
the case that the enhanced sampling or the computational savings obtained by using a
reweighing scheme are more than offset by the loss in statistical efficiency due to the
pathological behavior of the distribution of W .

Combining multiple simulations Say we have several simulations that are produced
by n different probability distributions Pk (q). They may have different temperatures,
different biases, etc. A typical example are replica exchange simulations[22]. We want to
compute a unique average for an observable, combining the data from the different runs.
For a change, we will consider the case where one wants to compute a histogram for a
property s = s (q), relative to a target distribution P (q), that reads

h (s) =
ˆ

dP (q) δ (s− s (q)) .

Each simulation generates a histogram consistent with Pk (q)

hk (s) =
ˆ

dPk (q) δ (s− s (q)) = 〈δ (s− s (q))〉k

where 〈·〉k is meant to indicate an average over the trajectory generated by the k-th
simulation. From each simulation we can also recover an estimate of h (s) by reweighing
the simulations,

h̄k (s) =

〈
P (q)
Pk(q)δ (s− s (q))

〉
k

〈P (q) /Pk (q)〉k
,

The idea is then to combine the different histograms with coefficients that sum up to one,
h̄ (s) =

∑
i ckh̄k (s), choosing the coefficients so as to minimize the error in the estimate
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of h (s). The philosophy is very similar to the Weighted Histogram Analysis Method
(WHAM) [23], but we will use Eq. (4.5) to simplify considerably the treatment, and to
extend it to different cases than when one is computing the histogram of the collective
variable that is used in the bias. Let us assume that the “intrinsic” quality of sampling of all
the trajectories is equivalent, so that ε2k (s) ≈ ε2(s)

Nk
where Nk is the number of uncorrelated

samples in each trajectory (if the correlation time is known, Nk ≈ tk/τk, where tk are the
length and the correlation time of the k-th simulation – otherwise one might just use the
number of samples, even though this might be a rather crude approximation). Also, let us
assume that s (q) and the weight functions wk (q) = P (q) /Pk (q) are weakly correlated,
so that we can just ignore 〈AH〉 in Eq. (4.5) and estimate the error in the k-th reweighed
histogram as

ε̄2k (s) ≈ ε2 (s)
Nk

exp
[〈

(logWk (q))2
〉
k
− 〈logWk (q)〉2k

]
,

independent on the value of s. One could adapt this expression using a more general
expression for the error, that does not assume Gaussian statistics or uncorrelated weights
and observables. The total square error in h̄ is ε̄ (s) = 1

n

∑
c2k ε̄

2
k (s). This can be minimized

with a Lagrange multiplier procedure, and eventually one gets

ck = 1/ε̄2k (s)∑
k 1/ε̄2k (s) =

Nk exp
[
〈logWk (q)〉2k −

〈
(logWk (q))2

〉
k

]
∑
kNk exp

[
〈logWk (q)〉2k −

〈
(logWk (q))2

〉
k

] ,
giving a prescription to combine the averages computed from different reweighed simula-
tions.

4.2 Biasing in collective variable space
In order to compute reaction rates in a complex system, it is first necessary to define

good collective variables s and to compute the free energy (3.4) relative to them, so as to
be able to evaluate the transition-state theory rate (3.6). Since however the probability
of being at the transition state is extremely small (the very reason why the underlying
transition is a rare event!), it is often hard or basically impossible to compute F (s) by
conventional, canonical sampling. One possibility is to raise the temperature of the system,
that would increase the probability of reaching the high-energy portions of the free energy
surface (FES). However, this is often a bad idea: the log-weight for the temperature
reweighing (4.2) is −

(
β − β̃

)
V (q), and the fluctuations will be proportional to

〈
V (q)2

〉
,

that grows linearly with the system size. No matter how small is the temperature difference,
as soon as the system gets large enough the pathological distribution of the weights will
make sampling dramatically inefficient. The profound reason for this problem is that
the bias depends on all the particle coordinates independently, which leads to extensive
growth of the log-weight with system size, even though most of the degrees of freedom are
basically spectators and do not need to change for the reaction to take place (think for
instance at a bond-breaking reaction, or at a transition in solution).
To focus the sampling on exploring the free energy relative to a set of collective variables

s, it is therefore tempting to use a bias potential that depends on the values of the
collective variables themselves, i.e. sample relative to Ṽ (q) = V (q) + B (s (q)) . It is
easy to see that the ensemble distorted by the bias can be reweighed with a term eβB(s),
for which one can hope to obtain less pathological statistics thanks to the fact that s is
typically of much lower dimensionality than q, and that fluctuations will not therefore
depend strongly on the size of the system. It is particularly instructive to see how the free
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energy is changed by the biasing procedure:

F̃ (s) = − 1
β

ln
ˆ

dqe−β[V (q)+B(s(q))]δ (s− s (q)) = B (s) + F (s) , (4.6)

where we exploited the fact that e−βB(s) can be brought outside the integral, as the δ
function selects only configurations with s (q) = s.
Hence, the effect of the bias is to modify the free energy by the value of the bias

itself. Eq. (4.6) means that if one chose a bias that cancels completely the free energy
B (s) = −F (s), F̃ (s) would be a constant, and all the values of the collective variables
would be equally likely in the simulation. Biasing a simulation based on the same collective
coordinates used to estimate a reaction rate has the additional advantage that the flux
term φ (s) that enters Eq. (3.6) could be evaluated from the biased simulation without
the need of reweighing, since

φ̃ (s) =
´

dqe−β[V (q)+B(s(q))]δ (s (q))φ (q)´
dqe−β[V (q)+B(s(q))]δ (s (q))

=
e−βB(s) ´ dqe−βV (q)δ (s (q))φ (q)
e−βB(s)

´
dqe−βV (q)δ (s (q))

= φ (s) ,

where we used again the fact that the bias is written as a function of the same collective
variable that selects the transition state.

Figure 16: Schematic representation of the metadynamics bias accumulated after a short
trajectory. At each instant in time, the bias is built from an accumulation of repulsive
Gaussians centered around previously-visited locations.

4.3 Metadynamics
As attractive as it might sound, the idea of performing umbrella sampling in collective

variable space to flatten the free energy profile poses the considerable problem of choosing
the bias potential B (s). One would want to pick it to be the negative of the free energy,
but this would require knowing the FES in the first place. To get out of this circular
problem, one needs to construct the bias in an adaptive way, exploiting information from
the simulation to refine on the fly the estimate of the free energy, obtain a better bias and
hence more efficient sampling. A relatively simple implementation of this idea is offered by
the local elevation [24] and metadynamics [25] methods, in which a repulsive bias is built
from a superposition of repulsive Gaussians of height w and width σ, that are centered on
positions in collective variables space that had been visited before along the trajectory
(Figure 16):

B (q, t) = B (s (q) , t) = w
∑
i∆t<t

exp− (s (q)− s (q (i∆t)))2

2σ2 . (4.7)

The repulsive bias acts as “computational sand”, discouraging the system from indulging
in regions of collective variable space that had been visited before, and forcing it to explore
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new configurations and traverse transition state regions. What is more, one can show that
under mild conditions, the non-equilibrium dynamics generated by the time-dependent
bias (4.7) is such that for a sufficiently long simulation B (s, t→∞)→ −F (s), so that a
converged metadynamics trajectory gives access to the free energy of the system [26]. The
accuracy of metadynamics rests on a quasi-equilibrium assumption (that sampling at any
time is consistent with the biased ensemble at that time), and therefore small deposition
rates w/∆t should be used to obtain reliable estimates of the free energy. The converged
bias can be used for an umbrella sampling calculation to evaluate properties of the system,
but there is typically a negligible error associated with re-using also the non-equilibrium
section of the calculation to perform reweighed sampling [27].

Well-tempered metadynamics One should use some care when inferring an estimate
of the free energy from the negative of the metadynamics bias. For instance, the resolution
in collective variable space is limited by the choice of σ, and the fact that discrete hills
are being added leads to a residual error of the order of w in the free energy profile. A
strategy to improve the accuracy of the profile – also by making the quasi-equilibrium
assumption more accurately fulfilled – is to reduce progressively the deposition rate as the
simulation progresses. So-called “well-tempered” metadynamics [28] does so in a way that
adaptively depends on the magnitude of the bias accumulated at each time

B (s (q) , t) = w
∑
i∆t<t

e−B(s(q(i∆t)))/kB∆T exp− (s (q)− s (q (i∆t)))2

2σ2 . (4.8)

As the bias increases, the exponential term reduces the height of the new hills being added.
Consider now the limit as t→∞, when the height of the hills is infinitesimal and one can
consider how the bias changes in time based on the probability distribution of being in a
given state q (which in turns depend on the bias):

Ḃ (s, t) = P (s) w

∆te
−B(s,t)/kB∆T ∝ e−[F (s)+B(s,t)]/kBT e−B(s,t)/kB∆T .

In order for the change in bias to be a constant – meaning that its change in time does
not alter its profile or the probability distribution – the bias at the exponent must cancel
the free-energy, which leads to B (s, t) (1/T + 1/∆T ) = −F (s) /T , implying that

B (s, t→∞)→ −F (s) ∆T
∆T + T

.

Besides allowing for smooth, systematic convergence, the addition of a bias-dependent
damping to the deposition rate makes it possible to interpolate between a ∆T � T limit,
at which the bias compensates fully for the free energy, and a ∆T = 0 limit at which no
bias is added. Intermediate values make it possible to increase the probability of sampling
the transition states without flattening completely the FES, which would make the system
spend a lot of time in unphysically high-energy regions.

Dimensionality of sampling and hidden variables This far we have not commented
much on the importance of the choice of collective variables s. Just as in the case of rate
theory, the choice of “good” collective variables is crucial for the efficiency and accuracy
of metadynamics. As it is often the case, there are two conflicting goals to aim for. On
one hand, s should be a low(d)-dimensional description of the transition, ideally one to
three-dimensional. This comes for two reasons: on one hand, a bias in a high-dimensional
space would exhibit near-Gaussian fluctiations, and lead to poor statistical efficiency of
the reweighing procedure, as discussed in Section 4.1. Also, each Gaussian hill covers a
“volume” of phase space of the order of σd. If a basin of attraction on the FES has an
extension of the order of ∆s in each dimension, the number of hills that must be deposited
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to compensate the basin have to be at least (∆s/σ)d. Since σ has to be smaller than ∆s
to have sufficient resolution to identify the basin, the number of hills grows exponentially
with dimensionality.

Figure 17: Well-tempered metadynamics trajectory on a 3D potential energy surface
V (θ, φ, ψ) = exp

[
3
(
3− sin4 θ − sin4 φ− sin4 ψ

)]
− 1, periodic in three dimensions. The

right panel shows the trajectory of the three angles and the instantaneous value of the
bias when only two coordinates are being biased.

On the other hand, one has to be wary of the possibility that the description of the
configuration space given by a low-dimensional set of collective variables is incomplete, and
do not capture the full complexity of the reactivity of the system. This might be reflected
in the fact that the rate estimated from a transition state theory expression (3.6) requires
a major correction for re-crossing trajectories, but also might reduce dramatically the
efficiency of sampling of a metadynamics trajectory. Figure 17 gives a simple example of the
effect of neglecting important degrees of freedom in the description of configuration space.
The sampling along the “hidden variable” which is not being biased is not accelerated,
and only a partial exploration of available phase space can be obtained. While this is
clearly an extreme example, it highlights the fact that the choice of collective variables is
perhaps the most important step in performing efficient enhanced sampling applied to the
study of rare events.
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5 Dimensionality reduction
In many ways, obtaining a low-dimensional, coarse-grained description of the configura-

tions that are accessible at a given temperature is the key to unravel fully the power of
atomistic simulations. A simplified model of the complex behavior of a system composed
of thousands (or millions!) of degrees of freedom is necessary to present an intuitive
picture of the physics of the problem, as well as to extract dynamical and non-equilibrium
properties from a equilibrium simulation, and finally to accelerate sampling by umbrella
sampling or metadynamics.
In complex materials, biomolecules and in general systems in which the order parameter

that underlies a given transition is not obvious, one needs to perform time-consuming
trial-and-error tests to determine good reaction coordinates that can capture the essence
of the underlying physics. One is then led to wonder whether it is possible to perform
a computational analysis that can automatically infer the best collective coordinates to
describe a reaction starting from the simulation data itself. As discussed in Chapter 3,
the committor is an ideal reaction coordinate to describe a rare event, but it requires
a preliminary definition of the stable states, and very extensive preliminary sampling.
In practice, one needs a procedure that can be performed on preliminary, incomplete
sampling of the free energy surface, that is sufficiently predictive to describe states that
were missing in the initial data set, and that is robust enough to deal with sparse, noisy
data.
The general idea is to start from a high-dimensional description of the structure being

studied (e.g. the set of all distances between pair of atoms in a molecule, coordination
numbers, torsions in the backbone of a polymer, etc.), and find the projections ofN high, D-
dimensional vectors {Xi} onto a lower, d-dimensional set of points {xi}. Having performed
this preliminary mapping one can proceed to compute an out-of-sample embedding function
that associates a projection x = f (X) to each high-dimensional vector X.
A large number of techniques have been developed in the machine-learning community to

perform dimensionality reduction. Here we will focus on simple linear projections (principal
component analysis and classical multidimensional scaling) [29], and a couple of more
advanced non-linear projections (ISOMAP [30] and sketch-map [31]). Other techniques
we will not cover here include Laplacian eigenmaps [32], locally-linear embedding [33],
Hessian eigenmaps [34], or diffusion maps [35].

5.1 Linear projections
The simplest approach to taking the projection of a set of D-dimensional vectors into

a lower d-dimensional space would be to take a linear projection, i.e. take xi = PTXi,
where P is a D × d matrix, and xi and Xi are taken to be column vectors. The question
is then how to choose the projector in such a way that the embedding is “best” in some
metric.

Principal component analysis (PCA) Let us assume that the columns of P are
orthonormal, so that PTP = 1d (where 1n is the n-dimensional identity matrix). Then,
X̃i = Pxi would be the D-dimensional vector that can be reconstructed based on the
limited information that remains in xi. We can then try to figure out how to choose P so
that the mean squared distance

S = 1
N

∑
i

∣∣Xi − X̃i

∣∣2
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is minimum. To do so, assume without loss of generality that the Xi had been shifted
rigidly to have zero mean, so that C =

∑
iXiX

T
i /N is the covariance matrix of the

high-dimensional data set, and consider that
∣∣Xi − X̃i

∣∣2 = Tr
(
Xi − X̃i

) (
Xi − X̃i

)T
.

Then,

S = Tr 1
N

∑
i

(
Xi − X̃i

) (
Xi − X̃i

)T =

= Tr 1
N

∑
i

[
XiX

T
i −PPTXiX

T
i −XiX

T
i PPT + PPTXiX

T
i PPT

]
=

= 2
(
Tr C− Tr PTCP

)
where we used the fact that PTP = 1d and that circular permutations of the factors in
a product of matrices do not change the trace. Now, Tr C is the sum of the eigenvalues
of the covariance matrix. If P was a one-dimensional projector, then the best choice to
reduce S is clearly to choose P to be the eigenvector associated with the largest eigenvalue
c1 of C, as then Tr PTCP = c1 would remove the largest possible component from Tr C.
Then it is easy to see that if one wanted to add a second column to the projector P, the
best choice would be to pick the eigenvector associated with the second largest eigenvalue,
and so on.

Multidimensional scaling (MDS) Let us try a different approach. Consider a mea-
sure of similarity between the data points Sij = |Xi −Xj | – we take it to be the Euclidean
distance, but any other metric could be used. A reasonable requirement for a projection
to be a faithful representation of the distribution of points is that the similarity between
the high-dimensional points is preserved after the projection, i.e. that a suitable stress
function

χ2 =
∑
ij

(Sij − |xi − xj |)2 (5.1)

is minimized with respect to the positions of the embedded points {xi}. Note that at
this stage this is not a linear projection, and that the procedure involves an iterative
minimization to find a (possibly only local) minimum of χ2.

While Eq. (5.1) is extremely general, in that one could easily use any sort of measure
of similarity in the definition of Sij , assuming that the underlying metric is just the
Euclidean distance makes it possible formulate the problem so that it can be tackled as
an eigenvalue decomposition. In particular, we exploit the fact that Euclidean distance
matrices (the matrices of squared Euclidean distances between vectors Sij = |Xi −Xj |2)
can be shown to be in biunivocal relation with positive semidefinite matrices of the form
XXT . Specifically, let X be the N × D matrix having the points Xi as rows. Define
the N ×N centering matrix H such that Hij = δij − 1

N . It is easy to see that applying
this matrix to the data set removes the center of mass X̄ = 1

n

∑
iXi from each one of

the points (i.e. (HX)i =
(
Xi − X̄

)T ) and that HTH = H. Now, let’s see that one can
write an inner product form B = (HX) (HX)T as B = − 1

2HSH. It is a bit tedious but
straightforward to write out

−1
2 (HSH)ij = −1

2
∑
kk′

(
δik −

1
n

)[
(Xk −Xk′)T (Xk −Xk′)

](
δjk′ −

1
n

)
=

= −1
2
∑
kk′

(
δik −

1
n

)(
XT
k Xk +XT

k′Xk′ − 2XT
k Xk′

)(
δjk′ −

1
n

)
=

= XT
i Xj + X̄T X̄ − X̄TXj −XT

i X̄.
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But this is just the same as[
(HX) (HX)T

]
ij

=
(
Xi − X̄

)T (
Xj − X̄

)
= XT

i Xj + X̄T X̄ − X̄TXj −XT
i X̄.

So, after having centered the data set – which certainly will not change the relative
similarity between reference configurations – XXT is the positive semidefinite matrix that
corresponds to the matrix of squared Euclidean distances S.
Then, one can proceed to approximate X taking the singular value decomposition of

B, picking the d largest eigenvalues υi and associated eigenvectors Ui, and set (xj)i =√
υi (Ui)j , i.e. taking the elements of the eigenvectors to be the coordinates of the low-

dimensional projections of the Xi. It can be shown that xxT is the matrix of rank d that
best approximates XXT in the Frobenius norm1. So, classical MDS can be understood as
the process of mapping the Euclidean distance matrix to a positive semidefinite matrix,
approximating it by a singular value decomposition, and then interpreting the resulting
matrix as the set of points whose mutual distances approximate the high-dimensional
distance matrix.
Interestingly, in this form classical MDS is completely equivalent to PCA. To see this,

note that the covariance matrix of the high-dimensional data set can be written as
C = 1

nXTHX. In the following, we will assume to have centered preliminarily the data
set, so that nC = XTX and B = XXT . In PCA, we take the eigenvectors of C associated
with the largest eigenvalues of C, γi, take them to be the columns in a projector P and
compute the low-dimensional embeddings as xi = PTXi. In terms of a matrix X written
in the same notation we introduced for MDS, this can be written as xT = PTXT , i.e.
x = XP. First, let’s see that the eigenvalues of nC, υi, are also eigenvalues of B, and that
if ui is the eigenvector of nC associated with υi, Xui is the corresponding eigenvector of
B. To see this, just consider that

BXui =
(
XXT

)
Xui = X

(
XTX

)
ui = υiXui

This automatically implies that the low-dimensional projections obtained from PCA differ
from those obtained by MDS at most by a scaling of the coordinates – since the coordinates
of PCA projections are of the form Xui, and the coordinates of MDS projections are
eigenvectors of B. it remains to prove that the scaling by √υi is what is needed to
make the projections identical. Considering normalized eigenvectors, UTi Ui = 1,whereas
uTi XTXui = υiu

T
i ui = υi, which proves that indeed √υi is the correct scaling.

5.2 Non-linear dimensionality reduction: ISOMAP
PCA is by construction a linear projection, that can only provide a faithful representation

of the high-dimensional data set if the vectors lie (at least approximately) in a linear
subspace. MDS (at least in the non-iterative version) is equivalent to PCA and therefore
has the same limitations. In many cases the low-dimensional structure of the data set is
only locally linear, but cannot be represented globally in a low-dimensional linear subspace.
This is for instance the case of a curved (hyper)surface embedded in a high-dimensional
space (see Figure 18). Among the possible approaches to improve a linear dimensionality-
reduction algorithm, the simplest is perhaps to work on the definition of a non-linear
metric that can capture the curved structure of the data set, and then just proceed with
classical MDS.
This is the approach taken by ISOMAP [30], that uses local connectivity information

to evaluate geodesic distances over the curved low-dimensional structure of the data set,
1Recall that ‖M‖2

F =
∑

ij
M2
ij = Tr MMT . When M is real and symmetric and can be decomposed

as M = OµOT , where µ is the diagonal matrix of the eigenvalues of M, ‖M‖2
F =

∑
i
µ2
i , as it can be

readily seen by considering that OTO = 1 and the circular invariance of the trace.
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Figure 18: Example of a distribution of points in three dimensions that is locally 2D, but
globally curved, and that cannot therefore be treated by a linear projection method.

Figure 19: Definition of curved geodesic distances based on the local connectivity of the
data set.
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and then applies a spectral decomposition to the (centered) matrix of squared distances –
effectively applying the linear version of multi-dimensional scaling. The algorithm is as
follows:

1. Define a neighborhood of each data point. The definition of neighborhoods is the
only free parameter of ISOMAP. One can either select the k nearest neighbor of
each sample, or take all the samples within a distance ε as neighbors.

2. If dij = |Xi −Xj | if Xj is a neighbor of Xi, or ∞ otherwise, the distance between
any pairs of points is then defined as the shortest path between the two nodes (see
Figure 19)

d (Xi, Xj) = min
k1,k2,...km

dik1 +
∑
α

dkαkα+1 + dkmj

3. Apply MDS to the matrix of squared (geodesic) distances to obtain the low-
dimensional projections.

5.3 Sketch-map
When analyzing atomistic simulations, one rarely is dealing with a locally data distribution

of the kind ISOMAP is best suited at. Atoms at finite temperature experience thermal
fluctuations along all directions, which often translates in near-Gaussian, multidimensional
fluctuations when describing the system with a high-dimensional set of collective variables.
A MDS scheme would then face the impossible task of rendering the set of distances

between points scattered in D dimensions by distributing the projections in a much
lower dimensional space, which would probably affect the accuracy at which meaningful
information about the reciprocal similarity of different metastable states can be represented.

Figure 20: Thermal fluctuations mean that the distances within a the region of phase
space that can be associated with a meta-stable state cannot be represented faithfully
in low dimension. Applying a sigmoid function to the distances defines a coarse-grained
measure of proximity, where distances within the same basin are transformed to zero, and
distances between points that are far apart saturate at one.

Sketch-map is a non-linear dimensionality reduction scheme, loosely based on multi-
dimensional scaling, that starts by acknowledging the issue of high-dimensional thermal
fluctuations, and modifies the objective function of (iterative) MDS (5.1) by introducing
sigmoid cut off functions to transform both the high-dimensional similarities and the
Euclidean distances that are taken to represent the similarity between projected points [31]:

χ2 =
N∑

i,j=1
[s (|Xi −Xj |)− s (|xi − xj |)]2 . (5.2)

The function s (d) transforms to zero distances that are characteristic of fluctuations
within the same meta-stable state, and to one the distances between configurations that
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are completely unrelated. Since the transformation is applied in both the high and
low-dimensional spaces, this is equivalent to requiring that points that are close together
stay close in the projected space, and configurations that are far apart from each other
are projected in separate regions. This is a much simpler task than matching distance,
and the iterative optimization (which has to be used since Eq. (5.2) cannot easily be
expressed as an eigenvalue problem) can focus on representing correctly the connectivity
between nearby basins, which is probably the most important requirement to obtain a
meaningful representation of the configuration space of a compound at the atomic scale.
The iterative minimization of Eq. (5.2) is not trivial, and so it is important to start from a
good selection of reference configurations. Then, the projection of most other data points
can be obtained based on these reference configurations.

Out-of-sample embedding The ultimate goal of a (non-linear) dimensionality reduc-
tion routine is to obtain a mapping from the D-dimensional to the d-dimensional space,
x (X). PCA makes this step obvious, since the embedding is a linear projection of the
high-dimensional data set and any additional configuration can be dealt with using the
same projector, i.e. x = PTX. Non-linear methods are somewhat trickier. The idea is to
use the high-dimensional reference points Xi as milestones, inferring the position of X
relative to them and then using this information to position the projection x relative to
the projections xi of the reference configurations. One simple approach to do so uses a
weighed combination of the xis [36]

x (X) =
∑
i e
−|X−Xi|/λxi∑
i e
−|X−Xi|/λ

,

where λ specifies a characteristic length scale for the distance between neighboring reference
points. This has the advantage of simplicity, but has some limitations. The projection is
bound to lie within the convex hull defined by the xis, and one can see that configurations
that are far away from all of the references, the projection tends to approach the center
of mass of the set of projections, which is clearly an artifact. In practice, this kind of
approach works when the references cover densely all of the accessible configuration space,
which is rarely the case when dealing with complex systems that require accelerated
sampling.
Another possibility is to use the same iterative minimization framework as for Eq. (5.2),

and define the projection as

x (X) = arg min
x

χ2 (x,X) , χ2 (x,X) =
N∑
i=1

[s (|X −Xi|)− s (|x− xi|)]2 .

This definition is much more robust in cases where there is poor sampling of configuration
space [37], since all the references can be used to get information on the proximity of the
out-of-sample point, and to find an embedding that reproduces at best this information in
low dimension. For instance, a configuration that is very different from all of the reference
points will be projected somewhere on the outer rim of the region occupied by the xis,
and not in the center of the data set.
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