
 
 

 

    Working Paper  

         Series 
_______________________________________________________________________________________________________________________ 

 
 
 

National Centre of Competence in Research  

Financial Valuation and Risk Management 

 

 

Working Paper No. 772 

 
 
 
 
 

 
 

Information Percolation Driving Volatility 

 

 

 

 
 
 

Daniel Andrei 

 
 

 

 

 

 

 

 

 

 

 

First version: June 2011 

Current version: June 2012 

 

This research has been carried out within the NCCR FINRISK project on  

“Macro Risk, Systemic Risks and International Finance” 

 

 

___________________________________________________________________________________________________________ 

 
 



Information Percolation Driving Volatility

Daniel Andreiú
Swiss Finance Institute

Université de Lausanne, Ecole des HEC

June 27, 2012

Abstract

Sudden big price changes are followed by periods of high and persistent
volatility. I develop a tractable dynamic rational expectations model consistent
with this observation. An infinity of agents possess dispersed information about
future dividends and trade in centralized markets. Information is processed,
transmitted, and aggregated in two ways: (i) agents meet randomly and ex-
change information through word-of-mouth communication, and (ii) the price
aggregates information through the trading process. Both mechanisms operate
simultaneously to generate high and persistent volatility. The resulting informa-
tion flow drives both returns and volume. The short-term asset, defined as the
claim to immediate future dividends, becomes more volatile. The pronounced
heterogeneity in investors’ information endowments induces patterns of trade
consistent with empirical findings. These results serve as a road sign indicating
the central role played by word-of-mouth communication in financial markets.
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1 Introduction
There is considerable evidence that the volatility of returns on the aggregate stock
market is persistent. Figure 1 o�ers an illustration of this feature for the US equity
market. We observe sudden spikes followed by slow and persistent descents—dynamics
successfully described by ARCH/GARCH type models pioneered by Engle (1982) and
Bollerslev (1986).

What causes volatility to fluctuate? What factors might account for its persistence?
These questions are of utmost importance, for a number of reasons. First, the Capital
Asset Pricing Model (Sharpe, 1964) teaches us that market volatility is the unavoidable

risk: you cannot expect large returns without taking large risks. Moreover, volatility
is the only uncertain variable in determining the value of options. Finally, in risk
management, a bad estimate of future volatility is often equivalent to ruin.
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Figure 1: Realized S&P500 annualized volatility, resulted from a GARCH(1,1)
estimation on weekly data, from January 2004 to October 2011.

In this paper I propose an explanation for the persistence of the volatility. I build a
dynamic rational expectations model with word-of-mouth communication. The model
contributes to the existing literature in three ways. First, it acknowledges that in the
marketplace prices play a dual role—they a�ect asset demand through the budget
constraint of individuals and through expectations. Economic agents use prices as
public signals to infer, although imperfectly, information held by other agents.1 In
my model, word-of-mouth communication and the informational role of prices operate
simultaneously to generate high and persistent volatility.

1This fundamental role of prices to aggregate knowledge was first understood by the Austrian
economist F.A. Hayek, and formalized under the form of noisy rational expectations by Grossman
(1976), Diamond and Verrecchia (1981), and Hellwig (1980). Hayek (1945) stated that in a market
economy prices may play a similar role as language in aggregating knowledge. Shiller (1992) concludes
that feedback price changes to subsequent price changes are an important factor in price dynamics.
Romer (1993) argues that the informational role of prices generates asset-price movements without
news and plays a critical role in amplifying non-informational trade. Grundy and Kim (2002) show
that the same mechanism contributes positively to price variability.
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Second, mounting evidence suggests that a natural channel of information
transmission—the direct interpersonal communication among investors—can play an
important role in generating asset-price volatility and can explain observed patterns of
trade.2 For instance, Shiller (2000, p. 155) writes “word-of-mouth transmission of ideas
appears to be an important contributor to day-to-day or hour-to-hour stock market
fluctuations,” and Stein (2008, p. 2150) describes conversations as being “a central part
of economic life.” I show how word-of-mouth communication generates both asset-price
volatility and heterogeneous trading strategies consistent with empirical findings.

Third, a large body of literature documents the joint dependence of returns and
trading volume on an underlying variable, such as the information flow (see, e.g.,
Andersen, 1996). Existing theories of volatility persistence do not focus on this feature,
because they typically rely on representative agent economies. I propose an alternative
to the representative agent model, featuring an appropriately specified structural system
of the volatility-volume relation.

Consider an economy populated with a continuum of investors. Each investor is
endowed with private signals about future fundamentals. Investors meet randomly
with their peers and talk. The meetings of a particular agent i with other agents occur
at a sequence of Poisson arrival times. During such meetings they exchange views on
future fundamentals. More precisely, agents exchange their conditional distributions of
future fundamentals. Trading takes place in centralized markets. Through the trading
process, the asset price aggregates the private information held by individual investors.
Unobserved supply shocks prevent average private signals from being fully revealed
by the price. The private information flow elaborated through random meetings
and the public information flow aggregated through prices give rise to a positive
contemporaneous correlation between trading volume and volatility, consistent with
empirical evidence. The main finding is that transitory moments of intense word-of-
mouth communication generate spikes in volatility, followed by persistent descents, as
in Figure 1.

In this economy, there are two channels by which investors gather information: by
private talks with their peers (the private channel), and by checking the price (the
public channel). The survey evidence collected by Shiller (1987) after the stock market

2Shiller and Pound (1989) provide evidence that direct interpersonal communications are an impor-
tant determinant of investors decisions. Shiller (2000) devotes an entire chapter to the subject of word-
of-mouth communication and its possible e�ects in financial markets. Cohen, Frazzini, and Malloy
(2008) and Hong, Kubik, and Stein (2005) document patterns of trade that can be interpreted
as evidence of word-of-mouth communication. Hong, Kubik, and Stein (2004) show that stock-
market participation is influenced by social interaction. Other evidence of the social interaction
in financial markets can be found in Grinblatt and Keloharju (2001), Feng and Seasholes (2004),
Brown, Ivkovic, Smith, and Weisbenner (2008), Ivkovic and Weisbenner (2005), Massa and Simonov
(2011), and Shive (2010).
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crash of October 19, 1987 suggests that both channels can operate fast enough to
produce large price fluctuations: during the day of the crash investors talked a lot and
checked prices many times.3 These two channels are present in my model: they are
responsible for the amplification of the volatility.

To understand how these two channels work in the present setup, consider two ex-
treme cases: the perfect information economy, in which agents have perfect information
about future fundamentals, and the opposite case, i.e., the no information economy.
In both cases, prices and word-of-mouth communication play no role in aggregating
knowledge—in the first case agents already have perfect information, whereas in the
second case there is no information to be aggregated. Consider now the intermediate
case, in which agents have di�erential information about future fundamentals—the
heterogeneous information economy. In this case, the equilibrium disagreement across
investors first increases and then decreases in signal noise. As a result, prices convey
information. They help investors to revise their estimates of other agents’ private
signals. Additionally, once word-of-mouth communication takes place, investors know
that the price is a better aggregator of private information. When forming their
expectations about future dividends, they rely more on the price. Since the price is
driven by fundamental shocks and supply shocks, the overreliance on prices magnifies
the impact of these shocks. This increases the volatility of asset returns.

Once the volatility increases, it slowly descends. This result arises naturally if I
assume that the intensity of word-of-mouth communication is time-varying. In recent
empirical contributions, Da, Engelberg, and Gao (2011) and Vlastakis and Markellos
(2010) use Google search frequency to capture an index of attention for retail investors.
These studies clearly show that the willingness of agents to search for information is
not constant. Motivated by this fact, I assume that the meeting intensity among agents
follows a Markov Chain process with two states. Using insights from the aforementioned
studies, I calibrate the process on Google search frequency data, and show that a
transitory period of intense word-of-mouth communication produces a long-lasting
e�ect on the volatility. After a period of intense word-of-mouth communication, agents
gather on average a large amount of private signals. This large amount of private signals
is exchanged at future meetings and perpetuates the high sensitivity of the price to
fundamental and supply shocks. Consequently, the volatility becomes persistent. The
persistence arises although the shock on the meeting intensity might be only transitory.

Moreover, fluctuations in the meeting intensity induce persistent e�ects in the
dynamics of trading volume, for two reasons. First, since investors possess on average a

3Individual investors talked on average to 7 other people, whereas institutional investors talked
on average with 20 other people. Individual investors checked prices on average 3 times on that day,
whereas institutional investors checked prices on average 35 times. Many respondents reported that
they checked prices “very many times” or “continuously.”
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large amount of signals once the word-of-mouth communication intensifies, they trade
more aggressively. Second, a higher meeting intensity might increases disagreement
across investors and force them to use price movements as information on which to make
trading decisions. Hence, trading volume will be amplified by large price movements.
Consequently, the trading volume increases and becomes positively related with the
volatility. As in Andersen (1996) and Bollerslev and Jubinski (1999), the information
flow creates a long-run dependency between trading volume and volatility.

Two additional implications arise from the model. The first is related to the recent
finding of Binsbergen, Brandt, and Koijen (2010) that a large amount of the volatility
is concentrated in the short-term asset, defined as the claim to immediate future
dividends. Leading asset pricing models generally predict the opposite, and thus
are challenged by this finding. Consistent with Binsbergen et al. (2010), I show that
information percolation increases the volatility mostly in the short-term. Intuitively,
disagreement depends on the maturity of dividends, and thus the resulting term
structure of disagreement dictates a term structure of volatility. The second implication
is related to the empirical finding of Brennan and Cao (1997). Their paper shows
within an international finance setup that better informed investors (i.e., domestic
investors) act as contrarians, whereas poorly informed investors (i.e., foreign investors)
act as trend-followers. In the current model, as agents start meeting with each other,
they become heterogeneous with respect to their number of signals. This leads to
di�erent investment strategies: agents who have been e�cient at gathering signals tend
to act as contrarians, whereas agents who collected only a few signals tend to act as
trend followers, confirming the evidence from Brennan and Cao (1997).

2 Related Literature
The modeling approach integrates two strands of literature. First, it has in common
with the literature on noisy rational expectations that asset prices aggregate the private
information held by individual agents and become public signals. Dynamic models
from this literature typically assume that investors have private information about one-
period-ahead fundamentals. This makes them only partially suited for my goal, because
word-of-mouth communication has an impact on prices only if information is long-lived.
The two exceptions are Bacchetta and Wincoop (2006) and Albuquerque and Miao
(2010), who assume long-lived or “advanced” information. My model is closely related
with these papers. Bacchetta and Wincoop (2006) o�er a possible rationale for the
disconnect between exchange rates and observed fundamentals, but abstract from
word-of-mouth communication and its e�ect on stock market volatility, which is the
focus of the present study. Albuquerque and Miao (2010) build a model of asymmetric
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information to explain short-run momentum and long-run reversal. In contrast with
Albuquerque and Miao (2010), my model considers di�erential information. This
crucial di�erence ensures that the signals exchanged by investors at random meetings
are di�erent and makes the information percolation channel relevant.

Second, it has in common with the literature on information percolation that the
private information of individual investors is transmitted through the market by random
meetings between them. Du�e and Manso (2007) borrow the term “percolation” from
physics and chemistry, where it concerns the movement and filtering of fluids through
porous materials. In economics, it concerns the dissemination of information of common
interest through large markets. While Du�e and Manso (2007) focus on a decentralized
market setting, Andrei and Cujean (2011) show that the percolation of information
is particularly suitable for centralized markets models with dispersed information.
The present paper follows the latter approach. Instead of assuming that agents meet
randomly to trade, I let agents trade in a centralized market and meet randomly only
to gather information. That is, markets are centralized, but information is not.

Related papers that try to explain the persistence of volatility are Peng and Xiong
(2002) and McQueen and Vorkink (2004). The model of Peng and Xiong (2002), build-
ing on Bookstaber and Pomerantz (1989), illustrates how the arrival of news in stock
prices is clustered, even though the generation of news is i.i.d. The result arises because
financial analysts digest news at a rate that endogenously changes through time. I
echo the views expressed in Peng and Xiong (2002) that market takes time to digest
information, generating persistent volatility. In the model of Peng and Xiong (2002),
however, the price is related in a simple and mechanical way to news, while the current
paper provides an equilibrium justification for the price. McQueen and Vorkink (2004)
develop a preference model where investors’ attitude toward risk and the attention they
pay to news are a�ected by wealth shocks. This generates variations in their sensitivity
to information. Although the behavioral model of McQueen and Vorkink (2004) o�ers
valuable insights in explaining the asymmetry in the volatility, their assumption of
persistent sensitivity to news is crucial in generating persistent volatility. In the present
setup no variable is exogenously persistent, yet the volatility is. Finally, neither of these
two papers bears any implication on trading volume and its link with the volatility, or
emphasize the impact of disagreement and of the informational role of prices, which
makes the current paper complementary to both of them.

3 The Model
The building blocks of the model are dispersed private information and word-of-mouth
communication among investors. This additional channel of information transmission
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endogenously generates a very particular information structure, that I shall describe in
this section.

3.1 Setup

The economy is populated by a continuum of rational agents, indexed by i, with CARA
utilities and common risk aversion parameter “. The agents consume a single good
and live for two periods, while the economy goes on forever. Agent i in generation t

is born with wealth wi
t, and consumes wealth wi

t+1 in the next period. There is one
risky asset (stock) and a riskless bond assumed to have an infinitely elastic supply at
positive constant gross interest rate R. Both securities pay in units of the consumption
good. At the beginning of period t, the stock pays a stochastic dividend Dt per share.
Dt follows the process:

Dt = (1 ≠ Ÿd) D̄ + ŸdDt≠1 + Ád
t , 0 Æ Ÿd Æ 1. (1)

The dividend innovation Ád
t is i.i.d. with normal distribution Ád

t ≥ N (0, ‡2
d).

Per capita supply of the stock Xt is stochastic and follows the process:

Xt = (1 ≠ Ÿx) X̄ + ŸxXt≠1 + Áx
t , 0 Æ Ÿx Æ 1. (2)

The dividend innovation Áx
t is i.i.d. with normal distribution Áx

t ≥ N (0, ‡2
x). The

noisy supply prevents the equilibrium asset price from completely revealing the average
of the private information and thus ensures the existence of an equilibrium.

The common risk aversion assumption ensures that there is no trade motive due to
di�erences in risk aversion (Campbell, Grossman, and Wang, 1993). Instead, investors
trade only to accomodate noisy supply or to speculate on their private information.
Dynamic noisy rational expectations models with similar structures are, for example,
Watanabe (2008), Bacchetta and Wincoop (2006), and Banerjee (2010). Although the
dividend and supply processes are quite general in the present setting, the results obtain
already within an i.i.d setup. When i.i.d., the e�ect of the information percolation is
completely isolated from other persistence e�ects.

The assumption of overlapping generations simplifies the analysis significantly,
because it rules out dynamic hedging demands.4 In Appendix A.7, I compute the
solution of the model with infinitely lived agents, and show that results are almost
identical with the overlapping generations case, although the numerical procedure

4Other papers adopt this assumption for tractability, such as Biais, Bossaerts, and Spatt
(2003), Bacchetta and Wincoop (2006), Allen, Morris, and Shin (2006), Watanabe (2008),
Bacchetta and Wincoop (2008), Albuquerque and Miao (2010), and Banerjee (2010).
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is severely complicated. A similar result has been found by Bacchetta and Wincoop
(2006) and Albuquerque and Miao (2010).

Investors allocate optimally their wealth between the risky stock and the safe asset.
Let Pt be the ex-dividend share price. Each investor choses the holding of the risky
asset xi

t to maximize
Ei

t

1
≠e≠“w̃i

t+1
2

(3)

subject to

w̃i
t+1 = (wi

t ≠ xi
tPt)R + xi

t (Pt+1 + Dt+1) .

As is customary in the rational expectations literature, the price is conjectured to
take a linear form of the model innovations. Consequently, the normality assumption
and the CARA utility lead to the standard asset demand equation

xi
t = Ei

t (Pt+1 + Dt+1) ≠ RPt

“Vari
t (Pt+1 + Dt+1)

. (4)

The market equilibrium condition is
⁄

i
xi

tdi = Xt. (5)

This market clearing condition provides the equilibrium asset price that is a time-
invariant linear function of innovations, as it will be described in Section 3.4.

3.2 Information Structure

All investors observe the past and current realizations of dividends and of the stock
prices. Additionally, each investor observe an informational signal about the dividend
innovation T > 1 periods later:

vi
t = Ád

t+T + Ávi
t .

The private signal innovation Ávi
t is i.i.d. with normal distribution Ávi

t ≥ N (0, ‡2
v).

Under this form, the present setup di�ers from existing models in several ways.
Unlike in Watanabe (2008), where investors observe a signal about one-period-ahead
dividends, in the present setup the signal is informative about further-away divi-
dends, with the aim to make information percolation relevant. In a similar setup,
Albuquerque and Miao (2010) name this signal “advance information”. However, in
the present case the information is dispersed, while in Albuquerque and Miao (2010)
the private signal is common for all the informed investors. Having an infinity of het-
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erogeneous private signals is crucial in this setup, otherwise the information percolation
channel will simply be irrelevant. In a similar setup, Bacchetta and Wincoop (2006,
2008) show that the “advance information” coupled with heterogeneous private signals
give birth to higher order beliefs of a dynamic nature, which in turn disconnect the
price from its fundamental value. Although all these studies provide valuable insights
about price dynamics, they abstract from word-of-mouth e�ects, which is the primary
focus of the present work.

To quantify clearly the e�ect of the information percolation, I assume that investors
do not receive any new of private signals regarding the dividend innovation Ád

t+T in
the subsequent periods, i.e., from t + 1 to t + T ≠ 1. A key feature provided by the
information percolation is that, even if investors are endowed with private information
only once, the random meetings between them—to be described shortly—are equivalent
to bringing new information, and give them reasons to trade for informational purposes.
Without word-of-mouth e�ects, investors would trade only for market making purposes,
in order to accommodate the noisy supply.

3.3 Information Percolation

The Austrian economist F.A. Hayek was the first to realize that knowledge is not given
to anyone in its totality: “the data are never for the whole society given to a single mind”
(Hayek, 1945, p. 519). Instead, knowledge is dispersed throughout the marketplace.
Hayek came to understand that the price mechanism aggregates knowledge residing
within the market, and becomes a good indicator of everyone else’s information.

The importance of the price mechanism is such that pushed Hayek to put it on the
same level as language. One should not neglect, though, the information processing
ability of language—particularly the communication of information from one person to
another; a long time ago this was virtually the only form of information transmission.
This innate channel of processing information has a powerful impact on human behavior.

In the context of financial markets, a relevant example happened in 1995, when IBM
secretary Lorraine Cassano was asked to photocopy some papers. These papers included
references to a top-secret takeover of software giant Lotus by IBM. Though forbidden
from telling anyone about the takeover, she told her husband. The illicit information
ultimately was passed down to six tiers of traders—a network of relatives, friends, co-
workers, and business associates. After only 6 hours of word-of-mouth communication,
the information reached twenty-five individuals; illegal trading generated profits of
more than $1.3 million.5

5Source: U.S. Securities and Exchange Commission Litigation Release No. 16161, MAY 26, 1999.
Securities and Exchange Commission v. Lorraine K. Cassano, et al., Civil Action No. 99-CV -3822
(S.D.N.Y.)
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The contributions of Grossman (1976), Diamond and Verrecchia (1981), and
Hellwig (1980) formalized mathematically the thoughts of Hayek, yet only with respect
to the price mechanism; matters with respect to interpersonal communication are let
apart. Predicting the course of word-of-mouth transmission of ideas in social sciences
became the focus of a separate literature. In economics, for instance, many theoretical
models are based on the mathematical theory of the spread of disease. News propa-
gate from “contagious” people (i.e., informed individuals) to “susceptible” people (i.e.,
uninformed individuals). The propagation takes place at a given infection rate, while
people become no longer contagious at a given removal rate. In a recent contribution,
Burnside, Eichenbaum, and Rebelo (2010) explain with such a model the moves on
the housing market.6

A second approach to predict the course of word-of-mouth transmission of
ideas in financial markets, denoted information percolation, has been developed by
Du�e and Manso (2007). In this approach, people meet randomly with each other
and exchange information. That is, instead of being only “contagious” or “susceptible”,
the type of individuals is defined by the amount of signals gathered—a richer structure
than in epidemic models. Moreover, in Du�e and Manso (2007) the information flows
in both directions, avoiding the sender-receiver dichotomy of epidemic models.

Du�e and Manso (2007) focus on a decentralized market setting, in which investors
meet randomly to trade. In Andrei and Cujean (2011) we show that the percolation of
information can be embedded in centralized markets models with dispersed information,
with the aim to formalize the whole idea of Hayek—that both the price formation and
the language contribute to the aggregation of knowledge. In our model, the investors
meet randomly to talk, but trade in centralized markets. The present approach
generalizes the setup from Andrei and Cujean (2011) to a dynamic setting, with the
aim to show the impact of information percolation on the dynamics of the volatility.

In the context of the model that I formalized so far, let us focus for simplicity on
T = 3 from now on. A general model can be considered at the expense of greater
numerical computation. T = 3 represents the minimum time span necessary to show
the e�ect of the information percolation on the persistence of the volatility and to seize
the e�ect of the increasing precision as dividend materialize. Moreover, as it will be
shown below, a graphical representation of the probability density function over the
number of signals collected by each investor is still possible with T = 3.

This section shows how the initial signals received at date t become more and
more relevant as the economy approaches date t + 3. As already mentioned, at time t

investors only receive a single private signal about the dividend innovation Ád
t+3. At

times t + 1 and t + 2, investors receive additional signals about Ád
t+3, yet in a very

6Other related examples are Carroll (2006) and Hong, Hong, and Ungureanu (2010).
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specific way to be explained in this section. From date t onward, the agents meet with
each other and share truthfully the private signals that they received at date t. Any
particular agent is matched to other agents at a sequence of Poisson arrival times with
mean arrival rate ⁄, which is constant and common across agents.

Stock markets and the economy in general are often the subject of endless discussions
among individuals. The reason is that every investor perceive these as important topics,
as they represent opportunities or threats to personal wealth. For this reason, I abstract
in the present setup from issues of strategic communication and just assume that, when
two agents meet, they communicate truthfully their information. Moreover, since this
economy can be envisioned as an ocean of agents, it will be di�cult to find a strategic
reason to lie. Similarly, Hong et al. (2010) consider that investors are “friends” and
when they meet the informed investor tells the truth to the uniformed one. Likewise,
Du�e, Malamud, and Manso (2009) do not model any incentive for matched agents
to share information.7

To grasp the intuition, let us do the reasoning step by step, starting at time t ≠ 2,
when agents receive signals about Ád

t+1. These signals are still be valuable at time t,
since they are informative about Dt+1. Between t ≠ 2 and t ≠ 1, investors meet with
their peers during one period and exchange their signals about Ád

t+1. At time t ≠ 1,
before dying, investor i passes on her private information to the next investor i born
the following period. Additionally, at time t ≠ 1 investors receive new signals about
Ád

t+2, still valuable at time t. Between t ≠ 1 and t, the investors continue meeting with
each other and exchanging signals both about Ád

t+1 and Ád
t+2. Therefore, at time t, each

investor i œ [0, 1] is endowed with a random number ni
t,1 of signals about Ád

t+1 (that is,
for the dividend occurring one-period-ahead), with ni

t,2 signals about Ád
t+2 (that is, for

the dividend occurring two-periods-ahead), and with one signal about Ád
t+3, as shown

in Figure 2.8

By Gaussian theory, it is enough for the purpose of updating the agents’ conditional
expectation that agent i tells his counterparty at any meeting at time t his current
conditional mean of the private signals and the corresponding total number of signals

7Alternatively, as in Demarzo, Vayanos, and Zwiebel (2003), it can be assumed that agents consider
information that they receive having a lower precision. That is, they might assign a lower precision
to other agents. In this case, strong information percolation will wipe out the added noise and thus
produce similar results. I have avoided this alternative for simplicity.

8One might be concerned that, doing so, some artificial correlations arises among signals. Although
this overlapping feature could be interesting in its own way (see, e.g., Demarzo et al., 2003), it is not
present in this model. At each point in time, agents share their initial signal and the signals that they
have gathered by means of word-of-mouth communications. Since overlapping meeting between agents
are ruled out (with a continuum of agents, the probability to meet again is zero), the signals gathered
from a meeting are always di�erent. Moreover, at each trading session, private signals are wiped out
through aggregation. Consequently, agents consider signals accruing from further meetings as being
genuinely new.
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Agent i at time t Dt+1 Dt+2 Dt+3

ni
t,1 Ø ni

t,2

ni
t,2 Ø 1

1 signal

Figure 2: Information Percolation.
At time t, agent i is endowed with one private signal about Ád

t+3, ni
t,2 Ø 1 private

signals about Ád
t+2, and ni

t,1 Ø ni
t,2 private signals about Ád

t+1.

that he has gathered up to time t.
The pair {ni

t,1, ni
t,2} follows a probability density function on the support Nú ◊ Nú.

The aim of this section is to compute this probability density function in closed form.
It is straightforward to show that, for any investor i œ [0, 1], we have 1 Æ ni

t,2 Æ ni
t,1,

’i. If ⁄ > 0, then 1 Æ ni
t,2. Since at time t ≠ 1 all agents start with at least one signal

about Ád
t+1 and only one signal about Ád

t+2, after one period of meetings (between t ≠ 1
and t) no investor can end up with more signals about Ád

t+1 than about Ád
t+2. It follows

that ni
t,2 Æ ni

t,1.
The above statement implies that the marginal distribution of the number of signals

at time t about Ád
t+1 and Ád

t+2 are dependent. Intuitively, an agent who at time t

has gathered a considerable amount of signals about Ád
t+2 will have at least as many

signals about Ád
t+1. Another implication is that, if ⁄ > 0, the average agent will be

better informed about the dividends that will materialize in the immediate future. For
example, as time t approaches, investors will have on average more signals about Ád

t+1

than for Ád
t+2, and more signals about Ád

t+2 than for Ád
t+3. The reasoning can easily be

extended for T > 3.
Sharing information is additive in number of signals. That is, whenever two agents

of types {ni
t,1, ni

t,2} and {nj
t,1, nj

t,2} meet, both become of type {ni
t,1 + nj

t,1, ni
t,2 + nj

t,2}.
Following Du�e et al. (2009), the Stosszahlansatz (Boltzmann) equation for the cross-
sectional distribution µt of types is

d

dt
µt = ⁄µt ú µt ≠ ⁄µt (6)

The first term on the right hand side of (6) represents the gross rate at which
new agents of a given type are created. The second term of (6) captures the rate of
replacement of agents of a given type with those of some new type that is obtained
through matching and information sharing.

By direct recursive computation of the convolution formula (6), the probability
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Figure 3: Distribution of the Number of Signals.
The probability distribution function of {ni

t,1, ni
t,2}, for 1 Æ ni

t,1 Æ 10 and 1 Æ ni
t,2 Æ 10.

ni
t,1 is represented on the left axis, while ni

t,2 is represented on the right axis. For this
example, the meeting intensity parameter is ⁄ = 1.

distribution function of {ni
t,1, ni

t,2} at time t, µ
1
ni

t,1, ni
t,2

2
, is

µ
1
ni

t,1, ni
t,2

2
=

Y
_]

_[

1
ni

t,1≠1
ni

t,2≠1

2
e≠⁄(ni

t,1+ni
t,2)

1
e⁄ ≠ 1

2ni
t,1≠1

if ni
t,1 Ø ni

t,2,

0 otherwise.
(7)

A proof is provided in Appendix A.1.
With T = 3, the probability density function is bivariate and can still be represented

graphically. Figure 3 shows the probability distribution function for a constant meeting
intensity parameter ⁄ = 1. As stated above, one can see that there is no probability
mass whenever ni

t,1 Ø ni
t,2. Further inspection of Figure 3 shows that, for ⁄ = 1,

approximately 10% of the agents still have ni
t,1 = ni

t,2 = 1 signal. These agents have
not met any of their peers from t ≠ 2 to t. As an additional example, one can see on
the same graph that approximately 3% of the agents have 4 signals about Dt+1 and 2
signals about Dt+2.

Obviously, if ⁄ = 0, then 100% of the population is of the type ni
t,1 = ni

t,2 = 1. In
this case the investors are homogeneous with respect to the number of signals gathered
and consequently with respect to their trading strategies. If ⁄ increases substantially,
the support of the distribution having non negligible probabilities may become very
large. In that case, the heterogeneity of the investors with respect to the number of
signals is very pronounced, and non negligible probabilities can be found even for large

12



values of ni
t,1 and ni

t,2.
Finally, it is straightforward to show that the cross-sectional average of the number

of signals ni
t,1 is n̄t,1 = exp (2⁄), while the cross-sectional average of the number of

signals ni
t,2 is n̄t,2 = exp (⁄).

3.4 Learning

Having now established the setup and the information structure, a final prerequisite
for the equilibrium computation is the characterization of the learning behavior of each
agent i. The derivations mainly follow Bacchetta and Wincoop (2008). As standard, I
consider solutions for the equilibrium price that are linear functions of model innovations.
Thus, I conjecture the following equilibrium price:

Pt = –̄D̄ + –Dt + —̄X̄ + —Xt≠3 + (a3 a2 a1)‘d
t + (b3 b2 b1)‘x

t , (8)

where ‘d
t © (Ád

t+1 Ád
t+2 Ád

t+3)€ are the 3 future unobservable dividend innovations and
‘x

t © (Áx
t≠2 Áx

t≠1 Áx
t )€ are the last 3 supply innovations.

The aim of this section is to compute in closed form Ei
t‘

d
t and Vari

t‘
d
t , that is,

the individual conditional expectation and the individual conditional variance of the
dividend innovations. I start first by collecting all the signals (public or private) of agent
i. Then, by means of the projection theorem, I find the above mentioned conditional
expectation and conditional variance.

In the present setup, the public signals are represented by prices. Define the vectors
multiplying ‘d

t and ‘x
t in (8) a and b respectively. The adjusted price signal at time t,

which contains only unobservable components at time t, is:

P a
t = a‘d

t + b‘x
t .

Stated under the form (8), Pt≠1 and Pt≠2 contain information about future dividend
innovations that is still useful at time t. Denote by t © (P a

t P a
t≠1 P a

t≠2)€ the set of
price signals which contain only unobservable components at time t. This set can be
written as

t = A‘d
t + B‘x

t , (9)

where A and B are 3◊3 matrices composed of subsets of a and b, defined for convenience
in Appendix Section A.2.

Turning now to private signals, each period t investor i obtain a single private signal
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about the dividend innovations at t + 3:

vi
t = �‘d

t + Ávi
t ,

where � © [0 0 1]. Furthermore, from the entire set of signals received from t ≠ 2 to t, a
part is still valuable at time t—all the signals from the past that are informative about
Ád

t+1 and Ád
t+2, as Figures 2 and 3 suggest. More precisely, the investor i has ni

t,1 signals
about Ád

t+1 and ni
t,2 signals about Ád

t+2. By Gaussian theory, each of these signal sets is
equivalent with a more precise single signal represented by the average within each set.
Thus, the ni

t,1 signals regarding Ád
t+1 are equivalent to one signal denoted hereafter by

wi
t,1, and the ni

t,2 signals regarding Ád
t+2 are equivalent to one signal denoted hereafter

by wi
t,2. It follows that the past private signals can be grouped in

W i
t ©

Q

a wi
t,2

wi
t,1

R

b = �‘d
t +

Q

a Áwi
t,2

Áwi
t,1

R

b ,

where � ©
3 0 1 0

1 0 0

4
and Áwi

t,1 and Áwi
t,2 represent the innovations in the past private

signals. The variance of these innovations must be adjusted to take into account the
information percolation. With the number of signals gathered by agent i being ni

t,1

and ni
t,2, by Gaussian theory, the covariance matrix of (Áwi

t,2 Áwi
t,1) is given by a 2 ◊ 2

diagonal matrix whose diagonal elements are ‡2
v/ni

t,2 and ‡2
v/ni

t,1.
The vectors vi

t and W i
t jointly contain all current and past private signals available

to agent i at time t that are informative about future dividend innovations. Given the
assumption of uncorrelated errors in private signals, the averages of private signals
across the population of agents are

v̄t = �‘d
t and W̄t = �‘d

t .

Grouping now all the available public and private information for investor i at time
t, the signals of future dividend innovations can be written as

Q

ccca

t

vi
t

W i
t

R

dddb = H‘d
t +

Q

cccccca

B‘x
t

Ávi
t

Áwi
t,2

Áwi
t,1

R

ddddddb
, (10)

where H © (A � �)€. Thus, each investor observe this 6-dimensional vector. The first
part ( t) represents public information common to all investors, while the second part
represents the individual private information of investor i. The variance of the errors in
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(10), that I shall denote by Ri, is heterogeneous across investors because it depends on
the number of signals that each investor gathered. Its computation is straightforward
and is leaved for simplicity in Appendix A.2.

The errors in each of the signals from (10) have a normal distribution. The projection
theorem implies that Ei

t‘
d
t is given by the weighted average of these signals, with the

weights determined by the precision of each signal. Appendix A.2 shows how direct
application of the projection theorem leads to

Ei
t‘

d
t = Mi

Q

ccca

t

vi
t

W i
t

R

dddb =
1
Vari

t‘
d
t

2
H€

1
Ri

2≠1

Q

ccca

t

vi
t

W i
t

R

dddb , (11)

with Mi = ‡2
dH€

1
‡2

dHH€ + Ri
2≠1

. Furthermore, if one defines I3 as being the identity
matrix of dimension 3, then

Vari
t‘

d
t = ‡2

d

1
I3 ≠ MiH

2
=

A
1
‡2

d

I3 + H€
1
Ri

2≠1
H

B≠1

. (12)

As I will show in the next section, Ei
t‘

d
t and Vari

t‘
d
t are su�cient for the equilibrium

computation.

3.5 Equilibrium

Having now all the necessary results from the learning part, we can turn to the
equilibrium price. The problem for an individual investor i, stated in (3), leads to the
standard asset demand equation (4). Impose market clearing as in (5) to get

1
“

A⁄ 1

0

Ei
t (Pt+1 + Dt+1)

Vari
t (Pt+1 + Dt+1)

di ≠ RPt

⁄ 1

0

1
Vari

t (Pt+1 + Dt+1)
di

B

= Xt (13)

Equation (13) solves for the unknown coe�cients –̄, –, —̄, —, aj, and bj, for j = 1, 2, 3.
For this, we first need Ei

t (Pt+1 + Dt+1) and Vari
t (Pt+1 + Dt+1). Then, the integrals in

(13) are obtained from the conjectured price (8). Let us start first with Pt+1 + Dt+1:

Pt+1 + Dt+1 = f(D̄, Dt, X̄, Xt≠3) + a1Á
d
t+4 + b1Á

x
t+1 + aú‘d

t + bú‘x
t , (14)

where f(·) is defined as a linear function of D̄, Dt, X̄, and Xt≠3:

f(D̄, Dt, X̄, Xt) © [–̄ + (– + 1)(1 ≠ Ÿd)] D̄ + (– + 1)ŸdDt

+
Ë
—̄ + —(1 ≠ Ÿx)

È
X̄ + —ŸxXt≠3,

(15)
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and aú = (– + 1 a3 a2) and bú = (— b3 b2).
Equation (14) can be further simplified by using (9):

Pt+1 + Dt+1 = f(D̄, Dt, X̄, Xt≠3) + a1Á
d
t+4 + b1Á

x
t+1 + Â‘d

t + búB≠1
t,

with Â = aú ≠ búB≠1A. This gives the conditional variance of Pt+1 + Dt+1:

Vari
t (Pt+1 + Dt+1) = a2

1‡
2
d + b2

1‡
2
x + Â

1
Vari

t‘
d
t

2
Â€.

By use of (9), the conditional expectation of Pt+1 + Dt+1 becomes

Ei
t (Pt+1 + Dt+1) = f(D̄, Dt, X̄, Xt≠3) + aúEi

t‘
d
t + búEi

t‘
x
t

= f(D̄, Dt, X̄, Xt≠3) + ÂEi
t‘

d
t + búB≠1A‘d

t + bú‘x
t .

(16)

Equation (16) provides a hint on the informational role of prices. Because investors
do not know whether price fluctuations are driven by supply shocks or by information
about future dividends, the supply shocks enter in the individual conditional expecta-
tions. In the next section I show that precisely this feature—common to noisy rational
expectations models and denoted rational confusion by Bacchetta and Wincoop (2006)
or informational e�ect by Grundy and Kim (2002)—is responsible for the magnification
of supply shocks on asset prices when word-of-mouth communication takes place.

We are able now to compute the integrals in (13). The details are leaved for
simplicity in Appendix A.3. Proposition 1 defines the rational expectations equilibrium
pertaining to this economy.

Proposition 1. (Equilibrium) A rational expectations equilibrium for the described

information structure is characterized by the following price function Pt, and the

demand function xi
t:

Pt = –̄D̄ + –Dt + —̄X̄ + —Xt≠3 + a‘d
t + b‘x

t

xi
t = Ei

t (Pt+1 + Dt+1) ≠ RPt

“Vari
t (Pt+1 + Dt+1)

,

with Ei
t (Pt+1 + Dt+1) and Vari

t (Pt+1 + Dt+1) given by

Ei
t (Pt+1 + Dt+1) = f(D̄, Dt, X̄, Xt≠3) + ÂEi

t‘
d
t + búB≠1A‘d

t + bú‘x
t

Vari
t (Pt+1 + Dt+1) = a2

1‡
2
d + b2

1‡
2
x + Â

1
Vari

t‘
d
t

2
Â€.

Ei
t‘

d
t , Vari

t‘
d
t , and f(D̄, Dt, X̄, Xt≠3) are given by (11), (12), and (15) respectively.

The coe�cients –̄, –, —̄, —, aj, and bj can be derived by solving a fixed point

problem, equating the coe�cients of the conjectured price to those in the market clearing
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condition. The system of nonlinear equations to be solved is provided in Appendix A.3.

Proof. See Appendix A.3. Q.E.D.

In an infinite horizon model with overlapping generations, Spiegel (1998),
Bacchetta and Wincoop (2008), Watanabe (2008), and Banerjee (2010) show that
there exist multiple equilibria. The multiplicity is unrelated to information hetero-
geneity, but arises if the sources of risk in the model are too large. Intuitively, a too
large current risk premium increases the risk premium in the previous period, which
increases the risk premium in the period before, and so on. If the sources of risk in the
model are too large, the risk premium might explode and thus an equilibrium might
not exist.

In the present case, with only one risky security, there potentially exist 2 equilibria.
The conditions for existence can be characterized only in special cases, since the system
of equations needed to find the undetermined coe�cients cannot be solved in closed
form. Numerical result suggest, however, that there are two real roots corresponding
to two stationary equilibria. As is customary found in the literature (see, e.g., Spiegel,
1998; Watanabe, 2008; Banerjee, 2010), there exist one high volatility equilibrium, and
one low volatility equilibrium.

The low volatility equilibrium is the limit of the unique equilibrium in the finite
version of the model (see Appendix A.4 or Banerjee (2010) for a proof). It is therefore a
stable equilibrium. On the contrary, the high volatility equilibrium is unstable, because
of the forward looking property of the volatility: it can be an equilibrium today if one
believes that it will be the equilibrium at all future dates. Therefore, in the analysis
that follows, I choose to focus on the low volatility equilibrium. Another reason for
this choice is that, in order to explain the persistence of the volatility (in Section 4), a
finite version of the model is needed.

3.6 Discussion of the Solution

The market clearing condition (13) defines the following form for the price:

Pt = 1
R

s 1
0

Ei
t(Pt+1+Dt+1)

Vari
t(Pt+1+Dt+1)di

K̄t

≠ “

RK̄t

Xt = 1
R

‚Et [Pt+1 + Dt+1] ≠ “

RK̄t

Xt, (17)

where K̄t represents the average precision of the entire population of investors, defined in
Appendix A.3. The equilibrium price has two terms. The first term (denoted henceforth
P ú

t ) is the weighted average of investors’ expected future dividends, discounted at the
risk free rate; the second term is the risk premium. Integrating (17) forward yields
the stock price as the sum of the present discounted value of expected dividends (the
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fundamental value, Grundy and Kim, 2002) minus expected future and current risk
premia that determine current and future discount rates.

The value P ú
t aggregates the expectations of all individual investors. These individual

expectations, stated in equation (16), can be re-written as follows:

Ei
t (Pt+1 + Dt+1) = f

1
D̄, Dt, X̄, Xt≠3

2
+ ÂMi

2

Q

a vi
t

W i
t

R

b +
1
ÂMi

1 + búB≠1
2

t (18)

where Mi
1 and Mi

2 represent the first 3 and the last 3 columns of Mi respectively.
Inspection of equation (18) shows clearly how each investor uses private signals (the
second term) and prices (the third term) in forming her expectation. In representative
agent economies, the last term of (18) is zero, while in the present model it reflects the
informational role of prices. Through this term, investors use observed prices to learn
about other investors’ private information.

The following analysis uses equation (18) to quantify the combined e�ect of the
information percolation and the informational role of prices on the coe�cients of
dividend and supply shocks.

3.6.1 Information percolation and dividend shocks

In the present structure of the model, the price depends on three dividend shocks,
Ád

t+1, Ád
t+2, and Ád

t+3. For the sake of brevity, I perform here the analysis related to the
dividend shock Ád

t+1. The results for the other two dividend shocks are qualitatively
similar and thus bear the same interpretations.

The coe�cient of the dividend shock Ád
t+1 in the equilibrium price is a3. This

coe�cient can be split into two parts. The first part reflects the direct e�ect of the
private information (the second term in equation 18), while the second part represents
the e�ect produced by the informational role of prices (the third term in equation 18).
Denote by ad

3 the first (direct) e�ect and by ap
3 the second e�ect (produced by prices).

It follows that a3 = ad
3 + ap

3.
The black solid line in Figure 4 depicts the coe�cient a3 as a function of the private

signal variance. The case considered is ⁄ = 0, i.e., standard rational expectations
without information percolation. When the variance of private signals tends to zero
(the perfect information case), the coe�cient a3 is positive and reaches an upper bound.
In this case, investors perfectly forecast the future dividends. In contrast, when the
variance of private signals tends to infinity (the no information case), investors do not
have any private information to rely on and thus the coe�cient a3 tends to zero. In
this case, the price do not respond to any dividend shocks.

The black dashed line in Figure 4 depicts the direct e�ect, produced only by the
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Figure 4: Coe�cient of dividend shock Ád
t+1.

The black solid line shows the coe�cient a3 in a standard noisy rational expectations
without information percolation (⁄ = 0). The black dashed line shows the direct
e�ect, arising if agents learn only from private signals, ad

3. The blue lines show
how information percolation modifies the coe�cient a3. The parameter values are
calibrated to match the monthly returns and volatilities of the aggregate stock market
(see discussion in Section 3.7): R = 1.004, “ = 1, ‡d = 0.628, ‡x = 0.358, ‡v = 5,
D̄ = 0.224, X̄ = 0.176, Ÿd = 0.129, Ÿx = 0.

private information channel, ad
3. In the perfect information case (‡v æ 0), the two lines

meet. The reason is that, when information is perfect, there is no informational role of
prices. In the no information case (‡v æ Œ), the two lines meet again. The reason is
that, when there is no private information, prices do not aggregate any information.
For intermediate values of the variance of private signals the informational role of prices
comes into play and increases the coe�cient a3. The distance between lines ad

3 and a3

is nothing else than ap
3. Thus, the informational role of prices amplifies the impact of

dividend shocks on the price.
What happens when information percolation takes place? The blue lines (dot-dashed

and dotted) in Figure 4 show that a3 is sensibly magnified. This happens because prices
are more informative when information percolation takes place. If the information
percolation intensifies, agents rely more on prices to build their expectations of future
fundamentals. This amplifies further away the impact of dividend shocks on the price.
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3.6.2 Information percolation and supply shocks

In the present structure of the model, the price depends on three supply shocks, Áx
t≠2,

Áx
t≠1, and Áx

t . For the sake of brevity, I perform here the analysis related to the supply
shock Áx

t . The results for the other two supply shocks are qualitatively similar and thus
bear the same interpretations.

The coe�cient of the supply shock Áx
t in the equilibrium price is b1. As in the

dividend shock case, this coe�cient can be split in two parts. The primary e�ect arises
directly through the risk-premium channel, as expressed in (17). The second e�ect is
produced by the informational role of prices (the third term in equation 18). Denote by
bd

1 the first (direct) e�ect and by bp
1 the second e�ect (produced by prices). It follows

that b1 = bd
1 + bp

1.
The black solid line in Figure 5 depicts the coe�cient b1 as a function of the private

signal variance, while the black dashed line depicts the coe�cient bd
1. Because prices

play no informational role when ‡v æ 0 or ‡v æ Œ, the two lines meet in both cases.
For intermediate values of the variance of private signals the informational role of prices
magnifies the coe�cient b1, and thus amplifies the e�ect of supply shocks.

This magnification arises because supply shocks are unobservable, which makes
price fluctuations only imperfect signals about future fundamentals. Too see this, start
from equation (17) and compute price changes

�Pt = �P ú
t ≠ “

RK̄t

�Xt.

The unconditional variance of price changes is

Var (�Pt) = Var (�P ú
t ) +

A
“

RK̄t

B2

Var (�Xt) ≠ 2 “

RK̄t

Cov (�P ú
t , �Xt) (19)

The last term in (19) arises because investors use observed prices to learn about
other investors’ private information. In representative agent economies, this term
is zero, while in the present model it always increases the price variance, because
fundamental value di�erences (�P ú

t ) and supply di�erences (�Xt) move in opposite
directions. Intuitively, an unobservable positive supply change make investors infer
from the consequent decrease in price that the fundamental value might be lower. Thus,
investors revise downward their forecast of future dividends, generating a negative
fundamental value change. The reverse happens for a negative supply change.

The blue lines (dot-dashed and dotted) in Figure 5 show that b1 is sensibly magnified
when information percolation takes place. If the information percolation intensifies,
agents rely more on prices to build their expectations of future fundamentals. This
amplifies further away the impact of supply shocks on the price.
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Figure 5: Coe�cient of supply shock Áx
t .

The black solid line shows the coe�cient b1 in a standard noisy rational expectations
without information percolation (⁄ = 0). The black dashed line shows the direct e�ect,
arising through the risk premium channel, bd

1. The blue lines show how information
percolation modifies the coe�cient b1. The parameter values are calibrated to match
the monthly returns and volatilities of the aggregate stock market (see discussion in
Section 3.7): R = 1.004, “ = 1, ‡d = 0.628, ‡x = 0.358, ‡v = 5, D̄ = 0.224, X̄ = 0.176,
Ÿd = 0.129, Ÿx = 0.

The e�ect of the variance of private signals on the supply shock coe�cient b1 is
non-monotonic. It arises because two opposite forces are at work. A higher variance of
private signals pushes investors to increase the weight given to prices, for the private
signals are less informative. This force enhances the informational role of prices and
thus strengthens the coe�cient b1. However, a higher variance of private signals pushes
investors to rely less on prices, for their informational role decreases. This force weakens
the coe�cient b1. One of these two forces dominates, depending on the value of the
variance of private signals.

In the information percolation case, the e�ect is less ambiguous than in a classic
noisy rational expectations equilibrium. The solid black line shows that the coe�cient
b1 becomes important only for a narrow range of values of the variance of private signals,
whereas in the information percolation case the results are robust for a wider range of
values. The information percolation restores the balance in the favor of the first force.
That is, the information percolation induces over-reliance on public information.

The importance of the information percolation can be quantified by computing
magnification factors. In the case of dividend shocks, the magnification factor is equal
to a3/ad

3. It quantifies clearly how the direct e�ect arising from learning of private
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Figure 6: Magnification Factors.
The solid line depicts the magnification factor for di�erent standard deviations of the
private information error, without information percolation, i.e., ⁄ = 0. The dashed
line plots the magnification factor with information percolation, i.e., ⁄ = 1. The
parameter values are calibrated to match the monthly returns and volatilities of the
aggregate stock market (see discussion in Section 3.7): R = 1.004, “ = 1, ‡d = 0.628,
‡x = 0.358, ‡v = 5, D̄ = 0.224, X̄ = 0.176, Ÿd = 0.129, Ÿx = 0.

information only is multiplied once prices play their informational role. Panel (a) of
Figure 6 depicts the magnification factor in a standard rational expectations (solid
line) and when information percolation takes place (⁄ = 1, dashed line). One can see
that the e�ect of dividend shocks is greatly amplified in an economy with information
percolation: the magnification factor take values as large as 12. If ⁄ = 2, separate
calculations show that the magnification factor can be as high as 80.

In the case of supply shocks, the magnification factor is equal to b1/bd
1. It quantifies

clearly how the direct e�ect arising through the risk premium channel is multiplied once
prices play their informational role. Panel (b) of Figure 6 depicts the magnification
factor in a standard rational expectations (solid line) and when information percolation
takes place (⁄ = 1, dashed line). One can see that the e�ect of supply shocks is greatly
amplified in an economy with information percolation.

To summarize, the information percolation modifies the way information is elabo-
rated (through random meetings) and aggregated (through prices). As a result, the
impact of supply shocks is magnified because agents do not exactly know the origin
of price fluctuations, whereas the impact of dividend shocks is magnified because
the agents use current and past prices to improve their estimate of future dividends.
Ultimately, both e�ects arise because agents use prices to infer information, a common
feature of rational expectations models. But, while in rational expectations models
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Parameter Symbol Values
Risk aversion “ 1
Gross interest rate R 1.004
Long run mean of the supply X̄ 0.176
AR(1) parameter noisy supply Ÿx 0
Long run mean of the dividends D̄ 0.224
AR(1) parameter dividends Ÿd 0.129
Standard deviation of dividend shocks ‡d 0.628
Standard deviation of supply shocks ‡x 0.358
Standard deviation of private signal errors ‡v 5

Table 1: Benchmark Calibration.
This calibration, inspired from Banerjee (2010), is picked to match the monthly returns
of the market portfolio over the period January 1983 to December 2008.

the e�ect arises only for a narrow range of the variance of private information, the
information percolation generates more powerful and robust results.

3.7 Benchmark Calibration

I use the calibration performed by Banerjee (2010) on stock market returns at monthly
frequency. In his article, the parameter values are picked to match the monthly returns
of the market portfolio over the period January 1983 to December 2008. The benchmark
calibration is presented in Table 1.

The supply shocks are i.i.d. over time. First, this may seem reasonable at monthly
frequency. The results are similar if supply shocks are assumed to be persistent.
Moreover, since the aim is to explain the persistence of the volatility, it is preferable
to eliminate any persistence that may arise from the supply part. The standard
deviation of the private signals is assumed to be high with respect to the standard
deviation of the dividends and of the supply shocks, as found by Cho and Krishnan
(2000). A relatively large standard deviation of private signals is proposed as well in
Bacchetta and Wincoop (2006) and Hassan and Mertens (2011). As shown in Section
3.6, though, the results hold for a wide range of values of ‡v. As an additional exercise,
I performed the calculations using the calibration from Grundy and Kim (2002). The
results are qualitatively similar.

4 Implications for the Volatility
The equilibrium price is a linear form of normally distributed variables. It is therefore
normally distributed. It follows that price di�erences are normally distributed, which
makes the computation of their variance easier. In the analysis that follows, I consider
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Figure 7: Volatility and Information Percolation.
Panel (a) depicts the dollar returns volatility in an economy with constant information
percolation for di�erent values of the parameter ⁄. Panel (b) depicts the rates of
return volatility, annualized. The parameter values are: R = 1.004, “ = 1, ‡d = 0.628,
‡x = 0.358, ‡v = 5, D̄ = 0.224, X̄ = 0.176, Ÿd = 0.129, Ÿx = 0.

both price changes (dollar returns) and rates of returns. Since rates of returns are
no longer normally distributed, I use simulations to compute their volatility. Both
cases (dollar and rates of returns) are presented simultaneously. I report results for
cum-dividend returns, as in Banerjee (2010), although the results for ex-dividend
returns are stronger. The dollar excess returns are defined as

r$
t+1 © Pt+1 + Dt+1 ≠ RPt, (20)

whereas the rates of return are defined as

rt+1 © Pt+1 + Dt+1

Pt

≠ R.

Figure 7 shows the e�ect of the percolation on the volatility of asset returns.
Both the dollar returns volatility and the rates or return volatility increase as the
speed of information dissemination gets higher. Because investors communicate their
information at a higher speed, the price becomes more sensitive to both dividend shocks
and supply shocks, resulting in a higher return volatility.

4.1 Dynamics of the Volatility

The percolation concept is borrowed from physics with the aim to predict the course
of word-of-mouth transmission of ideas. Nonetheless, a word of caution is needed. In
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social sciences as opposed to physics, parameters are seldom constant. In the context
of the information percolation model, the meeting intensity may suddenly increase,
generating spread of epidemic news. For example, we often observe sudden spikes in
the attention of the entire community on urgent economic matters. Some subjects are
under intense discussion for weeks, if not months. During such episodes, word-of-mouth
communication can proceed with great speed across disparate social groups.

Two observations, both provided by Shiller (2000), are evidence on fluctuations of
word-of-mouth communication intensity and their link with the volatility. The first
is related with the survey study conducted by Shiller during the week of the stock
market crash of 1987. Respondents reported that they talked intensively about the
market situation during the day of the crash (individual investors talked on average
to 7 other people, whereas institutional investors talked on average with 20 other
people). The second observation is related to the obvious increase in the word-of-mouth
communication intensity once the telephone become e�ective during the 1920s. The
increased volatility of the stock market during that period, can be explained partially
by the introduction of the telephone.

Adding to this evidence, two recent papers (Vlastakis and Markellos, 2010; Da et al.,
2011) build a direct measure of investors’ attention using Google search frequency data.
As intuitively expected, some periods reveal the investor’ strong willingness to gather
information and some others don’t. In other words, investors’ incentive to acquire
information varies through time. Moreover, Vlastakis and Markellos (2010) show that
the attention index explains roughly 50% of the variability in the Market Volatility
Index (VIX). Motivated by this evidence and by the observations of Shiller, I explore
the e�ects of a time-varying meeting intensity on the volatility of asset returns.

For this, I start by assuming that the information percolation parameter follows
a Markov Chain with 2 states. Periods of low meeting intensity (L) are alternating
with periods of high meeting intensity (H). In the low meeting intensity state, I fix
⁄L = 0.5, which broadly means that each agent meets one other agent every 2 months.
In the high meeting intensity state, I fix ⁄H = 2, which means that each agent meets
on average 2 other agents per month.

The main result is that information percolation generates persistence in the volatility
of asset returns. This arises even if the calibrated process for ⁄t shows no persistency
in the high meeting intensity state. Assume that the transition matrix for the Markov
Chain process takes the values from Table 2. Let us abstract now from any empirical
justification of these numbers. The next section will clarify this point.

If the economy is in a low meeting intensity state this month, then there is 90%
chance that it will remain in a low meeting intensity state next month. On the contrary,
if the economy is in a high meeting intensity state this month, then there is 21% chance
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State L H Unconditional Probability
⁄t = 0.5 L 0.90 0.79 0.88
⁄t = 2 H 0.10 0.21 0.12

Table 2: Information Percolation States.
There are two states, depending on the values of ⁄t. The transition matrix Q of this
two-states Markov chain is shown in columns 3-4. It controls the probability of a
switch from state j (column j) to state i (row i). For example, this means that the
probability of staying in state L is equal to 0.9. Likewise, the probability of a switch
from state L to state H is 0.1. The sum of each column in this matrix is equal to one.
The last column is obtained by computing the stationary distribution, i.e. limnæŒ Qn.

that it will remain in a high meeting intensity state next month. The expected duration
of the low meeting intensity state is approximately 100 days, whereas the expected
duration of the high meeting intensity state is approximately 13 days. Unconditionally,
the economy is in a low meeting intensity state in 88% of cases, and in a high meeting
intensity state in 12% of cases.

Figure 8 illustrates the mechanism potentially amenable to produce persistent
volatility. The dashed line, represented on the left axis, shows a two-years sample
path of ⁄, simulated with the Markov chain parameters described above, at monthly
frequency. One can see that a transitory shock has occurred at month 4, and a two-
period lasting shock has occurred at month 13. The solid line, represented on the
right axis, depicts the average precision of the private signals pertaining to the nearest
dividend, Ô

n̄t,1/‡v. Following the shock at time 4, the average precision increases,
since agents shared their private signals about D5 at a higher speed during one period.
In the meantime, the agents shared private signals about D6 at a higher speed. Thus,
even though at time 5 the transitory shock on the percolation vanishes, agents had
already accumulated more signals about D6 and therefore the average precision stays
high for one more month. The same logic applies for the shocks from times 12 and 13.
This reasoning is done for T = 3 but can be extended easily to T > 3, generating even
more persistent shocks.

A long-lasting precision e�ect, as in Figure 8, translates in a long-lasting volatility
e�ect. To show this, I compute the impact of the time-varying information percolation
speed on the volatility of asset returns. This can only be measured in a finite version
of the model. The infinite horizon model is hard to solve. The reason is that, since the
information is long-lasting, the price conjecture (8) is not stationary anymore. The
price coe�cients are time-varying, depending on the present and future values of the
meeting intensity ⁄. I briefly describe here the solution method for the finite version of
the model. Details of the computations can be found in Appendix A.4.

I assume that the economy starts at time t = ≠1 and finishes at time t = T + 1.
The trading dates are from t = 1, .., T . The meeting intensity ⁄ is now time-varying.
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Figure 8: Average Precision Dynamics.
The dashed line shows a sample path of the meeting intensity ⁄t, simulated with the
Markov chain parameters from Section 3.7. The solid line shows the response of the
average precision of the private signals about the nearest dividends,


n̄t,1/‡v. The

parameter values are: R = 1.004, “ = 1, ‡d = 0.628, ‡x = 0.358, ‡v = 5, D̄ = 0.224,
X̄ = 0.176, Ÿd = 0.129, Ÿx = 0.

From t to t + 1 the meeting intensity is denoted by ⁄t+1. Appendix A.1 describes the
computations of the cross-sectional distribution µt of types when ⁄ is time-varying.

The first dividend arising in this economy, D2, is paid at time t = 2. The last
dividend, DT +1, is paid at time t = T + 1. The first dividend is equal to

D2 = (1 ≠ Ÿd) D̄ + ŸdD1 + Ád
2,

where D1 is a random number sampled from the unconditional distribution of the
dividend process (1). The value of D1 is learned by all the agents at time t = 1; no
other private information exists about D1 up to time t = 1.

Agents receive private information about the dividend innovation Ád
2 at time t = ≠1.

This is as in the standard model, i.e. they receive information about the dividend
innovation 3 periods ahead. During the 2 periods from t = ≠1 to t = 1 the agents
meet with each other. The meeting intensities during these 2 periods are ⁄0 and ⁄1

respectively. At t = 1 the agents start trading based on their private information and
to accommodate the supply shocks.

Supply shocks impact the economy at each trading date. The first supply shock,
X1, arises at time t = 1. The last supply shock is XT . The first supply shock is equal
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to

X1 = (1 ≠ Ÿx) X̄ + ŸxX0 + Áx
1 ,

where X0 is an unobservable random number sampled from the unconditional distribu-
tion of the per capita supply process (2).

Having a time-varying ⁄ complicates the solution method. If ⁄ is assumed to
be unobservable, uncertainty about it enters in the optimization problem (3). More
precisely, the problem intervenes once one has to compute the individual expectation
Ei

t[≠e≠“w̃i
t+1 ]. Since the one-step ahead ⁄ can take two values with probabilities given

by the Markov chain calibration from Section 3.7, the resulting first order condition
does not provide a linear solution for xi

t. The aggregation becomes then impossible
and all the appealing features of the CARA-Gaussian framework disappear. Two
assumptions help me to deal with this issue.

Assumption 1. All the values of the meeting intensity ⁄ up to time t are observed at

time t.

Assumption 2. When building his optimal trading strategy, each investor considers

that all the future values of ⁄ are equal to its unconditional mean.

In light of the findings of Da et al. (2011) and Vlastakis and Markellos (2010),
Assumption 1 seems reasonable. The investors’ willingness to gather information can
actually be proxied with frequency data from the main search engines. Assumption
2 helps me to deal with the problem of nonlinearity. If the agents consider that the
future values of ⁄ are given by the unconditional mean (computed from the Markov
chain calibration of Section 3.7), then the optimization problem becomes linear again.
I consider this a reasonable price to pay for the resulting analytical tractability.9

Another way to deal with this di�culty would be to assume that the agents have
perfect foresight of ⁄. That is, ⁄ is assumed to be time-varying but deterministic.
Additionally, one could consider that all investors predict the same value of ⁄ for
future periods, using the Markov Chain parameters given above. The results obtained
in separate calculations for these two cases are very similar. It turns out that what
matters most are the past values of ⁄, and not its future values.

To show the results, I consider a model with monthly data and an horizon of 60
months. It is assumed that the meeting intensity follows the same path as in Figure 8.

9In related research (Andrei and Hasler, 2010) we consider a general equilibrium model where the
agents filter an unobservable fundamental by observing a public signal. The correlation between this
public signal and the fundamental is stochastic and observable only up to the present. In that case, we
still manage to get a closed form solution of the equilibrium price. However, the price to pay for this
simplification is that in Andrei and Hasler (2010) prices do not have anymore an informational role.
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Figure 9: Volatility Clustering.
The dashed line shows a sample path of the meeting intensity ⁄t, simulated with the
Markov chain parameters from Section 3.7. The solid line shows the response of the
rates of return volatility. The rates of returns are computed as in (20). The parameter
values are: R = 1.004, “ = 1, ‡d = 0.628, ‡x = 0.358, ‡v = 5, D̄ = 0.224, X̄ = 0.176,
Ÿd = 0.129, Ÿx = 0.

Further details of the computations are reported in Appendix A.4.
Figure 9 shows the resulting volatility path for the first 2 years. The solid line

depicts the dollar returns volatility, computed in (20). A similar path arises for the
rates of return volatility. Given that the model has a finite horizon, it is more suitable in
this case to show the dollar returns volatility. The rates or return volatility is influenced
by the scaling by prices. The interpretations of its dynamics could be misleading in
the finite horizon version of the model.

The volatility deviations can be interpreted as impulse responses due to either a
one-period increase in the parameter lambda (at time 4) or a two-periods increase
(at times 13 and 14). As expected, the volatility increases with the search intensity.
However, once the search intensity goes down to a lower level, the volatility remains
high for two more periods. The pattern of the volatility is dictated only partially by
the moves in the information percolation speed. Volatility goes up synchronously with
the search intensity but goes down at a slower rate.

The intuition behind this mechanism is straightforward. Once the search intensity
goes up, the agents accumulate on average more signals about the future dividends.
The quantity of their signals increases. This produces an increase in the volatility.
Because the information is long-lived, agents use it for several periods. Thus, even if
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the search intensity goes down, the agents exchange at further meetings a large amount
of signals. This keeps the volatility high for a few more periods.

Two crucial elements produce this e�ect: the long-lived information and the word-
of-mouth communication. First, the long-lived characteristic of the information is
important because it allows agents to exchange information and trade more than once.
Second, the word-of-mouth communication makes information more and more relevant
as dividends approach payment dates. Without information percolation the persistence
e�ect on volatility would disappear.

An additional result arising from the clustering of the volatility is the excess
kurtosis of the unconditional distribution of the stock returns. While the conditional
dollar returns as expressed in (20) are normally distributed, the excess kurtosis of
the unconditional dollar returns computed for the simulated data of Figures 8 and 9
is systematically and significantly greater than zero (see, e.g., Bai, Russell, and Tiao,
2003).

4.2 Supporting Evidence

The last section assumes that the meeting intensity is time varying and proposes a
Markov Chain process with parameters given in Table 2. However, the results go
through with a wide range of parameters for the dynamics of ⁄.

For the calibration of the transition matrix in Table 2 I proceed as follows. Using
insights from Da et al. (2011) and Vlastakis and Markellos (2010), I build from Google
search data an index that I call “Focus on Economic News.” It is depicted in the lower
panel of Figure 10. This index is constructed using Google search volumes at weekly
frequency on groups of words like “financial news,” “economic news,” “Wall Street
Journal,” “Financial Times,” “CNN Money,” “Bloomberg News,” etc.10 Other similar
words in several combinations are used with always the same results. The resulted
index reflects agents willingness to gather information. We observe that large peaks
arrise at several key moments, like, for example, the Lehman Brothers bankruptcy in
September 2008. Furthermore, I assume that agents’ willingness to meet and agents
willingness to gather information are related. Therefore, I perform a Markov Chain
estimation based on this attention index. Table 2 is the result of this estimation.11

The upper panel of Figure 10 depicts the volatility of the S&P500. It is, as expected,
time-varying. It rises very fast at times, decaying only slowly after. Inspection of both

10More precisely, the index depicted in Figure 10 is built based on the following combination of
words: “financial news,” “economic news,” “Wall Street Journal,” “Financial Times,” “CNN Money,”
“Bloomberg News,” “S&P500,” “us economy,” “stock prices,” “stock market,” “NYSE,” “NASDAQ,”
“DAX,” and “FTSE.” Other similar words in several combinations are used with almost identical
results.

11For the Markov Chain estimation I used the package MS Regress, created by Perlin (2010).
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Figure 10: Focus on economic news and S&P500 Volatility.
The lower panel depicts a demeaned value weighted search index on financial and
economic news from 2004 to 2011, at weekly frequency. The upper panel depicts the
realized S&P500 annualized volatility from 2004 to 2011, resulted from a GARCH(1,1)
estimation on weekly data.

panels reveals simultaneous upper jumps in both the focus on economic news and the
volatility. But, the focus on economic news goes down faster than the volatility. A raw
two state Markov chain estimation on monthly data for stock returns reveals that the
probability of staying in a high volatility state is 60% versus 20% for the attention
index. Clearly, the volatility goes down slower than investors’ attention.

The apparent synchronous upper jumps but asynchronous descents observed in
Figure 10 can be explained by the information percolation. As showed in Section
4.1, only a transitory shock of the meeting intensity can induce a long-lasting ef-
fect on the volatility. Empirically, it has been shown (see, for a recent reference,
Berger, Chaboud, and Hjalmarsson, 2009) that the persistence in the information flow
is not large enough to capture the persistence in the volatility. In the present model,
although the generation of information is i.i.d., the information percolation generates
volatility dynamics consistent with empirical findings.

5 Trading Volume and Volatility
A sizeable literature documents the link between information flow and measures
of market activity, such as trading volume and return volatility (see, for example,
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French and Roll, 1986; Ross, 1989; Andersen, 1996; Andersen and Bollerslev, 1997).
The widespread hypothesis is that the rate of arrival of information in the market
drives both return volatility and trading volume. Clark (1973) is the first to introduce
the “Mixture of Distribution Hypothesis” (MDH), i.e. the joint dependence of both
volume and returns on a latent information process. Lamoureux and Lastrapes (1990)
observe that the inclusion of trading volume in the variance process makes the GARCH
coe�cients not significant, suggesting that volume and volatility are driven by a
common factor, and thus confirming the MDH. Andersen (1996) further develops The
MDH into the “Modified MDH” from a stylized market microstructure framework. In
his model, the information arrival is approximated by a Poisson process and governs
the dynamic features of returns and volume. The imposition of a conditional Poisson
rather than normal distribution results in a model which fits reasonably the data,
although the more traditional version of the MDH—assuming trading volume to be
normally distributed—is firmly rejected.

The information percolation and the Modified MDH present a similarity. In both
cases, the information flow follows a Poisson process. This motivates my questioning
whether the information percolation could drive both volume and volatility.

I follow He and Wang (1995) and define the trading volume as the cross-sectional
average of the absolute change in investors’ positions over time:

Vt = 1
2

⁄

i

---xi
t ≠ xi

t≠1

--- di + 1
2 |Xt ≠ Xt≠1|

The computations are reported for convenience in Appendix A.6. The left panel
of Figure 11 depicts the average volume for di�erent values of the signal noise ‡v.
There are two lines: the black dashed line corresponds to the case without information
percolation, while the blue solid line is for the case ⁄ = 1. The trading volume is
larger for intermediate values of the signal noise, because of the increased disagreement.
Hence, investors trade more aggressively for higher values of ⁄ because their private
information is more precise. In other words, the trading volume is higher in an economy
with a higher meeting intensity.

I compute the dynamics of the trading volume for the same pattern of the meeting
intensity as in Section 4.1. For this, I consider the case of a similar economy in
which all agents having the same number of signals, {n̄t,1, n̄t,2}. This is because the
discussion related to heterogeneity of investors is not necessary in this case. Details
of the computations are reported for convenience in Appendix A.6. The results are
shown in the right panel of Figure 11. The trading volume increases at times of higher
meeting intensity, then it remains high for more periods than ⁄, as it is the case for the
stock market volatility. This persistent e�ects in the dynamics of trading volume arise
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Figure 11: Trading Volume and Information Percolation.
The left panel plots the trading volume in an infinite horizon economy for di�erent
values of the signal noise ‡v. There are two lines: the black dashed line corresponds
to the case without information percolation, while the blue solid line is for the case
⁄ = 1. The right panel shows the dynamics of the trading volume for a given path
of the meeting intensity ⁄. The parameter values are: R = 1.004, “ = 1, ‡d = 0.628,
‡x = 0.358, ‡v = 5, D̄ = 0.224, X̄ = 0.176, Ÿd = 0.129, Ÿx = 0.

for two reasons. First, since investors posses on average a large amount of signals once
the word-of-mouth communication intensifies, they trade more aggressively, and they
will do so as long as the information remains relevant for future dividends. Second,
since investors use price movements as information on which to make trading decisions,
the large price movements produced by information percolation will cause large trading
volume. Hence the joint dependence of the trading volume and the volatility on the
same underlying process, i.e., the information flow to the market.

6 Additional Implications

6.1 The Term Structure of Risk

Which dividends drive the volatility? By recovering prices of zero-coupon equity (divi-
dend strips) on the aggregate stock market, Binsbergen et al. (2010) have discovered
that a large amount of the volatility is concentrated in the short-term, challenging
leading asset pricing models that take the equilibrium approach.12 Only one study
(Lettau and Wachter, 2007), using the stochastic discount factor approach, predicts ex-

12Under the equilibrium approach, asset returns are endogenously determined by the form of prefer-
ences and the process for aggregate consumption. Representative models are Campbell and Cochrane
(1999), Bansal and Yaron (2004), or Gabaix (2008).
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actly the feature highlighted by Binsbergen et al. (2010).13 Since Lettau and Wachter
(2007) exogenously specify the joint dynamics of cash flows and of the stochastic
discount factor, it is not a full-fledged equilibrium model. An important next step is to
build the microfoundations that can give rise to their specification.

In this section I attempt to show that the information percolation can provide
the feature highlighted by Binsbergen et al. (2010)—i.e., the volatility is driven by
the near future dividends. In the model, as dividends approach payment dates, the
information becomes more and more precise, making the short-term asset increasingly
sensitive to both future dividend shocks and supply shocks. As agents accumulate
more information, they might disagree more on the future values of dividends. In
other words, information percolation implies a term structure of disagreement. As in
Lettau and Wachter (2007) and Binsbergen et al. (2010), I compute a term structure
of the volatility, and show that it is consistent with recent empirical findings. I show
that the information percolation increases the short-run volatility.

Notice that the price can be expressed in terms of a stochastic discount factor. The
optimization problem (3) leads to the asset pricing equation

Pt = Ei
t

S

U e≠“w̃i
t+1

REi
t[e≠“w̃i

t+1 ]
(Pt+1 + Dt+1)

T

V .

This expectation can still be computed in closed form, because both w̃i
t+1 and

(Pt+1 + Dt+1) are Gaussian. The pricing kernel corresponding to investor i is

M i
t+1 = e≠“w̃i

t+1

REi
t[e≠“w̃i

t+1 ]
= e≠“xi

t(Pt+1+Dt+1)

REi
t[e≠“xi

t(Pt+1+Dt+1)]
.

With dispersed information, each agent will have a di�erent pricing kernel. Despite
heterogeneity, the computation of all the individual expectations and the proper
replacement of the individual optimal strategies xi

t lead to the same value, Pt.
As in Lettau and Wachter (2007), the building blocks of the long-lived asset in this

economy are “zero-coupon” equity, or dividend strips. I denote by Pt,n the price of an
asset that pays the aggregate dividend n periods from now. By definition, the price of
the entire asset, Pt, is equal to qŒ

n=1 Pt,n. The aim is to compute the volatility of each
term of the sum. For this, I compute the average valuation for each dividend strip
across the population of agents as follows

Pt,n = Êt

Ë
Mt+1Êt+1

Ë
Mt+2...Êt+n≠2

Ë
Mt+n≠1Êt+n≠1 [Mt+nDt+n]

ÈÈÈ
,

13This approach takes the reverse engineering path, by specifying directly a stochastic discount
factor for the economy, allowing for better flexibility in matching asset prices. Representative models
are Lettau and Wachter (2007) and Lettau and Wachter (2009).
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where Mt+j, j = 1...n, denotes the pricing kernel of a representative agent,
whose conditional expectation and conditional variance of (Pt+j+1 + Dt+j+1) are
µ © ‚Et+j (Pt+j+1 + Dt+j+1) and ‡2 © 1/K̄t+j respectively (a representative agent with
average beliefs). Notice the recursive nature of expectations (higher order expectations,
Bacchetta and Wincoop, 2008), arising because the law of iterated expectations does
not generally hold for market expectations when investors have di�erent information
sets. The Euler equation stated in a recursive form writes

Pt,n = ‚Et [Mt+1Pt+1,n≠1] , (21)

with boundary condition Pt,0 = Dt.
To compute Pt,n, one needs to start recursively at t + n ≠ 1 and use (21). I compute

first Pt+n≠1,1, then I compute Pt+n≠2,2, and so on. The equation (21) can be computed
directly using the Gaussian assumption. The details are in the Appendix Section A.5.
Once the expectation is computed, the volatility of dividend strips, ‡(Pt+1,n≠1 ≠ RPt,n),
can be computed in closed form. I turn now to the analysis of this volatility.

Risk in the Short Term

The results are presented in Figure 12. There are 3 lines showing respectively the cases
“no information percolation” ⁄ = 0 (black solid line), and “information percolation”
at two levels, ⁄ = 2 (blue dashed line) and ⁄ = 3 (red dotted line). The lines can be
interpreted as term structures of the volatility. I chose a high value of the meeting
intensity for the red dotted line to illustrate the hump-shaped pattern dictated by
the similar pattern in disagreement. That is, for high levels of the meeting intensity,
the disagreement regarding the next period dividend goes down, because agents have
now on average very reliable information about that dividend. However, volatilities
of returns on the second and subsequent dividends increase, being driven by a higher
disagreement.

The short-run dividend strips feature a relatively higher level of return volatility,
which decays fast with maturity. The information percolation clearly amplifies the
short-run volatility.

As dividends approach payment dates, the information becomes more and more
relevant, making the short-term asset increasingly sensitive to both future dividend
shocks and supply shocks. The e�ect is magnified naturally by the information
percolation. The information percolation increases the precision of the signals about
future dividends proportionally to their timing: closer dividends will get a higher
increase than far-away dividends. Most of the volatility is then concentrated in the
short run, consistent with Binsbergen et al. (2010).
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Figure 12: Return Volatility of Dividend Strips.
Volatility of dividend strip returns, ‡(Pt+1,n≠1 ≠ RPt,n), for n = 1 to 6. The black
solid line represents the case with no information percolation. The blue dashed line
represents the case with ⁄ = 2, and the red dotted line represents the case with
⁄ = 3. The parameter values are: R = 1.004, “ = 1, ‡d = 0.628, ‡x = 0.358, ‡v = 5,
D̄ = 0.224, X̄ = 0.176, Ÿd = 0.129, Ÿx = 0.

Furthermore, I denote the short-term asset by Pt,n1,n2 , with 1 Æ n1 Æ n2. This asset
entitles the holder to receive the dividends arising from t + n1 to t + n2. I consider two
dividend strategies inspired from Binsbergen et al. (2010). The first strategy consists
in buying the short-term asset which pays the next 24 months of dividends. The dollar
returns of this strategy are computed as follows:

r1,t+1 = ‡ (Dt+1 + Pt+1,1,23 ≠ RPt,1,24) (22)

The second strategy is called dividend steepener, for which n1 > 1. This strategy does
not involve dividend payments until time t + n1. For this example, I choose n1 = 2
and n2 = 24. The dollar returns of this strategy are computed as follows:

r2,t+1 = ‡ (Pt+1,1,23 ≠ RPt,2,24) (23)

The volatilities of returns of the two strategies are depicted in Figure 13. In an
economy with higher meeting intensity, the short-term asset is more sensitive to future
dividend shocks. Thus, the information percolation increases the volatility of the
short-term asset, for both strategies.
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Figure 13: Information Percolation and Short-Term Volatility.
Volatility of the short term assets returns, computed as in (22) (left panel) and (23)
(right panel). The parameter values are: R = 1.004, “ = 1, ‡d = 0.628, ‡x = 0.358,
‡v = 5, D̄ = 0.224, X̄ = 0.176, Ÿd = 0.129, Ÿx = 0.

6.2 Heterogeneous Trading Strategies

Recent empirical literature documents various patterns of trade that can be interpreted
as evidence of word-of-mouth communication. For example, Hong et al. (2005) find
that covariance of trades among fund managers is higher if they are situated in the
same city. Communications via shared education networks help fund managers make
excess returns by over-investing in firms run by their former classmates (Cohen et al.,
2008). In Massa and Simonov (2011), formation of close personal relationships between
college alumni influence portfolio choice—investors invest in the same stocks in which
their former classmates do. Other papers provide strong evidence that language, social
networks, and geographical proximity influence portfolio choices.14

Because it relies on heterogeneity of investors’ information, the rational expec-
tations model is particularly suitable to explain the above findings. For instance,
Brennan and Cao (1997) build an international finance setup in which domestic in-
vestors have an informational advantage relative to foreign investors. This makes
domestic investors act as contrarians, while foreign investors act as trend followers.
Their results are confirmed by the data. In other theoretical models, Watanabe
(2008) and Colla and Mele (2010) obtain the same result—less informed agents are
trend-followers, while better informed agents are contrarians.

14Feng and Seasholes (2004) find that in the Chinese stock market the geographical distance has
an e�ect on trading—geographically close investors have positively correlated trades, while distant
investors have negatively correlated trades. Other related papers are Grinblatt and Keloharju (2001),
Hong et al. (2004), Ivkovic and Weisbenner (2005), and Shive (2010).
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In the context of the present model, the information percolation generates a
pronounced heterogeneity in the investors’ information endowments. Agents receive
always one signal for the 3-periods ahead dividend. As they meet with each other,
they progressively become heterogeneous with respect to their number of signals. This
creates a natural setup to examine the di�erent patterns of trade that emerge for
each type of agents. The results show that better informed investors tend to act
as contrarians, while less informed investors tend to act as trend-followers. While
Watanabe (2008) exogenously divides the total mass of agents in J groups in order to
show the same result, here the result arises naturally from the information percolation
mechanism.

To show this, I proceed as in Watanabe (2008) and consider the trading strategy of
each group of investors. In my case, the di�erent investor groups simply arise from
the information percolation. They are characterized by the couple {ni

t,1, ni
t,2} and their

proportion is µ
1
ni

t,1, ni
t,2

2
, following Section 3.3.

In order to analyze investors’ trading strategies associated with di�erential infor-
mation, it is necessary to consider investors’ positions net of per capita supply shock.
That is, one has to disentangle trading based on di�erential information and trading to
accomodate the supply shock (market-making), as done in He and Wang (1995) and
Brennan and Cao (1997). For this purpose, I further assume that the contribution of
noise traders of type {ni

t,1, ni
t,2} to the aggregate supply shock Xt is µ

1
ni

t,1, ni
t,2

2
Xt.

After adding the noise trades to those of rational investors, I compute the aggregate
trading volume for each group of investors. The details of the computations are in
Appendix A.6.

Figure 14 depicts the correlation between the informational trading strategy of
each group of investors, �xi

t ≠ �Xt, and the contemporaneous price di�erence, �Pt ©
Pt ≠ Pt≠1. The investors having a few number of signals tend to be trend-followers,
while the investors who gathered a relatively more important number of signals are
contrarians.

This stylized fact, documented by numerous empirical studies, might be of par-
ticular importance when trying to explain the home bias (documented first by
French and Poterba, 1991) and the distance influence on investment decisions (docu-
mented first by Coval and Moskowitz, 1999).15 Particularly, it is a natural assumption
that the frequency of meetings among people is higher within their country than outside.
In the context of the present model, two levels of the meeting intensity—one for meeting

15The home bias puzzle is a long standing empirical problem of the CAPM. It describes the fact that
investors in most countries hold only a small share of foreign equity, although they could greatly benefit
from international diversification. The home bias puzzle is still sizable today (see Sercu and Vanpee,
2007, for one of the latest reviews) despite the fact that information about stock markets is di�used
globally and that trading in international stocks is increasingly easy.
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Figure 14: Heterogeneous Trading Strategies.
This graph is the counterpart of of Figure 3, showing the trading strategies by investor
types (number of signals gathered). The population of investors is dividend in two
camps: contrarians (blue bars) and trend-followers (yellow bars). The parameter
values are: R = 1.004, “ = 1, ‡d = 0.628, ‡x = 0.358, ‡v = 5, D̄ = 0.224, X̄ = 0.176,
Ÿd = 0.129, Ÿx = 0.

home investors (larger) and other for meeting foreign investors (smaller)—might then
help accumulate an informational advantage at home. This may generate di�erent
portfolio holdings and patterns of trade consistent with the aforementioned empirical
literature.

7 Concluding Remarks
Word-of-mouth communication is an innate feature of humans, helping them to process
and aggregate knowledge. This paper is an attempt to show that word-of-mouth
communication impacts both the level and the dynamics of stock price volatility. It
does so by interacting with the price formation mechanism—an additional yet di�erent
tool of aggregating knowledge. Word-of-mouth communication and the price formation
mechanism define two sides of the same coin: the process through which information is
elaborated, transmitted, and aggregated.

The first implications is that word-of-mouth communication amplifies the volatility
of asset returns. Second, episodes of intense word-of-mouth communication, although

39



transitory, can generate persistent volatility. This arises because information is long-
lived—once agents gather a large amount of information, they spread it through
word-of-mouth and trade based on it during subsequent trading sessions. Third,
dividends from the recent future are prone to interpersonal discussions, compared with
dividends situated far into the future. Therefore, the volatility increases mostly in the
short-term and relatively less in the long-term. Forth, word-of-mouth communication
pushes investors to trade more aggressively, increasing the trading volume. Therefore,
word-of-mouth communication drives both trading volume and volatility. Fifth, the
random accumulation of information generates heterogeneity in investors’ information
endowments, resulting in patterns of trade consistent with empirical findings.

This paper raises several potentially interesting questions for future research. First,
word-of-mouth communication may generate fads or rumors instead of real information.
The present setup o�ers a tractable framework for measuring the consequence of rumors
for prices. Second, in the context of a model with fads and rumors, what is the e�ect of
additional public signals, such as earnings announcements? Probably the transparency
and accuracy of public information is beneficial for financial markets, minimizing the
e�ects of low-quality rumors. Third, what if agents can optimally choose the meeting
intensity? This would allow to relate the meeting intensity with the business cycle
conditions: it might be optimal for agents to look for more information during bad
economic times, as we observe empirically. Fourth, how does the information percolation
interacts with higher order beliefs? As the percolation generates overreliance to public
information, the e�ect of higher order beliefs might be magnified, disconnecting the
price further away from its fundamental value. Finally, in an international finance
context, the e�ect of the information percolation can be relevant for exchange rate
volatility and for other empirical anomalies such as the home equity bias. I leave
further work along these lines for future research.
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A Appendix
A.1 Information Percolation
I describe here the solution method in the general case, when ⁄ is time-varying. Following
Du�e et al. (2009), the cross-sectional distribution satisfies the following Boltzmann equation

d

dt
µt = ⁄tµt ú µt ≠ ⁄tµt. (A.1)

The simplest way to solve (A.1) is to start at t ≠ 2, when each agent receives one signal about
Dt+1. Between t ≠ 2 and t ≠ 1 agents meet with intensity ⁄t≠1. At any time · œ [0, 1], call the
distribution of the number of signals Ï· (m). This is an univariate probability distribution.
The corresponding Boltzmann equation is

d

d·
Ï· (m) = ⁄t≠1

m≠1ÿ

i=1
Ï· (i)Ï· (m ≠ i) ≠ ⁄t≠1Ï· (m),

which can be solved recursively, starting with m = 1:

d

d·
Ï· (1) = ≠⁄t≠1Ï· (1),

with boundary condition Ï0(1) = 1. The solution is Ï· (1) = e≠·⁄t≠1 . Having now Ï· (1), it
can be replaced in the equation of Ï· (2):

d

d·
Ï· (2) = ⁄t≠1Ï· (1)2 ≠ ⁄t≠1Ï· (2),

with boundary condition Ï0(2) = 0. This gives Ï· (2) = e≠2·⁄t≠1(e·⁄t≠1 ≠1). By going further
it can be easily seen that the general formula is

Ï· (m) = e≠m·⁄t≠1(e·⁄t≠1 ≠ 1)m≠1. (A.2)

It can be verified that
Œÿ

m=1
Ï· (m) = 1

Œÿ

m=1
mÏ· (m) = e·⁄t≠1 .

The distribution of signals at · = 1 will be used as a boundary condition in what follows.
Go now at time t ≠ 1. Each agent i receives one signal about Dt+2 and has mi signals

about Dt+1, with the probability density function of mi given by (A.2). They share these
signals between t ≠ 1 and t with intensity ⁄t. At any time · œ [0, 1], call the distribution
of the number of signals µ· (ni

1, ni
2), with ni

1 the number of signals about Dt+1 and ni
2 the

number of signals about Dt+2. This is a bivariate probability distribution. The corresponding
Boltzmann equation is (A.1). It can be solved recursively in the same way. Start with

d

d·
µ· (1, 1) = ≠⁄tµ· (1, 1),

with boundary condition µ0(1, 1) = Ï1(1), and Ï1(1) has been obtained in the previous step.
Once µ· (1, 1) is obtained, it can be replaced further away in the iterations as shown before.
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The general equation (for ni
2 > 1) is

d

d·
µ· (ni

1, ni
2) = ⁄t

ni
1≠1ÿ

i=1

min{i,ni
2≠1}ÿ

j=1
{ni

2≠jÆni
1≠i}µ· (i, j)µ· (ni

2 ≠ j, ni
1 ≠ i) ≠ ⁄tµ· (ni

1, ni
2),

with boundary condition µ0(ni
1, ni

2) = 0. Solving this equation recursively gives (7).

A.2 Learning
The matrices A and B are

A =

Q

ca
a3 a2 a1
a2 a1 0
a1 0 0

R

db , B =

Q

ca
b3 b2 b1
b2 b1 0
b1 0 0

R

db .

Write the errors of the signals in (10) as

Q

ccca

B‘x
t

Ávi
t

Áwi
t,2

Áwi
t,1

R

dddb =

Q

ccccccca

b3 b2 b1 0 0 0
b2 b1 0 0 0 0
b1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

R

dddddddb

Q

ccccccca

Áx
t≠2

Áx
t≠1
Áx

t

Ávi
t

Ávi
t,2

Ávi
t,1

R

dddddddb

, (A.3)

and call the matrix on the right hand side �. Since the variance of Áwi
t,1 and of Áwi

t,2 depend on
the number of signals that each investor gathered, the variance of the errors of the signals
in (10), Ri, is heterogeneous across investors—it depends on the couple {ni

t,1, ni
t,2}. More

precisely, the covariance of the vector from the right hand side of (A.3) is equal to

�i =

Q

cccccccccca

‡2
x 0 0 0 0 0

0 ‡2
x 0 0 0 0

0 0 ‡2
x 0 0 0

0 0 0 ‡2
v 0 0

0 0 0 0 ‡2
v

ni
t,2

0

0 0 0 0 0 ‡2
v

ni
t,2

R

ddddddddddb

and thus Ri = ��i�€.
To prepare the setting for the projection theorem everything can be grouped under the

following form:
Q

ccccccca

Ád
t+1

Ád
t+2

Ád
t+3

t

vi
t

W i
t

R

dddddddb

≥ N

S

WWWWWWWU

1
09◊1

2
,

Q

ccccccca

‡2
dI3 ‡2

dH€

‡2
dH ‡2

dHH€ + Ri

R

dddddddb

T

XXXXXXXV

, (A.4)

where 09◊1 is a 9 ◊ 1 vector of zeros and I3 is the identity matrix of dimension 3.
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The projection theorem states that if
A

◊
s

B

≥ N
CA

µ◊

µs

B

,

A
�◊◊ �◊s

�s◊ �ss

BD

,

then

E[◊/s] = µ◊ + �◊s�≠1
ss (s ≠ µs)

Var[◊/s] = �◊◊ ≠ �◊s�≠1
ss �s◊.

Direct application of the projection theorem to (A.4) leads to

Ei
t‘

d
t = Mi

Q

ca
t

vi
t

W i
t

R

db

Vari
t‘

d
t = ‡2

d

1
I3 ≠ MiH

2
,

with Mi = ‡2
dH€

1
‡2

dHH€ + Ri
2≠1

.
The last equalities in (11) and (12) can be obtained by using of the Woodbury matrix

identity. For the conditional variance:

‡2
d

1
I3 ≠ MiH

2
= ‡2

dI3 ≠ ‡2
dI3H€

1
Ri + H‡2

dI3H€
2
H‡2

dI3

=
A

1
‡2

d

I3 + H€(Ri)≠1H
B≠1

,
(A.5)

and for the conditional expectation:

Mi = ‡2
dH€

S

U(Ri)≠1 ≠ (Ri)≠1H
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1
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d
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d
t

2
H€(Ri)≠1.

The last equality is obtained by using (A.5) and recognizing that
S

U‡2
d ≠ ‡2

dH€(Ri)≠1H
A

1
‡2

d

I3 + H€(Ri)≠1H
B≠1

T

V
1
Vari

t‘
d
t

2≠1
= I3.

A.3 Equilibrium
I restate the equation (13) here for convenience

1
“

A⁄ 1

0

Ei
t (Pt+1 + Dt+1)

Vari
t (Pt+1 + Dt+1)

di ≠ RPt

⁄ 1

0

1
Vari

t (Pt+1 + Dt+1)
di

B

= Xt (A.6)

where Xt can be written as

Xt =
1
1 ≠ Ÿ3

x

2
X̄ + Ÿ3

xXt≠3 +
1

Ÿ2
x Ÿ 1

2
‘x
t .
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The second integral represents the average precision of the entire population of investors
at time t, that shall be denoted hereafter by K̄t:

K̄t =
⁄ 1

0

1
Vari

t (Pt+1 + Dt+1)
di

=
Œÿ

ni
t,1=1

Œÿ

ni
t,2=1

µ
1
ni

t,1, ni
t,2

2 1
a2

1‡2
d + b2

1‡2
x + Â

1
Vari

t‘
d
t

2
Â€

2≠1
.

(A.7)

By using this result and equation (16) we can turn to the first integral:
⁄ 1

0

Ei
t (Pt+1 + Dt+1)

Vari
t (Pt+1 + Dt+1)

di =K̄t

1
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ÂMi
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t (Pt+1 + Dt+1)

Q
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t
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db di.

By aggregation, one obtains
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R
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The vector L̄t, of dimension (1 ◊ 6), is equal to

L̄t =
Œÿ

ni
t,1=1

Œÿ
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t,2=1

µ
1
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2
ÂMi

1
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1‡2
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1‡2
x + Â

1
Vari

t‘
d
t

2
Â€

2≠1
.

Thus

L̄t

Q
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t

v̄t

W̄t

R
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1
H‘d

t + Bú‘x
t

2
,

where Bú ©
A

B
03◊3

B

.

To summarize:
⁄ 1

0

Ei
t (Pt+1 + Dt+1)

Vari
t (Pt+1 + Dt+1)

di =K̄tf(D̄, Dt, X̄, Xt≠3) +
1
K̄tb

úB≠1A + L̄tH
2

‘d
t

+
1
K̄tb

ú + L̄tBú
2

‘x
t

(A.8)

It remains now to replace (A.7) and (A.8) in the market clearing condition (A.6). The
coe�cients –̄, –, —̄, —, aj , and bj , for j = 1, 2, 3, must solve the following equations:

1. Coe�cient of D̄:

[–̄ + (– + 1)(1 ≠ Ÿd)] ≠ R–̄ = 0

2. Coe�cient of Dt:

(– + 1)Ÿd ≠ R– = 0
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3. Coe�cient of X̄:

K̄t[—̄ + —(1 ≠ Ÿx)] ≠ K̄tR—̄ ≠ “(1 ≠ Ÿ3
x) = 0

4. Coe�cient of Xt≠3:

K̄t—Ÿx ≠ K̄tR— ≠ “Ÿ3
x = 0

5. Coe�cient of ‘d
t :

K̄tb
úB≠1A + L̄tH ≠ K̄tRa = 01◊3

6. Coe�cient of ‘x
t :

K̄tb
ú + L̄tBú ≠ K̄tRb ≠ “

1
Ÿ2

x Ÿx 1
2

= 01◊3

This system of 9 equations (items 5 and 6 are vector equations) is solved numerically. The
algorithm is very e�cient, because there is a very natural starting point. For this, I consider
an economy in which all the agents have the same number of signals {n̄t,1, n̄t,2}, where n̄t,1
and n̄t,2 are the average numbers of signals computed in subsection 3.3. Giving this result as
a starting point to the numerical algorithm makes the computation very e�cient.

A.4 Finite Model
The solution method works as follows:

1. Consider the economy at time t = 1, and ⁄0 = ⁄1 = 0.5. Solve the model in this case
(see below the conjecture for the price coe�cients).

2. Move one period further at time t = 2. According to Figure 8, ⁄2 = 0.5. Solve the
model now by forcing the coe�cients of the price P1 to be fixed at the solution found
at step 1.

3. Move one period further at time t = 3. According to Figure 8, ⁄3 = 0.5. Solve the
model now by forcing the coe�cients of the prices P1 and P2 to be fixed at the solutions
found at steps 1 and 2.

4. Go on with these iterations up to time t = T . Keep in mind that ⁄4 = ⁄13 = ⁄14 = 2.

In the finite version of the model, the price coe�cients are now time-varying. At each of
the steps described above, a conjectured price must be specified. To fix ideas, here are the
prices at each trading period:

PT =gT (DT , XT ≠3) + aT,1Ád
T +1

+
1

bT,3 bT,2 bT,1
2 1

Áx
T ≠2 Áx

T ≠1 Áx
T

2€

PT ≠1 =gT ≠1 (DT ≠1, XT ≠4) +
1

aT ≠1,2 aT ≠1,1
2 1

Ád
T Ád

T +1

2€

+
1

bT ≠1,3 bT ≠1,2 bT ≠1,1
2 1

Áx
T ≠3 Áx

T ≠2 Áx
T ≠1

2€

...

49



Pt =gt (Dt, Xt≠3) +
1

at,3 at,2 at,1
2 1

Ád
t+1 Ád

t+2 Ád
t+3

2€

+
1

bt,3 bt,2 bt,1
2 1

Áx
t≠2 Áx

t≠1 Áx
t

2€

...

P2 =g2 (D2, X0) +
1

a2,3 a2,2 a2,1
2 1

Ád
3 Ád

4 Ád
5

2€

+
1

b2,2 b2,1
2 1

Áx
1 Áx

2
2€

P1 =g1 (D1, X0) +
1

a1,3 a1,2 a1,1
2 1

Ád
2 Ád

3 Ád
4

2€

+ b1,1Áx
1 ,

where the function gt

1
D(·), X(·)

2
is defined as

gt

1
D(·), X(·)

2
= –̄tD̄ + –tD(·) + —̄tX̄ + —tX(·)

The equations for the price coe�cients are built recursively starting at time T . The
unknown coe�cients are –̄t, –t, —̄t, —t, at,j , bt,j , for t = 1..T and j = 1, 2, 3. Once one arrives
recursively at time t = 1, solve globally for the fixed point. The results of these computations
are used to build Figure 9.

A.5 Pricing Kernel and the Short-Term Asset
To compute Pt,n one has to start recursively at time t + n ≠ 1:

Pt+n≠1,1 = Êt [Mt+nDt+n] ,

where Êt is obtained by averaging the individual expectations across agents. The individual
pricing kernels are

M i
t+n = e≠“w̃i

t+n

REi
t+n≠1[e≠“w̃i

t+n ]
= e≠“xi

t+n≠1(Pt+n+Dt+n)

REi
t+n≠1[e≠“xi

t+n≠1(Pt+n+Dt+n)]
.

It follows that

Ei
t+n≠1[M i

t+nDt+n] =
⁄ Œ

≠Œ

⁄ Œ

≠Œ
M i

t+n≠1Dt+nN (Pt+n + Dt+n, Dt+n)d(Pt+n + Dt+n)dDt+n,

where N (·, ·) represents the bivariate normal distribution.
The above double integral can be computed in closed form by means of the Gaussian

assumption. The result is a normally distributed variable. Then, go one step back to
Ei

t+n≠2[M i
t+n≠1Pt+n≠1,1]. Apply similar calculations in this case to obtain Pt+n≠2,2. The

iterations are repeated until one obtains Pt,n.

A.6 Trading Volume
There are an infinity of types of investor, depending on the couple of signals {ni

t,1, ni
t,2}. Let

us index these types by m. The trading volume of investors of type m is (ignoring noise
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trading)

V m
t = 1

2

⁄

iœm

---xi
t ≠ xi

t≠1

--- di, (A.9)

where xi
t is their optimal demand, defined in (4).

For agents of type {ni
t,1, ni

t,2}, the optimal demand can be written

xi
t =f(D̄, Dt, X̄, Xt≠3) ≠ R(–̄D̄ + –Dt + —̄X̄ + —Xt≠3)

“Vari
t[Pt+1 + Dt+1]

+ ÂMi + (búB≠1 0 0 0) ≠ (R 0 0 0 0 0)
“Vari

t[Pt+1 + Dt+1]

Q

ca
t

vi
t

W i
t

R

db .

(A.10)

By the market clearing condition (5), the first term in (A.10) is equal to X̄/(K̄tVari
t[Pt+1 +

Dt+1]).
I assume that the type is time invariant, in the sense that the investors remain of the same

type for two successive generations. This assumption makes easier the computations (see
Watanabe, 2008, for a similar assumption). Separate calculations without this assumption
show that results do not change qualitatively. It follows that the trading strategy of investor
i is

xi
t ≠ xi

t≠1 = Qi

S

WU

Q

ca
t

vi
t

W i
t

R

db ≠

Q

ca
t≠1

vi
t≠1

W i
t≠1

R

db

T

XV ,

where Qi © ÂMi+(búB≠1 0 0 0)≠(R 0 0 0 0 0)
“Vari

t[Pt+1+Dt+1] . Note that Qi is a vector of dimension 1◊6. Denote
by Qi

4≠6 the vector of dimension 1 ◊ 3 which contains the 3 last elements of Qi, and by Qi
j

the jth element of Qi. After some manipulations, one obtains
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In a similar way
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The optimal trading strategy becomes
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t ≠ xi

t≠1 = Qi
Ë1

06◊1 H
2

≠
1

H 06◊1
2È A

Ád
t

‘d
t

B

+ Qi

CA
03◊1 B
03◊1 03◊3

B

≠
A

B 03◊1
03◊3 03◊1

BD A
Áx

t≠3
‘x
t

B

+ Qi
4≠6

S

WU

Q

ca
Ávi

t≠1
Áwi

t≠1,2
Áwi

t≠1,1

R

db ≠

Q

ca
Ávi

t

Áwi
t,2

Áwi
t,1

R

db

T

XV

(A.11)

Formula (A.9) requires the computation of the cross-sectional average across investors of
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the absolute value of the normal variable stated in (A.11). The absolute value of a normal
variable follows a Folded normal distribution. The mean of this variable is equal to the first
two lines in (A.11), while the variance of this variable is equal to

Var(xi
t ≠ xi

t≠1) = 2Qi
4≠6

Q

ccca

‡2
v 0 0

0 ‡2
v

ni
t,2

0

0 0 ‡2
v

ni
t,1

R

dddbQi€
4≠6 ≠ 2Qi

5Qi
4

‡2
v

ni
t,2

≠ 2Qi
6Qi

5
‡2

v

ni
t,1

. (A.12)

For the computation of this variance one recognizes that Áwi
t≠1,2 and Ávi

t are correlated. Same
for Áwi

t≠1,1 and Áwi
t,2. The last two terms in (A.12) reflect this fact.

The Folded normal distribution formula (see this Wikipedia page) can be applied at this
point. The trading volume of type {ni

t,1, ni
t,2} investors at time t, V m

t , becomes a function
of both dividend and supply innovations, i.e. Ád

t to Ád
t+3 and Áx

t≠3 to Áx
t . The expected value

of the trading volume can then be computed by very fast simulations. The total expected
trading volume in the economy can then be computed with the summation

Vt =
Œÿ

ni
t,1=1

Œÿ

ni
t,2=1

µ
1
ni

t,1, ni
t,2

2
V m

t + 1
2 |Xt ≠ Xt≠1|

The left panel of Figure 11 is a result of these computations for di�erent values of ⁄.
For the dynamics of the trading volume, one has to go back to (A.10). In the case of an

economy where all the agents are of the same type, the optimal demand becomes

xi
t =X̄ + ÂM + (búB≠1 0 0 0) ≠ (R 0 0 0 0 0)

“Vart[Pt+1 + Dt+1]

Q

ca
t

vi
t

W i
t

R

db .

Note that M and Vart[Pt+1 + Dt+1] are not indexed by i since they are identical across agents.
However, one has to take into account that the price coe�cients are changing now, depending
on the level of ⁄. At each point in time, the optimal trading strategy xi

t ≠ xi
t≠1 is computed

by taking care of these changes. Then, the trading volume is computed by using the same
technique as above. The results of these computations are used to build the right panel of
Figure 11.

In order to analyze investors’ trading strategies associated with di�erential information
(to build Figure 14), I compute the aggregate trading volume for each group of investors
(after adding the noise trades, to isolate the informational demand):

�xi
t ≠ �Xt = xi

t ≠ xi
t≠1 ≠

!
Áx

t ≠ Áx
t≠1

"
.

I use directly Ÿx = 0, as in the benchmark calibration, to keep things simpler. By using
(A.11):
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The informational trading strategy is a linear function of dividend and supply innovations.
The correlation with the price di�erence �Pt can then be computed in closed form. The
results of these computations are used to build Figure 14.

A.7 Infinite-Horizon Investors
I describe here the method for solving the equilibrium price in the model with infinite-horizon
investors. Asset demand is more complex than in the two-period case. In the infinite-horizon
case the maximization problem is

U i
t = max

(ci
t+s,xi

t+s)sØ0

≠Ei
t

C Œÿ

s=0
flse≠“ci

t+s

D

, (A.13)

with fl œ (0, 1) and subject to the intertemporal budget constraint

wi
t+1 = (wi

t ≠ ci
t)R + xi

t(Pt+1 + Dt+1 ≠ RPt).

When T > 1 (e.g., when the private information is long-lived) investors use information
from previous periods to update their expectations. This leads to the infinite regress problem
(see Bacchetta and Wincoop, 2008, for a clear treatment of this topic). The problem arises
in both the overlapping generations or the infinite-horizon cases. The equilibrium price can
be written as

Pt = –̄úD̄ + —̄úX̄ + A(L)Ád
t + B(L)Áx

t ,

where A(L) = a1 + a2L + ... and B(L) = b1 + b2L + ... are infinite order polynomials in the
lag operator L. Although this makes the price dependent on the infinite state space, in the
overlapping generations case it is easily verified that Dt and Xt≠T collect all the past shocks
Ád

j for j Æ t and Áx
j for j Æ t ≠ T respectively. The fixed point problem to be solved becomes

finite dimensional, and the price takes the conjectured form (8).
In the infinite-horizon case, the portfolio maximization problem is substantially more

complicated. Investors take into account uncertainty about future expected returns and form
dynamic hedging demands, which might be relevant in a model with long-lived information as
the present one. The hedge term depends on the infinite state space. This complicates matters,
because the fixed point problem to be solved cannot be reduced to a finite dimensional one.
However, an approximation to a desired accuracy level can be achieved by truncating the
state space for su�ciently long lags. Bacchetta and Wincoop (2006) show how to do that in
a previous version of the paper. I adopt this method here.

The Bellman Optimality principle says that

U i
t = max

ci
t,xi

t

Ë
≠e≠“ci

t + flEi
tU

i
t+1

È
.

I compute the equilibrium price by assuming that the vector of observables is Y i
t =1

D̄ Dt X̄ Xt≠3 €
t vi

t W i€
t

2€
. This allows me to keep the conjectured form of the price as

in (8). This vector of observables can be extended by adding lags. A proper modification of
the price conjecture must be performed in that case.

I conjecture that the value function is:

U i
t = ≠–1 exp

;
≠–2wi

t ≠ 1
2Y i€

t V Y i
t

<
, (A.14)
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where –1 and –2 are scalars and V is a square matrix to be determined in equilibrium.
By use of the projection theorem, Pt+1 + Dt+1 ≠ RPt and Y i

t+1 can be written as follows:

Pt+1 + Dt+1 ≠ RPt = �€Y i
t + �€

3 ‘i
t

Y i
t+1 = N1Y i

t + N2‘i
t

where ‘i
t is the vector of shocks defined as

‘i
t =

1
Ád

t+4, Áx
t+1, ‘d€

t ≠ Ei
t‘

d€
t , ‘x€

t ≠ Ei
t‘

x€
t , Ávi

t , Áwi
t,2, Áwi

t,1, Ávi
t+1, Ázi

t+1,2, Ázi
t+1,1

2
.

All these shocks have been defined in Section 3, except Ázi
t+1,2 and Ázi

t+1,1. They represent the
innovations in the incremental signals gathered by investor i between time t and t + 1 about
Dt+3 and Dt+2 respectively. Denote the covariance matrix of these shocks by �.

Pt+1 + Dt+1 ≠ RPt and Y i
t+1 can be replaced in the conjectured value function (A.14).

Then, Ei
tU

i
t+1 becomes

Ei
tU

i
t+1 = ≠–1 exp

Ó
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1
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2
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≠Y i€
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1 V N2‘i
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2‘i€
t+1N€

2 V N2‘i
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<
.

The following standard lemma in multivariate normal calculus is necessary:

Lemma 1. Let Á be a multivariate normal random variable, with zero mean and covariance
matrix �. Let b be a constant vector, and B a constant symmetric semi-positive definite
matrix. Define � = (B + �≠1)≠1. Then

E exp
;

≠b€Á ≠ 1
2Á€BÁ

<
= 1

|�|1/2|�|≠1/2 exp
;1

2b€�b

<
,

where |X| denotes the determinant of the square matrix X.

In my case, � is defined as
1
�≠1 + N€

2 V N2
2
. Use this lemma to transform Ei

tU
i
t+1, and

then write the first order condition with respect to xi
t. After a few manipulations one finds

xi
t = �€Y i

t ≠ �€
3 �N€

2 V €N1Y i
t

–2�€
3 ��3

.

The first term in the numerator represent the expected return, as in the overlapping
generations case. The second term represent the hedge against expected return changes.

Replace the optimal demand in (A.13) to obtain

U i
t = ≠e≠“ci

t ≠ fl–1
|�|1/2|�|≠1/2 exp

;
≠–2

1
wi

t ≠ ci
t

2
R ≠ 1

2Y i€
t N€

1 V N1Y i
t

≠1
2–2

2
1
xi

t

22
�€

3 ��3 + 1
2Y i€

t N€
1 V N2�N€

2 V €N1Y i
t

<
.

Write the first order condition for consumption and then replace in the above equation.
By verifying the guess of the value function (A.14) one obtains –1, –2, and the following
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implicit equation for V :

V = 1
R

Q

a

1
� ≠ N€

1 V N2�€�3
2 1

�€ ≠ �€
3 �N€

2 V N1
2

�€
3 ��3

+ N€
1 V N1

≠ N€
1 V N2�N€

2 V €N1

B

.

(A.15)

The parameter –2 is equal to “(R ≠ 1)/R (this is true in all portfolio problems for CARA
agents).

Thus, the market clearing condition plus the verification that the cojecture of the value
function is correct solves for all the parameters of the model. The numerical procedure is as
follows:

1. Start with a given V , usually V = 0.

2. Solve for the price coe�cients using the market clearing condition. If the numerical
solver takes too long, there is a very fast alternative. Assume starting values for the
parameters. Solve the equilibrium price equation and map the assumed parameters in
new values. Continue the process until it converges. This is usually the case because of
the fixed point nature of the problem.

3. Once the price coe�cients are found, verify if V satisfy equation (A.15). This is done
by an iteration technique. A new value of V is found at this step.

4. Use this new value of V at point 1 and repeat the algorithm until convergence.

As in Albuquerque and Miao (2010) and Bacchetta and Wincoop (2006), the results for
the infinite horizon model are very close to those for the overlapping generations model. Table
3 shows this.

Model / Coe�. –̄ – —̄ — a1 a2 a3 b1 b2 b3
Overlapp. gen. 249.9 0.15 -153.3 0 0.0004 0.0159 0.2092 -1.1709 -0.0402 -0.0011

Infinite hor. 249.9 0.15 -147.2 0 0.0025 0.0281 0.2134 -1.2104 -0.0794 -0.0060

Table 3: Price coe�cients in overlapping generations and infinite-horizon.
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