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Abstract

Investors’ attention to the stock market is time-varying and strongly co-moves
with stock market volatility. We build a theoretical model consistent with this
observation. Our model features fluctuating attention to news, and implies a
quadratic relationship between investors’ attention and stock market volatility.
We find empirical support for this relationship. Volatility and risk premium are
counter-cyclical, and the relationship between them changes with the level of
attention. Furthermore, the short-term asset—the claim to dividends in the near
future—is volatile and commands a large equity premium during downturns, in
line with recent empirical findings.
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1 Introduction

Let us imagine an economy in which investors have Gaussian priors on some unob-
servable variables at the beginning of history. Assume that all variables are normally
distributed and, as new information becomes available, investors rationally update
their estimates. In this economy, the conditional variance of investors’ estimates—the
learning uncertainty—is deterministic and quickly converges to its steady-state value.
This result is unrealistic, as it does not allow uncertainty to fluctuate.

One way to overcome this result is to assume discreteness of states for the unob-
servable variable, approach advocated by David (1997) and Veronesi (1999). When the
unobservable variable takes a finite number of values, uncertainty fluctuates and leads
to time-varying return volatility.

In this paper, we propose an alternative framework featuring fluctuating uncertainty.
Instead of assuming discreteness of states, our focus is on investors’ attention, a
variable strongly related with uncertainty. We assume that investors’ attention is
fluctuating. Naturally, a more attentive person has the tendency to learn better—to
decrease uncertainty—hence fluctuating attention endogenously generates fluctuating
uncertainty.

We build a general equilibrium model in which investors collect information on the
unobservable state of the economy. They do so with a fluctuating attention: they are
very attentive at times, and less attentive at other times. We characterize the market
volatility implied by our model and show that it is driven by the fluctuating attention to
news. A consequence of our model is that volatility is driven simultaneously by attention
and uncertainty. First, attention increases volatility by incorporating more information
into prices. Second, attention decreases volatility by reducing uncertainty. We show
that for relatively high levels of attention the former e�ect prevails, whereas for low
levels of attention the latter e�ect prevails. Consequently, these two competing e�ects
create a quadratic relationship between attention and volatility. We find empirical
support for this relationship.

Next, we measure the risk premium and show that it decreases with uncertainty.
Equivalently, the risk premium increases with the attention. The latter result is new
to our knowledge, whereas the former is in line with Veronesi (2000). We find a strong
positive relationship between risk premium and volatility, but only for high levels of
attention. For low levels of attention the relationship is ambiguous. As the relation
between risk premium and volatility depends on the level of the attention, our work
might explain why previous studies obtain mixed results about the nature of this
relationship (Campbell, 1987; Glosten, Jagannathan, and Runkle, 1993).

Then, we build term structures of risk premia and volatilities and show that
fluctuating attention increases both risk premia and volatilities in the short run. These
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features, uncovered recently by van Binsbergen, Brandt, and Koijen (2010), challenge
leading asset pricing models. Furthermore, we show that the term structure of forward
equity yields fluctuates strongly over time, more for short maturities than for long
maturities, consistent with van Binsbergen, Hueskes, Koijen, and Vrugt (2011).

Finally, we calibrate the model on US data and show that attention tends to be
high in bad aggregate economic states. Thus, volatility and risk premium are counter-
cyclical, during downturns the short-term asset commands a large equity premium,
and the slopes of the term structures of forward equity yields and of risk premia are
pro-cyclical. These results are consistent with Mele (2007, 2008), van Binsbergen et al.
(2010), and van Binsbergen et al. (2011).

We focus on attention instead of uncertainty for two main reasons. The first
reason is that uncertainty is inherently di�cult to measure. Massa and Simonov
(2005) and Ozoguz (2009) are two recent attempts, arguing that uncertainty is a
priced risk factor, albeit many of the results from Ozoguz (2009) are only weakly
significant. On the contrary, proxy measures for attention have been successfully built
by Da, Engelberg, and Gao (2011), Vlastakis and Markellos (2012), Dimpfl and Jank
(2011), and Kita and Wang (2012). These authors use Google search volumes on
companies names or tickers and other economic terms to gauge investors’ attention
to publicly available sources of information. All these studies conclude that investors’
attention is strongly time-varying and higher in periods of high volatility. Furthermore,
Vlastakis and Markellos (2012) show that their attention index explains roughly 50%
of the variability in the Market Volatility Index (VIX).

The second reason is that fluctuations in attention necessarily imply fluctuations
in uncertainty. Because attention impacts the learning process of the investor, the
Bayesian uncertainty resulting from learning has to move as well. Although we start by
assuming fluctuating attention, both fluctuating attention and fluctuating uncertainty
are present in our setup.

Inspired by Da et al. (2011), Vlastakis and Markellos (2012), Dimpfl and Jank
(2011), Kita and Wang (2012), and to provide empirical support to the quadratic
relationship between attention and volatility, we build an empirical measure of atten-
tion that we call “Focus on Economic News.” We use Google search volumes on groups
of words with financial or economic content. To avoid any bias, none of the terms
used have positive or negative connotations.1 The resulting index is depicted in Figure
1, lower panel. It confirms that the attention is stochastic. In addition, the upper
panel of Figure 1 depicts the S&P500 volatility. A simultaneous analysis of both panels

1More precisely, the index depicted in Figure 1 is built based on the following combination of
words: “financial news,” “economic news,” “Wall Street Journal,” “Financial Times,” “CNN Money,”
“Bloomberg News,” “S&P500,” “us economy,” “stock prices,” “stock market,” “NYSE,” “NASDAQ,”
“DAX,” and “FTSE.” Other similar words in several combinations are used with almost identical
results.
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Figure 1: Focus on economic news and S&P500 volatility
The lower panel depicts a value weighted search index on financial and economic news
from 2004 to 2011, at weekly frequency. The upper panel depicts the realized S&P500
annualized volatility from 2004 to 2011, resulted from a GARCH(1,1) estimation on
weekly data.

suggest that there is a close connection between the “Focus on Economic News” index
and the S&P500 volatility. We perform a quadratic fit of the 1-week ahead S&P500
volatility on the attention index and find that attention explains 11% of the variability
in the future S&P500 volatility. Moreover, all coe�cients are highly significant. This
relationship is reported in Table 1.

Estimate t-stat p-value R2

Constant 0.270 4.677 0 0.108
Attention -0.071 -2.423 0.016
Attention2 0.011 3.658 0

Table 1: Quadratic OLS fit of 1-week ahead S&P500 volatility on empirical
attention
The table shows the results of a quadratic fit between between the S&P500 volatility
and the empirical attention. The empirical attention corresponds to the “Focus on
Economic News” index built using Google search volumes from 2004 to 2011. Standard
errors are corrected using Newey and West (1987)’s estimator with 3 lags.

Our simple exercise, together with the work of Da et al. (2011) and other afore-
mentioned empirical studies in the same vein, calls for a theoretical model featuring
fluctuating attention, a task that we undertake in this paper.
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2 Related Literature

Our work is related to several strands of the literature. First, the empirical work initi-
ated by Da et al. (2011), pursued by Vlastakis and Markellos (2012), Dimpfl and Jank
(2011), and Kita and Wang (2012), finding a strong positive relationship between at-
tention and volatility, is the main motivation of our paper. We contribute to this
strand of literature by providing a theoretical model able to reproduce the positive
relationship between attention and volatility.

Second, our paper is related to the literature that studies learning and uncertainty
in financial markets. The closest related papers in this literature are Veronesi (1999),
Veronesi (2000), and Brennan and Xia (2001). Veronesi (1999, 2000) assume that
the unobservable fundamental is driven by a continuous-time Markov chain. The
assumed discreteness of states result in a stochastic filtered fundamental’s volatility.
Brennan and Xia (2001) assume that dividend and consumption are two distinct
processes. The unobservable drift of the dividend is assumed to follow a mean-reverting
process that needs to be filtered out. Linear filtering along with the distinction between
dividend and consumption implies a market volatility that is constant, but higher
than in an economy with complete information. Our contribution to this strand of
literature is to obtain a stochastic filtered fundamental’s volatility, without departing
from a Gaussian setting. We also analyze simultaneously the impact of attention and
uncertainty on asset returns.

Third, our work is related to the literature that studies the implications of atten-
tion for investment behavior, initiated by Du�e and Sun (1990). The closest related
papers in this literature are Detemple and Kihlstrom (1987), Peng and Xiong (2006),
Huang and Liu (2007), and Hasler (2012). Detemple and Kihlstrom (1987) is an at-
tempt to solve for endogenous attention in a general equilibrium setting, yet the solution
is only in implicit form. Huang and Liu (2007) and Hasler (2012) find solutions for
optimal attention in partial equilibrium settings. We contribute to this strand of
literature by considering a general equilibrium setting with fluctuating attention. In
our model the attention is exogenous and driven by the state of the economy.

Finally, our work is related to the recent empirical literature that studies the term
structure of risk premia and of volatilities. In this literature, van Binsbergen et al.
(2010) show that the short-term asset (defined as the claim to dividends in the near
future) is more volatile and bears a larger risk premium than the market. Additionally,
van Binsbergen et al. (2011) show that the the slope of the term structure of forward
equity yields is pro-cyclical leading to strong fluctuations in short term yields. We
contribute to this strand of research by building a general equilibrium model able to
match qualitatively some of these findings.
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3 A General Equilibrium Model with Fluctuating

Attention to News

The novelty of our approach is to incorporate state-dependent attention in a continuous-
time pure exchange economy (Lucas, 1978). The economy is characterized by a single
output process (henceforth the dividend) having an unobservable drift (henceforth the
fundamental). A single investor filters out the fundamental by observing the dividend
and a signal. The signal has a particular feature: Its accuracy is time-varying and is
related to the attention of the investor. Specifically, a higher attention translates into
a higher accuracy, and vice versa.

The price of the single perishable consumption good is set to unity. There are two
securities, one risky asset in positive supply of one unit and one risk free asset in zero
net supply. The risky asset is defined as being the claim to a dividend process ”, whose
dynamics are given by

d”t

”t
= ftdt + ‡”dZ”

t

The fundamental is assumed to be unobservable and to follow a mean reverting
process

dft = ⁄
1
f̄ ≠ ft

2
dt + ‡fdZf

t

Since the fundamental is unobservable, the investor uses the information at hand
to estimate it. The investor observes the current dividend ” and an informative signal
s with dynamics

dst = �tdZf
t +

Ò
1 ≠ �2

t dZs
t (1)

The vector (Z”, Zf , Zs)€ is a 3-dimensional standard Brownian motion under the
the complete information filtration. The 3 Brownians are uncorrelated. The process
� belongs to [0, 1] and represents the positive correlation between the signal and the
fundamental.

The above specification of the signal (adopted from Dumas, Kurshev, and Uppal,
2009) can be interpreted as follows. Assume that in this economy there is a very large
number of public news sources (e.g., Wall Street Journal, Financial Times, CNBC,
Internet, Bloomberg, Reuters). Each news source provides an unbiased noisy signal
on the shock governing the fundamental, dZf

t . Because of the large number of news
sources, the agent does not have the capacity to absorb each item of news (information
overload). Consequently, at each point in time the agent collects an arbitrary number
of news that depends on his attention. Since the collected news are of Gaussian type,
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the agent can build a su�cient statistic by averaging them and properly adjusting
the correlation � between this statistic and the fundamental. This results in the
specification exposed in Equation (1).

Furthermore, the specification of the signal is comparable with a situation
in which the investor observes a noisy signal of the fundamental ftdt, as in
Detemple and Kihlstrom (1987), Huang and Liu (2007), or Veronesi (2000).2 We adopt
the structure of the signal exposed in Equation (1) as it is better suited to illustrate the
relationships between equilibrium variables and the correlation �. Indeed, in our case
the correlation � belongs to a compact set, while in the above references the variance
of the noisy signal belongs to the interval [0, Œ[.

In the spirit of Detemple and Kihlstrom (1987) and Huang and Liu (2007), � can
be interpreted as the accuracy of the information flow, which in our setup is assumed
to be time-varying. The investor can exert control on this accuracy: If she collects a
large number of news, then � is close to 1 and the signal is very precise; if she collects
a negligible amount of news, then � is close to 0 and the signal is pure noise. Since the
investor exerts control on this accuracy (although the e�ort exerted by the investor is
exogenous in our setup), we call the correlation process � attention to news and we
interpret the signal s as the flow of news acquired by the investor.

Note that the main di�erence with respect to Detemple and Kihlstrom (1987),
Peng and Xiong (2006), and Huang and Liu (2007) is that we do not model endogenous
information acquisition. Instead, we simply assume that � is exogenously time-varying
and determined by the current economic conditions, as it will be shown in the next
Section. By adopting such a reduced form approach we are able to build a full-fledged
general equilibrium model. Before going into the details of the equilibrium, it is
necessary to characterize the dynamics of the attention �. This is a task that we
undertake below.

3.1 Definition of Time-Varying Attention

In this section we characterize the dynamics of the attention, or the correlation �
between the signal and the fundamental. For this, we construct a variable in such a
way that it reflects the past performance of dividends and we call it performance index.
This variable captures the recent development of the dividend. It is defined as follows

„t ©
⁄ t

0

e≠Ê(t≠u)

d”u

”u
(2)

2In the above references, the agent learns about the level of the fundamental, while in our case
the agent learns about variations in the fundamental (we thank Jerome Detemple for providing this
interpretation). Consequently, when the attention is close to 1, the uncertainty takes some time before
converging toward zero.
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where the parameter Ê > 0 represents the weight associated to the present relative to
the past. If Ê is large, the past dividend growth influences in an insignificant manner
the performance index. On the other hand, if Ê is small, the past dividend growth
influences to a greater extent the current value of „. Koijen, Rodriguez, and Sbuelz
(2009) build a similar performance index in a partial equilibrium setting to allow for
momentum and mean reversion in stock returns. In our case this index is built directly
from the dividend process, to capture in a parsimonious way the recent development of
the dividend.

The dynamics of the performance index can be derived from the dynamics of the
dividend. An application of Itô’s lemma on the performance index yields

d„t = Ê

A
ft

Ê
≠ „t

B

dt + ‡”dZ”
t (3)

It follows that the performance index fluctuates around the fundamental with a mean-
reversion speed Ê. The long term mean of the performance index is f/Ê.

We are now ready to introduce the link between current economic conditions and
the attention �. The following definition is the core of our way to model time-varying
attention.

Definition 1. The attention � is defined as a function g of the performance index:

�t = g(„t) © �
� + (1 ≠ �) e�(„t≠ ¯f/Ê) (4)

where � œ R and � > 0.

It follows from Equation (3) and Definition 1 that the attention � fluctuates around
a long-run mean, the latter being given by �. Moreover, the specification of the
attention assumed in Equation (4) guarantees that the attention (correlation) � lies in
[0, 1], irrespective of the sign of the parameter �.

A particular case is obtained when the parameter Ê is close to infinity, when, from
the definition of the performance index in Equation (2), the agent simply looks at the
current dividend growth. Put di�erently, if Ê = Œ the performance index becomes
a substitute of the current dividend growth. By assuming that Ê œ [0, Œ[ we let the
investor decide how much of the history of past dividends to consider. The performance
index then reflects the current and past dividend growths, with weights adjusted by
the parameter Ê.

According to the sign of the parameter �, the correlation � can either increase
(� < 0) or decrease (� > 0) with the performance index „. The calibration performed in
Section 4 on US GDP data reveals that � is positive and significant, implying that our
investor is more attentive and performs more accurate forecasts in bad aggregate eco-
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nomic states (poor dividend performance) than in good aggregate economic states. This
implication is in line with two pieces of empirical evidence. Da, Gurun, and Warachka
(2011) show that analyst forecast errors are smaller when past 12 months return is
negative than when it is positive, suggesting that information gathered by analysts in
downturns is more accurate than in bullish phases.3 Additionally, Garcia (2012) docu-
ments that investors react strongly to good and bad news during recessions, whereas
during expansions investors’ sensitivity to information is much weaker.

3.2 Discussion on the Attention Process

Our model is based on the argument that investors are not constantly focused on
the flow of information. Instead, periods when investors are relatively well focused
are alternating with periods when they ignore the incoming news. These alternating
periods are not predetermined, i.e., investors do not know today when they will be
attentive in the future.

Du�e and Sun (1990) are the first to study theoretically the implications of atten-
tion on investment behavior. They propose a model featuring slowness of individual
portfolio adjustments, where the investor sets an optimal “time-out” during which she fo-
cuses on other activities. Chien, Cole, and Lustig (2009) and Bacchetta and Wincoop
(2010) adopt simplifying approaches by assuming that the periods of inattention are
fixed. Other studies focusing on investment behavior are Abel, Eberly, and Panageas
(2007), Rossi (2010), or Du�e (2010). Our approach is di�erent in two respects. First,
in our model investors trade and observe their wealth continuously (the aforementioned
papers focus on investors’ inattention to wealth, whereas we focus on investors’ atten-
tion to financial news). Second, unlike Du�e and Sun (1990) the attention we consider
is exogenous and depends on the dividend performance index only.

Endogenous fluctuating attention is hard to solve in general equilibrium settings.
A notable attempt is o�ered by Detemple and Kihlstrom (1987), where the solution
has only an implicit form. Peng and Xiong (2006), Huang and Liu (2007), and Hasler
(2012) find solutions in partial equilibrium settings. Instead of solving for the endogenous
attention, we choose to build a general equilibrium setting and to specify the attention
process in a reduced form. The functional form that we specify in Equation (4) is
quite general; the attention can either be positively or negatively correlated with the
performance index (according to the sign of �), and the parameters �, Ê, and � can
give rise to a large range of di�erent dynamics. These degrees of freedom allow us
to calibrate the model on US data, task that we undertake in Section 4. Below we
proceed with a detailed discussion on the attention process.

3This claim holds under the assumption of continuous information, as in our case. Under discrete
information, the reverse assertion is verified.
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The unconditional distribution of the performance index is Gaussian with mean f̄/Ê

and variance given by ‡2
f

2⁄Ê(⁄+Ê)

+ ‡2
”

2Ê (see Appendix 10.A for a proof of these statements).
We know from Equation (4) that, for � > 0, � is a strictly decreasing function of
„. This monotonicity allows to compute the density function of the attention � by a
change of variable argument:

f
�

(�t) =
-----

1
gÕ (g≠1 (�t))

----- f„

1
g≠1 (�t)

2
=

exp
Q

a≠
⁄Ê(⁄+Ê) log

2
1

�(�t≠1)
(�≠1)�t

2

�

2(⁄‡2
” (⁄+Ê)+‡2

f)

R

b

Ô
fi (��t ≠ ��2

t )
Ú

⁄‡2
” (⁄+Ê)+‡2

f

⁄Ê(⁄+Ê)

While the parameter � dictates the location of the unconditional distribution of
the attention �, two other important parameters govern the shape of this distribution.
The first is �, the parameter which dictates the adjustment of the attention after
changes in the performance index. The second is Ê, the parameter which dictates how
fast the performance index adjusts after changes in dividends. Figure 2 illustrates
the probability density functions of the attention for di�erent values of these two
parameters. The black solid line corresponds to the calibration performed in Section 4
on US data. It shows that the attention is close to a regime-switching process. In other
words, investors switch quickly from a period of very high attention to a period of very
low attention, being moderately attentive only for brief periods. The two additional
lines show that a decrease in the parameter � (dashed blue line) and respectively an
increase in the parameter Ê (dotted red line) have similar e�ects: both tend to bring
the attention closer to its long-run mean.

Although the e�ects are similar, the parameters Ê and � have di�erent impacts
on the process �. The parameter Ê dictates the length of the history of dividends
taken into account by the investor. If Ê is large, the investor tends to focus more on
recent dividend shocks, and the attention reverts quickly to its mean. Consequently,
the unconditional distribution concentrates more around the long-term mean �.

On the other hand, the parameter � controls the range the attention belongs to. A
large parameter � would make the investor’s attention be mainly in 2 states: either
close to 0 or close to 1. The larger � is, the closer to a regime-switching process the
attention becomes. The parameter � governs thus the amplitude of the attention
movements.

Since in the present setup the attention � is observable, the setup remains condi-
tionally Gaussian and the Kalman filter is applicable for the purpose of learning. The
next Section defines the vector of filtered state variables.
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Figure 2: Probability density function of investor’s attention
Probability density function of � for di�erent values of � and Ê. Other parameters are
⁄ = 0.86, f̄ = 0.026, ‡” = 0.015, ‡f = 0.057, � = 0.52. The black solid line illustrates
the pdf for � = 50 and Ê = 0.2, the blue dashed line for � = 10 and Ê = 0.2, and the
red dotted line for � = 50 and Ê = 1.5.

3.3 Filtering

The state vector prior to the filtering exercise consists in one unobservable variable
(the fundamental f) and a vector of two observable variables Ë = ( ’ s )€, where we
define ’ © log ”. In other words, the investor observes the dividend and the signal and
tries to infer the fundamental. Since the performance index „ is built entirely from the
past values of dividends, it does not bring any additional information.

Because the conditional correlation between the signal and the fundamental—the
attention �—is time-varying and is a function of the performance index, the assessed
fundamental (filter) takes a non-standard form. The major change is that the conditional
variance of investor’s current assessment of of f (simply referred to as the posterior
variance, or Bayesian uncertainty) is time-varying. Intuitively, when the attention is
high the uncertainty is low, whereas the opposite occurs when the attention is low.
Following this reasoning, the vector of filtered state variables includes two additional
terms: the performance index, which dictates the level of the attention, and the
uncertainty that we denote by “. Hence, the dynamics of the observed state vector
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becomes

d’t =
3

‚ft ≠ 1
2‡2

”

4
dt +

1
‡” 0

2
dWt

d ‚ft = ⁄
1
f̄ ≠ ‚ft

2
dt +

1
“t

‡”
‡f�t

2
dWt

d„t = Ê

A ‚ft

Ê
≠ „t

B

dt +
1

‡” 0
2

dWt

d“t =
A

‡2

f (1 ≠ �2

t ) ≠ 2⁄“t ≠ “2

t

‡2

”

B

dt

(5)

where W © (W ”, W s)€ is a 2-dimensional Brownian motion under the investor’s obser-
vation filtration, and � is given by the functional form (4). The assessed fundamental
is denoted by ‚f . The two Brownian motions governing this system are defined by

dW ”
t = 1

‡”

5
d’t ≠

3
‚ft ≠ 1

2‡2

”

4
dt

6

dW s
t = dst

The proof of the above statements is provided in Appendix 10.B. A notable di�erence
arises between our model and other models of learning with similar structures (e.g.,
Scheinkman and Xiong 2003, Dumas et al. 2009). In the latter models it is usually
assumed that the uncertainty converged to its steady-state value. The deterministic
nature of the uncertainty process obtained in the latter references makes this assumption
plausible, as “ converges quickly to its steady-state. In our case, although the process
of the posterior variance remains locally deterministic, we cannot assume a constant
uncertainty, as it depends on the attention, which itself is time-varying, as shown in
(5). Thus, uncertainty must be included in the state space. Although this increases
considerably the complexity of the problem, we are still able to solve for the equilibrium
by a linear-quadratic approximation.

A crucial implication arises from our modeling assumption of time-varying attention.
The dynamics of the assessed fundamental ‚f depend on two di�usion components, the
first loads on dividend innovations and the second on news innovations. As these two
innovations represent the signals used by the investor to infer the fundamental, the
vector

1
“t

‡”
‡f�t

2
constitutes the weights assigned by the agent to both signals. As

the attention changes, these weights move in opposite direction: A higher attention
pushes the investor to give more weight to news, whereas a lower attention pushes the
investor to give less weight to news and more weight to the dividend.

Consequently, the variance of the filtered fundamental, denoted henceforth by ‡2( ‚ft),
is time-varying. It satisfies

‡2( ‚ft) = “2

t

‡2

”

+ ‡2

f�2

t (6)
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Here is a verbal restatement of Equation (6). An increase in the attention has
two opposing e�ects on the variance of the filtered fundamental. First, as attention
increases, the investor assigns more weight to news and thus the variance of the filtered
fundamental increases through the second term on the right hand side. Second, as
attention increases, the investor assigns less weight to the dividend and thus the
variance of the filtered fundamental decreases through the first term on the right hand
side.

In other words, there are two forces driving the variance of the filtered fundamental.
Fluctuating attention increases the variance of the filtered fundamental through better
learning (a direct impact). Better learning, in turn, decreases uncertainty, thus
dampening the initial e�ect (an indirect impact).

A note of caution is in order here. The deterministic dynamics of the uncertainty
process outlined in the last Equation of (5) shows that there is no instantaneous
correlation between attention and uncertainty. Indeed, there is no Brownian motion
in the dynamics of “. What these dynamics suggest is that uncertainty decreases
deterministically when attention is high and increases deterministically when attention
is low. Hence, the two competing e�ects on the variance of the filtered fundamental in
Equation (6).

To summarize, we o�er a framework to study the simultaneous impact of attention
and uncertainty on asset prices. While in Veronesi (1999, 2000) attention is constant
but uncertainty is fluctuating due to the assumed discreteness of states the fundamental
can belong to, in our case attention drives uncertainty. Hence our equilibrium model
permits to study the dynamic impact of both attention and uncertainty on asset returns.
The computation of the equilibrium is exposed in what follows.

3.4 Equilibrium

Because our setup contains two observable Brownian motions and only one risky asset,
markets are incomplete. The problem of the investor in this economy is to maximize
expected utility from lifetime consumption subject to the lifetime budget constraint:

sup
c,n

E
⁄ Œ

0

e≠flt c1≠–
t

1 ≠ –
dt

s.t. dVt = [rtVt ≠ ct + ntSt (µt ≠ rt)] dt + ntSt (‡
1t ‡

2t) dWt

(7)

where Vt is investor’s wealth, rt is the risk-free rate, nt is the number of shares of the
risky asset, µt is the expected return of the risky asset, (‡

1t ‡
2t) is the 2-dimensional

di�usion vector of the risky asset, fl is the subjective discount factor, and – is the
coe�cient of relative risk aversion.
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Optimality and market clearing yields

ct = ”t

nt = 1

›t = e≠flt

A
”t

”
0

B≠–
(8)

where › is the state price density. Because we are in a representative agent econ-
omy, the state price density is characterized as in the the complete market setup of
Karatzas, Lehoczky, and Shreve (1987) and Cox and Huang (1989).

The functional form of the state price density implies that an increase in expected
dividend growth decreases the expected value of discount factors. Furthermore, pre-
cautionary savings imply that an increase in future dividend growth risk increases the
expected value of discount factors. In our model future dividend growth risk is not
constant, but depends crucially on the volatility of the expected growth rate ‡( ‚ft). It
is precisely the e�ect of fluctuating dividend growth risk which, through the discount
factor channel, generates our results.

The price of the risky asset is computed as the expected sum of discounted future
dividends:

St = Et

C⁄ Œ

t

›u

›t
”udu

D

= ”–
t

⁄ Œ

t
e≠fl(u≠t)Et

Ë
e(1≠–)’u

È
du (9)

The dynamics of the risky security are of the form

dSt

St
=

A

µt ≠ ”t

St

B

dt + (‡
1t ‡

2t)dWt

where µ, ‡
1

, and ‡
2

are to be determined.

3.5 Transform Analysis

It can be easily seen that the dynamics of the state vector described in the system
of Equations (5) are not a�ne. First, the performance index „ enters the dynamics
of both ‚f and “ through the nonlinear functional form of the attention (Equation 4).
Second, the uncertainty “ enters with a quadratic term in its own drift.

Consequently, the theory of a�ne processes (e.g., Du�e, 2008) cannot be used
directly to solve for the conditional expectation in Equation (9). To overcome this
di�culty, we first notice that ‚f and „ are mean reverting around their long term means
f̄ and f̄/Ê respectively. Moreover, when � converges to its long term mean � (or,
equivalently, when the performance index „ is at its long term mean) we can solve for
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the steady-state value of uncertainty, “ss. That is, “ss solves the following equation

‡2

f (1 ≠ �2) ≠ 2⁄“ss ≠ “2

ss

‡2

”

= 0

This equation has two solutions, only one of them being positive.4 We have now a
natural set of reference points (f̄ , f̄/Ê, and “ss) around which we can implement an
approximation of the dynamics of the state vector. This task is undertaken below.

In order to obtain a su�ciently accurate approximation, we first augment the state
space by adding „2, ‚f 2, “2, ‚f„, “„ and ‚f“ in the vector of state variables. We define
the 10-dimensional augmented state vector X by

X =
1

’ ‚f „ “ „2 ‚f 2 “2 ‚f„ “„ ‚f“
2€

We compute the dynamics of this augmented state vector by applying Itô’s lemma.
The drift and the variance-covariance matrix of the augmented state vector, µ(X)
and ‡(X)‡(X)€, are non-linear functions. Consequently, we perform a 3-dimensional
second order Taylor approximation of the drift µ(X) and of the variance-covariance
matrix ‡(X)‡(X)€ with respect to the variables ‚f , „ and “ around the points f̄ , f̄/Ê

and “ss respectively. More precisely, the approximation yields

µ (Xt) ¥ K
0

+ K
1

Xt

‡ (Xt) ‡ (Xt)€ ¥ H
0

+ H
11

’t + H
12

‚ft + H
13

„t + H
14

“t + H
15

‚f 2

t + H
16

„2

t + H
17

“2

t

+ H
18

‚ft„t + H
19

“t„t + H
110

‚ft“t

where K
0

is a 10-dimensional vector and K
1

, H
0

, H
11

- H
110

are 10-dimensional squared
matrices which we do not expose here, but are available upon request.

This approximation can be performed at orders higher than 2 by adding state
variables to the system and performing the same steps. As an exercise, we went
up to the fourth order and obtained almost identical equilibrium quantities. This
approximation allows us to work with an a�ne 10-dimensional vector of state variables,
X. As the expectation term pertaining to Equation (9) is the moment-generating
function of ’, we can now apply the theory of a�ne processes to get a closed form
expression for it. The moment-generating function satisfies

Ete
(1≠– 0 0 0 0 0 0 0 0 0)Xt+· ¥ e–̄(·)+

¯—(·)

€Xt (10)

where –̄ (·) and —̄ (·) solve an 11-dimensional system of Riccati equations with initial
conditions –̄ (0) = 0, —̄

1

(0) = 1 ≠ –, and —̄i(0) = 0, ’i > 1. With slight abuse of

4The positive root of the equation is “ss = ≠⁄‡2
” +

Ú
‡2

”

1
⁄2‡2

” + ‡2
f (1 ≠ �2)

2
.
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notation, this system of Riccati equations is written5

—̄Õ (·) = K€
1

—̄ (·) + 1
2 —̄ (·)€ H

1

—̄ (·)

–̄Õ (·) = K€
0

—̄ (·) + 1
2 —̄ (·)€ H

0

—̄ (·)
(11)

with K and H being defined above. Notice from (5) that the first state variable ’ does
neither enter the variance-covariance matrix nor the drift. Hence we have H

11

= [0]
10◊10

and K
1

(i, 1) = 0, ’i. This yields —̄
1

(·) = 1 ≠ – and the system of Riccati equations
reduces to a dimension of 10. We then solve this system numerically.

To address the concern of the accuracy of the above approximation, we implement
the following procedure. Define the transform M by

Mt © Et

Ë
e(1≠–)’u

È
.

Since M is a martingale, the associated partial di�erential equation is

L ’,‚f,„,“M + ˆ

ˆt
M = 0 (12)

where L ’,‚f,„,“ denotes the infinitesimal generator of (’, ‚f, „, “). We substitute the
right hand side of Equation (10), that is, the approximation of the moment generating
function, into the left hand side of Equation (12). Then, we compute the residuals of
the approximate solution for large ranges of values of ( ‚f, „, “). For this exercise, we
set T ≠ t = 1 and ’ = 0, because the absolute values of the residuals seem to decrease
with the time horizon and the log-consumption. We obtain residuals of order 10≠8 at
most. Our approximation scheme seems to provide very accurate results.

4 Calibration to the U.S. Economy

We proceed now to the calibration of our model to the U.S. economy. The investor is
able to observe 2 processes: the dividend stream ” and a flow of information s. Hence,
the investor uses ” and s to estimate the evolution of the non-observable variable
f . Calibrating our model to observed data is challenging since we don’t know which
variable corresponds to the signal s. Although our theoretical model assumes that the
flow of information s is observable, it is almost impossible to observe and quantify
this variable in practice. To manage this problem, we follow David (2008) and use
the analyst 1-quarter ahead forecasts on real US GDP growth rate as a proxy for the
filtered fundamental ‚f . To be consistent, we use the real US GDP realized growth rate

5The matrix H1 in the term 1
2 —̄ (·)€

H1—̄ (·) is 3-dimensional. A separate equation should be
written for each —i, but we avoid this here and prefer the form (11) for simplicity.
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as a proxy for the output growth rate. Quarterly data from Q1:1969 to Q3:2010 are
obtained from the Federal Reserve Bank of Philadelphia’s website.

Since we work with quarterly data, an immediate discretization of the stochastic
di�erential equations exposed in (5) would provide biased estimators. Hence, we first
solve this set of 4 stochastic di�erential equations. The solutions are provided in
Appendix 10.C. We then approximate the continuous-time processes pertaining to
those solutions using the following simple discretization scheme

⁄ t2

t1
Ÿ

1,udu ¥ Ÿ
1,t1�

⁄ t2

t1
Ÿ

2,udWu ¥ Ÿ
2,t1‘t1+�

where Ÿ
1

and Ÿ
2

are some arbitrary processes, � = t
2

≠ t
1

= 1

4

, and ‘t1+�

≥ N(0, �).
By observing the vectors log ”t+�

”t
and ‚ft for t = 0, �, . . . , T�, we can directly infer

the value of the Brownian vector ‘”
t+�

© W ”
t+�

≠ W ”
t . Moreover, because the observed

vector ‚ft, t = 0, �, . . . , T� depends on ‘”
t+�

and ‘s
t+�

© W s
t+�

≠W s
t , we obtain a direct

characterization of the signal vector ‘s
t+�

by substitution. This shows that observing ”

and ‚f , instead of ” and s, also provides a well defined system.

4.1 Generalized Method of Moments Procedure

Our model is calibrated on the 2 time-series discussed above using Hansen (1982)’s
Generalized Method of Moments (GMM) procedure. The vector of parameters is
defined by � = (‡”, f̄ , ⁄, ‡f , Ê, �, �)€. Consequently, we need 7 moment conditions to
infer the vector of parameters �. For the sake of brevity, the moment conditions are
exposed in Appendix 10.D.

The values, t-stats, and p-values of the vector � resulted from the GMM estimation
are provided in Table 2. The sole parameter incurring a relatively small t-stat is the
mean reversion speed ⁄ of the fundamental. A test of the null hypothesis H

0

: ⁄ Æ 0.3
is rejected at 95% confidence level. We want to point out that the value of ⁄ is
relatively far from what the long run risk literature assumes. In fact, papers dealing
with long run uncertainty typically suppose that the mean reversion parameter is
between 0 and 0.1. In Bansal and Yaron (2004) the AR(1) parameter of the funda-
mental is worth 0.979 at monthly frequency. This parameter would correspond to
⁄ = 0.25. Barsky and De Long (1993) go even further by assuming that the funda-
mental is an integrated process. Although our dataset suggests that the hypothesis of
Barsky and De Long (1993) and Bansal and Yaron (2004) have to be rejected , only
the far future can potentially confirm that these authors’ hypothesis is sustainable.
Indeed, 40 years of quarterly data are largely insu�cient to estimate a parameter
implying a half-life of roughly 3 years, i.e., the value proposed by Bansal and Yaron
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(2004).

Estimate t-stat p-value
‡” 0.015 11.18 0
f̄ 0.026 8.98 0
⁄ 0.861 2.97 0.003
‡f 0.057 10.00 0
Ê 0.201 11.35 0
� 50.065 7.13 0
� 0.524 9.95 0

Table 2: Calibration to the U.S. economy (GMM estimation)

We obtain a large positive and significant value for the parameter �, suggesting that
investors have the tendency to jump from very low attention states to high attention
states. The parameter Ê is positive and significant. Its value of 0.2, coupled with the
large value of �, imply that the attention has the tendency to stay mainly in high or
low states. The probability distribution function of the attention depicted in Figure
2 (black solid line) confirms this intuition. Moreover, since � is positive, the data
confirms that attention is high in bad aggregate economic states („ <

¯f
Ê ) and low in

good aggregate economic states („ >
¯f
Ê ). This can be interpreted as follows. When

the economy is in a bullish period, the probability of a decrease in ” is relatively small.
Thus, investors do not have the incentive to exert a strong learning e�ort. On the other
hand, when the economy enters a recessionary phase, investors substantially worry
about the fundamental driving the economy. In this situation, the probability of a
decrease in future consumption is high, leading investors to estimate as accurately as
possible the change in the fundamental.

A positive parameter � is consistent with empirical findings by Da et al. (2011) and
Garcia (2012). On the theoretical side, Hasler (2012) finds (in a partial equilibrium
setting) that forecast accuracy is decreasing with past returns which, again, is in line
with a positive parameter �.

Finally, we obtain a low volatility of dividends ‡” (which is equal to the volatility of
consumption in our model). Additionally, we set the relative risk aversion to – = 3 and
the subjective discount rate to fl = 0.01. We turn now to the analysis of our results.

5 Attention, Uncertainty, and Volatility

Attention and uncertainty are strongly related in our setup: High attention brings lower
uncertainty, whereas low attention brings higher uncertainty. How is the volatility of
asset returns driven by attention and uncertainty? We address this question below.

In the theoretical literature, spikes in volatility have been often related to spikes in
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uncertainty (Veronesi, 1999; Timmermann, 1993, 2001; Ozoguz, 2009). In what follows
we show that the primary e�ect of attention on volatility overcomes the secondary
e�ect of the uncertainty. While we find a similar positive relationship between volatility
and uncertainty, the e�ect of attention is clearly stronger. We show that high levels of
investors’ attention increase both volatility and risk premia.

The stock return di�usion vector follows from Equation (9) by applying Itô’s lemma
to the stock price S:

(‡
1t ‡

2t) = 1
St

ˆSt

ˆx€
t

di�(xt) (13)

where di�(·) is the di�usion operator. Denoting by Sf and S„ the partial derivatives of
the price with respect to the assessed fundamental ‚f and the performance index „, the
variance of stock returns is

Î‡tÎ2 = ‡2

2t + ‡2

1t =
3

Sf

S

4
2

‡2

f�2

t +
5
Sf

S

“t

‡”
+ ‡”

3
1 + S„

S

46
2

(14)

Stock return volatility depends on a complex interaction between attention and
uncertainty on the one hand, and investor’s price valuations of those states (reflected
in the price and its partial derivatives with respect to ‚f and „) on the other hand.
A similar form for the variance of stock returns is discussed by Veronesi (2000) and
Brennan and Xia (2001). To make a parallel with Veronesi (2000), the term V◊ in his
case is equivalent to Sf“t/S in our case. If uncertainty is zero, V◊ is zero. If investors
assign the same value to the asset for any value of ‚f (that would be the case for
log-utility), then V◊ is zero.

The variance of stock returns expressed in Equation (14) has two terms. Both terms
depend on the attention �, the first one directly, whereas the second one indirectly.
The first term clearly shows a quadratic relationship between attention and return
variance. The indirect e�ect in the second term is produced by the inverse relationship
between attention and uncertainty. Naturally, and as explained in Section 3.3, as the
agent learns better (when the attention is high), the uncertainty is diminished. Thus,
our intuition is that the first term increases with �, while the second decreases.

As in Section 3.3, the e�ect of the attention on the stock return volatility can also
be interpreted in terms of weights. First, as attention increases, the investor assigns
a higher weight to news, hence the stock return volatility increases by accelerating
revelation of news into prices. Second, as attention increases, the investor assigns a
lower weight to the dividend, thus decreasing the stock return volatility by incorporating
less of the dividend shock into prices. Hence, periods of relatively high attention have
the tendency to disconnect the price from dividend shocks.

We insist here on the fact that the direct e�ect of attention on return variance,
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Figure 3: Decomposition of stock return variance
Panel (a) depicts the first term of (14), resulted from a simulations of 20 years of weekly
data. Panel (b) depicts the second term of (14) resulted from the same simulation.
The parameter values are shown in Table 2 and discussed in Section 4.

arising through the first term of Equation (14), is unambiguous. No matter the sign
of Sf , i.e. the partial derivative of the price with respect to the assessed fundamental
‚f , the squared attention has a positive coe�cient. The uncertainty e�ect is, however,
dictated by the sign and magnitude of Sf . In a setup with power utility function,
Veronesi (2000) shows that, for levels of risk aversion higher than 1, Sf is negative.
Investors more risk-averse than log assign a lower relative value to the asset in high
growth states—as they discount future dividends using their marginal utility of future
consumption.

Partial derivatives of the price with respect to the assessed fundamental ‚f and the
performance index „ are functions of the state vector. Hence, they change with the
attention, preventing us from showing a unique relationship between attention and
variance. Consequently, the simplest way to assess the magnitude and the e�ect of
the attention on the two terms of the variance in Equation (14) is by simulations. We
therefore simulate 20 years of weekly data (that is, 1040 data points) and we plot the
two terms of the price variance as functions of the attention. The results are depicted
in Figure 3.

Scales in both panels of Figure 3 are matched, with the aim to compare the
magnitude of the two terms. Panel (a) confirms the quadratic relationship between the
first term of the stock return variance and the attention. It is important to note that
changes in the stock price and in its partial derivative with respect to the assessed
fundamental, Sf , have little e�ect on the relationship, which remains clearly quadratic.
Panel (b) confirms our initial intuition of negative relationship between the attention
and the second term of the price variance. The relationship is, however, more sensitive
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Figure 4: Investors’ attention drives stock return variance and volatility
Panel (a) depicts the variance of asset returns, resulted from a simulations of 20 years
of weekly data. Panel (b) depicts the volatility of asset returns, resulted from the
same simulation. The black solid lines are quadratic fits. The parameter values are
shown in Table 2 and discussed in Section 4.

to changes in the stock price and its partial derivatives Sf and S„. Furthermore, the
relationship depicted in Panel (b) of Figure 3 approaches a linear form.

Inspection of both panels reveals that the direct e�ect is stronger than the indirect
one when the attention is high and weaker when the attention is low. Thus, adding up
the two terms of the stock return variance, one should expect a U-shaped (quadratic)
relationship between attention and return variance. This is confirmed by Figure 4,
in which we plot the variance and the volatility of asset returns, as functions of the
attention �, resulted from the same simulation of 20 years of weekly data. Moreover,
as Figure 3 suggests, we expect a positive coe�cient for the quadratic term and a
negative coe�cient for the linear term.

Panel (a) of Figure 4 shows that the relationship between attention and stock
return variance is indeed quadratic. It depicts the total return variance, i.e., the sum
of both terms in Equation (14). To help envisioning the quadratic relationship, we
added to the graph a quadratic fit of our simulation. In panel (b) of Figure 4 we plot
the relationship between attention and volatility, which remains of a quadratic shape,
as the added quadratic fit suggests.

To summarize, there are two opposing e�ects produced by fluctuations in attention.
First, stock return variance increases quadratically with attention. Second, higher
attention means better learning, which tends to decrease linearly the variance of stock
returns. Overall, the relationship between price variance and attention is quadratic.

A natural question arising at this point is which of the two e�ects dominates. Is
the attention increasing the volatility or reducing it? The scatter plots from Figure 4
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suggest a U-shaped pattern. For low values of attention the second e�ect (decrease of
uncertainty through better learning) is strong and can lead to lower variance/volatility.
For high values of attention, however, the first e�ect (direct increase of the attention)
clearly dominates and leads to higher variance/volatility.

We perform a quadratic fit of return volatility on attention. This fit is represented
by the black solid line in panel (b) of Figure 4. The results of the estimation are shown
in the last 3 columns of Table 3. For convenience, we show in the first three columns the
results of the quadratic fit between the S&P500 volatility and the empirical attention,
as exposed in the Introduction and in Table 1.

Data Model
Estimate t-stat R2 Estimate t-stat R2

– 0.270 4.677 0.108 0.085 376 0.952
—

1

-0.071 -2.423 -0.010 -8.47
—

2

0.011 3.658 0.049 36.8

Table 3: Quadratic OLS fit of volatility on attention (Data and Model)
The left panel of the table shows the results of a quadratic fit between between the
S&P500 volatility and the empirical attention. The right panel shows the results of
the quadratic fit performed with simulated data (20 years of weekly data). – is the
intercept, —

1

is the first order coe�cient, and —
2

the second order coe�cient of the
quadratic fit.

Although the coe�cients obtained from our simulation have di�erent magnitudes
than the empirical ones, their sign is correct in all cases. Which confirms that, at
least qualitatively, we have a correct relationship between attention and stock market
volatility. Moreover, the sign of coe�cients have an economic interpretation. First,
higher attention means faster revelation of information into prices, which increases
volatility (positive quadratic term). Second, higher attention means lower uncertainty,
which decreases volatility (negative linear term). For high levels of attention, the former
e�ect dominates the latter.

The contribution of our setup with respect to Veronesi (2000) is twofold. First, in
our setup the attention (equivalent to the quality of information in Veronesi, 2000) is
time-varying. This brings our model closer to recent empirical work on fluctuating
attention. Second, in our setup uncertainty is time-varying due to fluctuating attention,
which allows us to dynamically seize its impact, whereas Veronesi (2000) performs
comparative statics analysis in terms of mean preserving spread of the distribution of
the assessed fundamental.

One additional implication of our model is that, as attention increases, the price
should be more strongly related to news. This can be easily seen from Equation (14).
Is this implication supported by the data? In recent empirical work, Garcia (2012)
shows that the predictability of stock returns using news’ content is concentrated
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during recessions, lending support to our implication. More precisely, Garcia (2012)
finds that one standard deviation shock to news during recessions (i.e., during times of
high attention) predicts a change in the conditional average return on the Dow Jones
Industrial Average of twelve basis points over one day.

An important question could be raised at this point regarding the exogenous process
of attention assumed in Equation (4). How would our results be a�ected if the attention
itself depends on return volatility? In other words, what if investors observe high return
volatility and become more attentive? Such a problem, comprising a feedback e�ect of
volatility on attention, is very di�cult to solve, as explained by Detemple and Kihlstrom
(1987). We conjecture, however, that this feedback mechanism can only reinforce our
results: Higher attention brings higher volatility which in turn brings higher attention
and so on.

6 Attention, Uncertainty, and Risk Premium

By applying Itô’s Lemma to the state price density (Equation 8) we obtain the risk
free rate r and the market price of risk ◊:

d›t

›t
= ≠rtdt ≠ ◊tdWt

The first order conditions of the optimality problem (7) imply that the equilibrium
excess return must satisfy

µt ≠ rt = –‡
1t‡” = –Covt

A
d”t

”t
,

dSt

St

B

/dt (15)

where ‡
1t is the first component of the stock return di�usion defined in Equation (13).

Equation (15) states that the covariance between changes in dividend (which in
equilibrium equals consumption) and the rate of return on the risky asset is proportional
to the expected excess return on the risky asset, with coe�cient of proportionality
given by the risk aversion. It follows from Equation (15) that the equity risk premium
equals

µt ≠ rt = –
5
‡2

”

3
1 + S„

S

4
+ Sf

S
“t

6
(16)

Here is a verbal restatement of Equation (16). Attention a�ects the equity premium
only indirectly through the uncertainty channel. As attention gets higher, uncertainty
is lower, and since Sf/S is negative, the risk premium increases. A similar result is
obtained by Veronesi (2000): for a coe�cient of risk aversion higher that 1, lower
uncertainty increases the risk premium, whereas for – lower than 1 the opposite holds.
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Since the risk premium depends on the covariance of consumption growth and stock
returns, as attention increases the covariance of returns and consumption increases and
so does the risk premium.

When the attention is high (uncertainty is low), the covariance between consumption
growth and stock returns is higher than in the case where attention is low (uncertainty
is high). Let us consider the latter case. A negative shock in dividends has two opposite
e�ects on prices: (i) it tends to decrease the price through a direct dividend channel,
and (ii) it tends to increase the price through an indirect discounting channel—discount
rates decrease because the shock reduces the assessed fundamental. When attention is
low (high uncertainty), the latter e�ect dominates. Indeed, low future consumption
pushes the investor to demand more of the stock. This is the precautionary savings
e�ect. Hence the covariance between dividend growth and stock return is negative
and so is the risk premium. Conversely, when attention is high (low uncertainty), the
former e�ect outweighs the discounting e�ect. This yields a positive covariance and a
positive risk premium.

Figure 5 depicts the risk premium resulted from the simulation discussed previously.
Ceteris paribus, a higher level of attention implies a higher risk premium. Taking into
consideration the fact that for the same level of attention one can have several values
of uncertainty, there are several levels of risk premia for the same level of attention, as
shown in the scatter plot.

Veronesi (2000) uncovers the seemingly paradoxical result that uncertainty decreases
the risk premium. We obtain the same result for a fixed level of attention: as uncertainty
gets higher, the risk premium is lower. Letting the attention to vary has, however, a
strong e�ect on the risk premium. As attention increases, uncertainty gets smaller,
which in turn increases the risk premium. As suggested in Figure 5, the e�ect of the
attention seems strong.

More to the point, Figure 5 shows that the relationship between attention and
risk premium is not linear; risk premium increases more when the attention is high
(bad aggregate economic states) than when the attention is low (good aggregate
economic states). Risk-premia are therefore counter-cyclical, and lower much less
during expansions than they increase during recessions, as in Mele (2007). With
respect to Mele (2007) we have, nonetheless, a complementary explanation. While
Mele (2007) suggests that the price-dividend ratio should be increasing and concave
in the fundamental to generate this e�ect, our explanation is that, although the price
dividend ratio is not increasing and concave, the relationship between risk premia and
attention is increasing and convex.

It is worth pointing out that the risk premium is small and mostly negative in
our setup. This result arises because we consider an investor whose elasticity of
intertemporal substitution is below one and who consumes the aggregate dividend,

24



0 0.2 0.4 0.6 0.8 1
≠0.004

≠0.003

≠0.002

≠0.001

0

Attention �t

R
isk

pr
em

iu
m

Figure 5: Investors’ attention drives risk premia
Equity risk premium, as a function of attention, resulted from the same simulation of
20 years of weekly data. The parameter values are shown in Table 2 and discussed in
Section 4.

much as Veronesi (2000). In such a setup, bad news about dividends decreases current
consumption but also future consumption, forcing the agent to demand more of the stock
today in order to smooth consumption. This larger demand tends to increase the price.
The result would be reversed if the elasticity of intertemporal substitution was larger
than one, suggesting that Epstein-Zin preferences would increase the equity premium
(Bansal and Yaron, 2004). Exponential utility might help as well to increase the equity
premium (Veronesi, 1999). Finally, an economy where dividends and consumption
follow separate processes (Brennan and Xia, 2001) would also generate a higher risk
premium.

The results depicted in Figures 4 and 5 suggest that there is no clear relationship
between volatility and risk premia. While higher attention unambiguously increases
the risk premium, the relationship between attention and volatility is U-shaped. It is
worth mentioning, nonetheless, that for reasonably large levels of attention (larger than
0.2), there is a clear positive relationship between volatility and risk premia. Volatility
and risk premia are, therefore, counter-cyclical (Mele, 2007, 2008).

These results suggest that the nature of the relation between market risk premium
and conditional market variance changes with the attention. While for low levels of
attention there seems to be a negative relationship (Campbell, 1987; Glosten et al.,
1993; Ozoguz, 2009), for high levels of attention the relationship turns positive. Hence,
one implication of our model is that adding attention to the regression risk premium–
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volatility could improve explanatory power. Indeed, as investors attention seems to
explain anomalies in asset return predictability (Peng, Xiong, and Bollerslev, 2007;
Da et al., 2011), it is a worthwhile endeavor to study these implications in future
research.

7 Volatility and Risk Premium in the Short-Term

A recent paper by van Binsbergen et al. (2010) challenges leading asset pricing models
by showing that risk premia and volatilities are concentrated mostly in the short-term.
van Binsbergen et al. (2010) arrive to this conclusion by recovering prices of zero-coupon
equity (dividend strips) on the aggregate stock market. Leading asset pricing models
like Campbell and Cochrane (1999), Bansal and Yaron (2004), or Gabaix (2008) all
predict the opposite, that is, higher risk premia and volatilities for long-term dividend
strips. It is therefore an important task to build a general equilibrium model consistent
with the findings of van Binsbergen et al. (2010).

The short-term asset computed by van Binsbergen et al. (2010) as the claim to first
2 years of dividends is very volatile and bears a high risk premium, especially during
bad times. In what follows we show that fluctuating investors’ attention increases both
the volatility and the risk premium of the short-term asset exactly during bad times.
Moreover, the increase of the volatility is proportionally higher for the short-term asset
than for the market as a whole—meaning that the volatility increases more in the
short-term than in the long term during bad times.

Similar to van Binsbergen et al. (2010), the short-term asset price at time t satisfies

STAt = Et

⁄ T

t

›u

›t
”udu

where T = 2 is the short-term asset payout horizon. The relationship between the
stock market price and the short-term asset price is

St = STAt + Et

⁄ Œ

T

›u

›t
”udu

= STAt + LTAt

where LTAt is the long-term asset, paying dividends from T to infinity.
Figure 6 depicts the volatility of the short term asset resulted from the simulation

performed in the previous sections (Panel a) and one path of the short-term asset price
(black solid line, panel b) and its corresponding dividend payout lagged 24 months (red
dashed line, panel b). To increase readability of the graph, the lines from panel (b)
correspond to the first 10 years of simulated data.

The relationship between the volatility of the short-term asset and attention, as
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Figure 6: The volatility of the short-term asset increases with attention.
Furthermore, the short-term asset is more volatile during downturns
Panel (a) depicts the volatility of the short-term asset resulted from a simulation of
20 years of weekly data. Panel (b) depicts the price of the short term asset, defined as
the claim to the next 2 years of dividends (black solid line) and its lagged dividend
realizations (red dashed line), resulted from the same simulation. The lines from panel
(b) correspond to the first 10 years of simulated data. The parameter values are shown
in Table 2 and discussed in Section 4.

shown in panel (a) of Figure 6, is similar with the one found for the market index. As
attention increases, the short-term asset becomes more volatile, in a quadratic manner.
All the intuition from Section 5 applies in this case as well.

Panel (b) of Figure 6 reveals that the short-term asset is more volatile than its asso-
ciated dividend payout yielding excess volatility in the short-run. Next, the short-term
asset volatility is larger in periods of poor dividend performance compared to periods
of sustained growth. Figure 6 is thus in line with the findings of van Binsbergen et al.
(2010).

When attention increases, the volatility of the short-term asset increases more
than the volatility of the index itself. To illustrate this, we plot in Figure 7 the
relationship between the short-term asset to market volatility ratio against the attention
�. Obviously, the volatility of the short-term asset increases more with the attention
than market volatility. The red scatter plot depicts the simulated values and the black
line is the corresponding quadratic fit. There is a clear positive relationship between
attention and the short-term asset to market volatility ratio.

Our model suggests that, in bad aggregate economic states, investors are more
attentive to news. The increased attentiveness helps in reducing the uncertainty related
to future expected growth rates which, in turn, tends to decrease the market volatility.
However, higher attention speeds up information revelation, which increases volatility.
The latter e�ect clearly dominates at high levels of attention. Finally, as attention
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Figure 7: Short-term asset to market volatility ratio
Ratio of the short-term asset volatility to market volatility, as a function of attention.
The black solid line represents a quadratic fit. The parameter values are shown in
Table 2 and discussed in Section 4.

increases, expected dividend growth becomes more sensitive to news in the short-term
than in the long-term. This implies a higher sensitivity to news for the short-term
asset and, consequently, a higher short-term asset to market volatility ratio.

We now turn to the term structure of risk premia. The main questions that we
address are whether there is more risk premium in the short term than in the long term
and whether the attention can act upon the slope of the term structure of risk premia.
The term structure can be computed by applying Itô’s lemma to single dividend paying
assets. Let ”t+· denote the stochastic dividend paid out in · years from today’s date t,
whose price today is denoted by St,· . We have

St,· = Et

C
›t,·

›t
”t+·

D

dSt,·

St,·
= µt,· dt + ‡t,· dWt

The instantaneous risk premium of every dividend strip, µt,· ≠ rt, can then be
computed numerically. The risk premia for all maturities form a term structure of risk
premia. As this term structure can be di�erent according to state values, Figure 8 plots
the term structure of risk premia in 3 situations. Panel (a) depicts a simulated path (10
years of weekly data) of the expected growth rate ‚f . There are 3 cases emphasized in
the plot: case A (expected growth rate is at the maximum—good aggregate economic
states), case B (expected growth rate is at the minimum—bad aggregate economic
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Figure 8: Term structure of risk premia
Panel (a) depicts a simulated path of the expected growth rate ‚f (10 years of weekly
data). Panel (b) depicts the term structure of risk premia in the 3 cases outlined in
panel (a): case A (expected growth rate is at the maximum—good aggregate economic
states), case B (expected growth rate is at the minimum—bad aggregate economic
states), and case C (expected growth rate is at its long-term mean f̄ . The parameter
values are shown in Table 2 and discussed in Section 4.

states), and case C (expected growth rate is at its long-term mean f̄). In case A the
attention is at its lowest level, in case B the attention is at its highest level, while in
case C the attention is near its long-term mean.

The resulting term structures of risk premia for each case are depicted in panel (b)
of Figure 8. The term structure is upward-sloping in case A (good aggregate economic
states), downward-sloping in case B (bad aggregate economic states), and almost
neutral in case C (expected growth rate at long-term mean).

We uncover a downward slopping term structure of risk premia in bad aggregate
economic states. Our result is therefore partly in line with van Binsbergen et al.
(2010). Nonetheless, the relatively short data set (January 1996 to June 2009) used by
van Binsbergen et al. (2010) does not completely rule out the possibility that the term
structure of risk premia might be upward slopping in other periods. In that case, our
theoretical model would be able to explain a time-varying slope of the term structure
of risk premia.

Our general equilibrium model with fluctuating attention might therefore explain
why van Binsbergen et al. (2010) found a higher risk premium and a higher volatility
for the short-term asset.
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8 The Term Structure of Forward Equity Yields

The term structure of forward equity yields obtained from dividend derivatives by
van Binsbergen et al. (2011) is found to fluctuate strongly over time, more for short
maturities than for long maturities. Moreover, van Binsbergen et al. (2011) uncover
a pro-cyclical slope of the term structure of forward equity yields, whereas the slope
of the term structure of expected dividend growth rates is counter-cyclical. Finally,
forward equity yields strongly predict risk premia and dividend growth rates. For
example, a high value of the forward equity yield implies that the expected dividend
growth is low, and viceversa.

The present model is able to reproduce a term structure of forward yields consistent
with van Binsbergen et al. (2011). As in the previous section, let ”t+· denote the
stochastic dividend paid out in · years from t, whose price today is denoted by St,· .
The equity yield at time t with maturity · is defined as:

et,· = 1
·

ln
A

”t

St,·

B

= yt,· + ◊t,· ≠ gt,·

where yt,n is the nominal bond yield, ◊t,· is the risk premium required by investors to
hold dividend risk of maturity · , and gt,· is the per-period expected dividend growth
rate. Note that ◊t,· is di�erent from the instantaneous risk premium computed in the
previous Section, as in that case we used the instantaneous risk free rate and not the
bond yield.

Following van Binsbergen et al. (2011), the average per-period expected dividend
growth rate over the next · years is defined as:

gt,· = 1
·
Et ln

A
”t+·

”t

B

= ‚ft
1 ≠ e≠⁄·

·⁄
+ f̄

A

1 ≠ 1 ≠ e≠⁄·

·⁄

B

≠ ‡2

”

2

(17)

As the maturity · increases, the expected dividend growth approaches f̄ . On the
contrary, as the maturity of the dividend goes to zero, the expected dividend growth
approaches ‚ft. The sum of the two factors multiplying ‚f and f̄ is 1, and describes the
trade-o� between using the posterior belief or the prior belief as maturity changes.

The forward equity yield is equal to the equity yield et,· minus the nominal bond
yield yt,n:

ef
t,· = et,· ≠ yt,n = ◊t,· ≠ gt,· (18)

Denoting by Bt,· the price of a zero-coupon bond with maturity t + · , the resulting
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Figure 9: Term structure of forward equity yields
Panel (a) depicts a simulated path of the expected growth rate ‚f (10 years of weekly
data). Panel (b) depicts the term structure of forward equity yields in the 3 cases
outlined in panel (a): case A (expected growth rate is at the maximum—good aggregate
economic states), case B (expected growth rate is at the minimum—bad aggregate
economic states), and case C (expected growth rate is at its long-term mean f̄ . The
parameter values are shown in Table 2 and discussed in Section 4.

nominal bond yield yt,· is equal to (≠1/· ln Bt,· ). It is thus straightforward to compute
forward equity yields in the context of the present model.

The term structure of forward equity yields is a function of the state variables. It
is, therefore, time-varying. To seize its dynamics, we use the same technique as in the
previous section and we plot in Figure 9 the term structure of forward equity yields for
3 di�erent cases.

Panel (a) of Figure 9 depicts a simulated path (10 years of weekly data) of the
expected growth rate ‚f . There are 3 cases emphasized in the plot: case A (expected
growth rate is at the maximum—good aggregate economic states), case B (expected
growth rate is at the minimum—bad aggregate economic states), and case C (expected
growth rate is at its long-term mean f̄).

In panel (b) of Figure 9 we build term structures of forward equity yields for each
case. The term structure is upward-sloping in case A (good aggregate economic states),
downward-sloping in case B (bad aggregate economic states), and almost neutral in
case C (expected growth rate at long-term mean). In other words, the slope of the
term structure of forward equity yields is pro-cyclical.

Can forward equity yields help predicting future dividend growth? Equation (18)
implies that, by definition, forward equity yields must either predict risk premia or
expected dividend growth, or both. High values of the forward equity yield imply
that either risk premia are high or expected dividend growth are low, or both. In
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the context of the present model, maturity risk premia (◊t,· ) movements are small.
Consequently, most of the variation in forward equity yields is driven by variation in
expected dividend growth. Dividend growth rates are therefore strongly predictable,
more so at shorter horizons, a result outlined in van Binsbergen et al. (2011).

Our model implies that forward equity yields are more volatile at shorter maturities.
Equation (17) suggests that there are two e�ects on the volatility of expected dividend
growth rates. First, a shorter maturity implies that the expected dividend growth
approaches ‚ft and thus is becoming more volatile. Second, for any maturity, as the
current assessment of the growth rate ‚ft is more volatile the expected growth rate
becomes more volatile. The latter e�ect is particular to our model of fluctuating
attention. That is, when attention is higher, the expected dividend growth rates are
more volatile, more so in the short term.

And since variation in forward equity yields is driven by variation in expected
dividend growth, it follows that short maturity equity yields are more volatile. Moreover,
a higher attention strongly amplifies this e�ect.

Finally, since forward equity yields and expected dividend growth rates are negatively
related, a pro-cyclical slope of the term structure of forward equity yields implies a
counter-cyclical slope of the term structure of expected dividend growth rates. Figure 9
shows that, when the economy switches from good to bad times, equity yields increase
because expected growth rates decline, which is in line with van Binsbergen et al.
(2011). In our case, however, almost all the variation in forward equity yields is driven
by variation in expected dividend growth rates, whereas van Binsbergen et al. (2011)
found that dividend growth variation accounts for 62 ≠ 81% of the variation in forward
equity yields.

To make into a short statement the main points of this section, our model of
fluctuating attention implies that forward equity yields with short maturities fluctuate
strongly over time. Next, the slope of the term structure of forward equity yields is
pro-cyclical, and the slope of the term structure of expected dividend growth rates is
counter-cyclical. Finally, forward equity yields strongly predict dividend growth rates:
a high value of the forward equity yield implies that the expected dividend growth is
low, and viceversa.

9 Conclusion

We consider a continuous-time pure exchange economy where a single investor filters the
unobservable fundamental by observing the output process and a signal representing
the flow of information that she acquires. The accuracy of the signal is assumed to be
stochastic and depends on a dividend performance index. We call this accuracy the
investor’s attention to news.
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The estimation performed on US data suggests that a period of poor dividend
performance pushes the investor to acquire accurate information about the fundamental,
whereas a period of high dividend performance leads to a lack of information acquisition.
In other words, the investor willingness to gather accurate information is high in bearish
periods and low in bullish periods.

By performing an a�ne approximation of the state vector, we solve for stock prices
and focus, in particular, on the stock return volatility. We show that there is a quadratic
relationship between attention and stock market volatility, relationship that we confirm
empirically.

Moreover, because the attention is counter-cyclical, we show that volatility is
counter-cyclical and the risk premium is counter-cyclical. During downturns, the
short-term asset, computed as in van Binsbergen et al. (2010), is excessively volatile
and commands a large equity premium. Moreover, the slope of forward equity yields is
pro-cyclical, as shown empirically by van Binsbergen et al. (2011).

Several questions are now the subject of our ongoing research. First, this paper
considers only one dimension of uncertainty, i.e., learning uncertainty. Another dimen-
sion of uncertainty comes from the way beliefs di�er across investors—dispersion of

beliefs. As Massa and Simonov (2005) show that both dimensions are priced, it is of
interest to integrate both of them in the same setup. If both dimensions are priced, our
conjecture is that if di�erent investors learn from di�erent sources of information, spikes
in attention might contribute to polarization of beliefs. Thus, the e�ects produced by
these two dimensions of risk might reinforce each other.

Next, dispersion of beliefs could come from di�erent information or from di�erent pri-
ors. We explore the path of di�erent priors (model heterogeneity) in Andrei and Hasler
(2012), although without fluctuating attention. In subsequent research we plan to see
how fluctuating attention interacts with model heterogeneity.

Finally, other aspect worthwhile considering for future research is a general equilib-
rium model with endogenous attention, in which prices could also dictate the level of
attention.
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10 Appendix

10.A Unconditional moments of „

Consider
Yt =

C
ft

„t

D

, dYt = (A ≠ BYt) dt + C

C
dZf

t

dZ”
t

D

with

B =
C

⁄ 0
≠1 Ê

D

and

C =
C

‡f 0
0 ‡”

D

.

The solution is found by applying Itô’s lemma to

Ft = eBtYt =
C

e⁄tft
e⁄t≠eÊt

Ê≠⁄ ft + eÊt„t

D

.

After integrating from 0 to t we obtain

Ft ≠ F
0

=
C s t

0

⁄f̄ e⁄udu +
s t

0

‡f e⁄udZf
u

s t
0

⁄ ¯f(eÊu≠e⁄u)
⁄≠Ê du +

s t
0

‡f(eÊu≠e⁄u)
⁄≠Ê dZf

u +
s t

0

‡”eÊudZ”
u

D

.

Thus, the first moments of f and „ solve the following system of equations
Y
]

[
e⁄tE [ft] ≠ f

0

= f̄
1
e⁄t ≠ 1

2

e⁄t≠eÊt

Ê≠⁄ E [ft] + eÊtE [„t] ≠ „
0

=
¯f[⁄(eÊt≠1)≠Ê(eÊt≠1)]

Ê(⁄≠Ê)

.

It follows that the long term mean of f is f̄ and the long term mean of „ is ¯f
Ê . The variance

of f is found with the standard formula

Var [ft]= E [(ft ≠ E [ft]) (ft ≠ E [ft])]

= E
C3⁄ t

0

‡f e⁄udZf
u

4
2

D

=
‡2

f

1
1 ≠ e≠2⁄t

2

2⁄
.

The long term variance of f is then ‡2
f

2⁄ . The long term variance of „ is found by replacing
the solution for f in

e⁄t ≠ eÊt

Ê ≠ ⁄
ft + eÊt„t ≠ „

0

=
⁄ t

0

⁄f̄
1
eÊu ≠ e⁄u

2
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du +

⁄ t

0

‡f

1
eÊu ≠ e⁄u

2

⁄ ≠ Ê
dZf

u +
⁄ t

0

‡”eÊudZ”
u

and computing
Var [„t] = E [(„t ≠ E [„t]) („t ≠ E [„t])] .
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Finally, the long term variance of „ is

lim
tæ+Œ

Var [„t] =
‡2

f

2⁄Ê (⁄ + Ê) + ‡2

”

2Ê
.

10.B Details on ’,

‚f , „, and “

We have
dft =

1
⁄f̄ + (≠⁄) ft

2
dt + ‡f dZf

t +
Ë

0 0
È C

dZ”
t

dZs
t

D

or (as in Liptser and Shiryaev, 2001)

dft = [a
0

(t, Ë) + a
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(t, Ë) ft] dt + b
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(t, Ë) dZf
t + b
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dZ”
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.

Moreover, the observable process is given by
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Using Liptser and Shiryaev (2001)’s notations, we get

b ¶ b = b
1

bÕ
1

+ b
2

bÕ
2

= ‡2

f

B ¶ B = B
1

BÕ
1

+ B
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È
.

Then, Theorem 12.7 (Liptser and Shiryaev, 2001) shows that the filter evolves according to

d ‚ft =
Ë
a

0

+ a
1

‚ft

È
dt +

#
(b ¶ B) + “tA

Õ
1
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Õ
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$
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$Õ

where “ represents the posterior variance. Notice that the dynamics of “ depend on „ through
the term, b ¶ B. Consequently, we cannot follow Scheinkman and Xiong (2003) and solve for
the steady-state. We have no other choice than including the posterior variance “ in the state
space.

10.C Solutions for ’,

‚f , „, and “

Since the dividend process ” is a geometric Brownian motion, its solution is immediately
given by

”t = ”ve
s t

v
‚fudu≠ 1

2 ‡2
” (t≠v)+‡”(W ”

t ≠W ”
v ), t Ø v.
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In order to solve for ‚f and „, we have to notice that the vector defined by

Yt =
C

‚ft

„t

D

, dYt = (A ≠ BYt) dt + C

C
dW ”

t

dW s
t

D

with
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C =
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“t
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D

is a bivariate Ornstein-Uhlenbeck process. The solution is found by applying Itô’s lemma to

Ft = eBtYt =
C

e⁄tft
e⁄t≠eÊt

Ê≠⁄ ft + eÊt„t

D

.

The dynamics of F obey

dFt =

S

U
et⁄(‡f ‡”�tdW s

t +“tdW ”
t +dt⁄ ¯f‡”)

‡”
dW ”

t (etÊ((⁄≠Ê)‡2
” +“t)≠et⁄“t)≠(et⁄≠etÊ)‡”(‡f �tdW s

t +dt⁄ ¯f)
(⁄≠Ê)‡”

T

V .

After integrating from v to t and rearranging we obtain

‚ft = e≠⁄(t≠v) ‚fv + f̄
1
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2
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6
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Substituting Equation (19) in Equation (20) yields the desired result. Finally, the dynamics
of the posterior variance “ can be rewritten as
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10.D Moment Conditions

Let’s define the observable process d as

dt+�

© log ”t+�

”t
≠ ‚ft� = ≠1

2‡2

” � + ‡”‘”
t+�

. (21)

Equation (21) characterizes the first moment condition. That is,

Var(dt+�

) = ‡2

” �. (22)

The empirical counterpart of Equation (22) writes

1
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Ë
(di� ≠ µd)2 ≠ ‡2

” �
È

= 0 (23)

where T = 165 is the number of observations and µd = 1

T

qT
i=1

di�. The conditional
expectation of the filtered fundamental ‚f satisfies
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1
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Its empirical counterpart is then

1
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Ë
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≠ f̄
1
1 ≠ e≠⁄�
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Note that over T = 165 observations, the mean of ‚ft+�

is roughly equal to the mean of ‚ft.
Consequently, Equation (24) simplifies to

1
T

Tÿ

i=1

Ë
‚fi� ≠ f̄

È
= 0. (25)

Unsurprisingly, the empirical average of an Ornstein-Uhlenbeck process has to be equated to
its long term mean. The parameter ⁄ is determined through the covariance between ‚ft+�

and ‚ft. Indeed, simple computations yield the following equality

Cov( ‚ft+�

, ‚ft) = e≠⁄�Var( ‚ft). (26)

The empirical counterpart of Equation (26) is

1
T

Tÿ

i=1

Ë
( ‚fi� ≠ µf )( ‚f

(i≠1)�

≠ µf ) ≠ e≠⁄�( ‚f
(i≠1)�

≠ µf )2

È
= 0 (27)

where µf = 1

T

qT
i=1

‚fi�. Equations (23), (25), and (27) directly determine the parameters
‡”, f̄ , and ⁄. The parameters ‡f , Ê, �, and � have to be estimated jointly, because they
all depend on each other. Since the steady-state value of the process “ is worth “ss, the
empirical average of the posterior variance “ is set to “ss. That is,

1
T

Tÿ

i=1

[“i� ≠ “ss] = 0 (28)

where “ss is defined in Section 3.5. Note that “ depends on the attention �, � depends on
the dividend performance „, and „ is driven by ‚f , ‘”, and ‘s. Hence, the posterior variance
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“t, the attention �t, and the dividend performance index „t, for t = 0, �, . . . , T�, can be
constructed recursively. Assuming that ‡”, f̄ , and ⁄ are already known, the vectors “, �,
and „ are T -dimensional functions of the parameters ‡f , Ê, �, and �. Equation (20) shows
that the long term mean of the dividend performance „ is ¯f

Ê . Consequently, the fifth moment
condition is

1
T

Tÿ

i=1

C

„i� ≠ f̄

Ê

D

= 0. (29)

The process � has a long term mean equal to �. Therefore, the sixth moment condition is
written

1
T

Tÿ

i=1

[�i� ≠ �] = 0. (30)

Equation (19) permits to characterize the conditional variance of ‚f

Vart( ‚ft+�

) =
A

1
‡2

”

“2

t + ‡2

f e≠2⁄��2

t

B

e≠2⁄��.

The empirical counterpart is given by

1
T

Tÿ

i=1

C 1
‚fi� ≠ e≠⁄� ‚f

(i≠1)�

≠ f̄
1
1 ≠ e≠⁄�

22
2

(31)

≠
A

1
‡2

”

“2

(i≠1)�

+ ‡2

f e≠2⁄��2

(i≠1)�

B

e≠2⁄��
D

= 0

To summarize, Equations (23), (25), (27), (28), (29), (30), and (31) define a system of 7
moment conditions that needs to be solved to obtain the 7-dimensional vector of parameters
�.
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