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Abstract

Fear of risk provides a rationale for protracted economic downturns. We develop

a real business cycle model where investors with decreasing relative risk aversion

choose between a risky and a safe technology that exhibit decreasing returns. Be-

cause of a feedback effect from the interest rate to risk aversion, two equilibria

can emerge: a standard equilibrium and a “safe” one in which investors invest in

safer assets. We refer to the dynamics of this second equilibrium as a safety trap

because it is self-reinforcing as investors accumulate more wealth and show it to be

consistent with Japan’s lost decade.
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1 Introduction

Fear of risk is an oft-mentioned factor to explain protracted economic downturns such

as Japan’s lost decade or the recent financial crisis because it makes investors seek safer

and less profitable investments. The 1990s in Japan were characterized by a prolonged

period of low GDP growth, as shown in Figure 1. The following evidence suggests that

risk aversion may indeed have played an important role during this lost decade. First,

anecdotal evidence suggests that the lost decade made the Japanese become more anxious

about the future. This fact is best illustrated by the following excerpt from an article of
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the New-York Times (“When consumers cut back: A lesson from Japan”, December 2,

2009, by Hiroko Tabuchi):

Today, years after the recovery, even well-off Japanese households use old bath

water to do laundry, a popular way to save on utility bills. [...] Although the

family has a comfortable nest egg, Hiroko Takigasaki carefully rations her

vegetables. [...] Her husband has a well-paying job with the electronics giant

Fujitsu, but “I don’t know when the ax will drop,” she says.

Second, Japanese households invested less and less in risky assets even though their total

assets kept increasing (see Figures 2 and 3).

To account for this evidence, we introduce decreasing relative risk aversion in a busi-

ness cycle model and let investors allocate their wealth between more or less risky assets.

In addition to a standard equilibrium, our model can have a “safe” equilibrium with

higher risk aversion and a lower interest rate. This equilibrium is characterized by in-

vestment in safer assets, which implies a greater misallocation of capital and thus a lower

production. It arises because of a feedback effect from risk aversion to the interest rate.

On the one hand, with high risk aversion, investors invest more in safe assets, which

decreases the interest rate. On the other, a low interest rate makes agents more risk

averse because it decreases their safe revenues. To obtain these results, we assume that

investors compare their consumption to a reference level and become more risk averse as

their consumption moves closer to it.

The two equilibria have opposite predictions: the comovement between risky invest-

ment and wealth is positive in the standard equilibrium and negative in the safe equi-

librium. When they become wealthier, investors want to keep a balanced portfolio by

increasing their demand for both safe and risky assets. In the standard equilibrium, the

stock of both assets increases. In the safe equilibrium, however, the return on safe assets

decreases so much that it makes investors more risk-averse and they end up holding a

safer portfolio even though their wealth has increased. As a consequence, when the econ-

omy switches from the standard to the safe equilibrium, its dynamics are characterized

by a declining stock of risky assets and a rising wealth, a situation which we refer to as
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a safety trap.

We next confront the dynamics of the safety trap to Japan’s lost decade. First, we

calibrate our model with parameter values that look reasonable for this period in Japan

and find that the model still predicts the possibility of having two equilibria. Second,

Figures 2 and 3 show a negative comovement between total and risky assets during the

lost decade and a positive one before. This is consistent with Japan switching from a

standard to a safe equilibrium around 1990. Also, Figure 4 shows a declining TFP growth

during the lost decade, which is consistent with our story of a greater misallocation of

capital. We also discuss in the paper how this hypothesis matches other variables such

as consumption and the interest rate. As shown by Figure 11, consumption grew slightly

slower during Japan’s lost decade. Although the basic version of our model predicts a

declining consumption, we show that when investors take into account the possibility to

switch from one equilibrium to the other with some probability, we are able to match

this comovement as well. Finally, Figure 5 shows a declining interest rate which is also

consistent with our hypothesis.

Different shocks on fundamentals could as well explain the fact that investors hold a

safer portfolio. First, it could be that risk permanently increased in Japan around 1990

making investors prefer safer assets. This hypothesis is, however, difficult to reconcile

with the data. Figure 6 shows the volatility of the Nikkei, which we take as a measure

of risk in Japan. The figure shows that even though volatility increased around 1990, it

returned to its initial level as soon as 1993. A second possible hypothesis could be an

increasing interest rate that would make risky assets less appealing. However, Figure 5

shows that the real interest rate did not increase during the 1990s. We also investigate a

few more experiments and show that they fail to match the data.

Finally, we briefly discuss some policy implications of our model. We show that the

government can crowd out the safe equilibrium by increasing the supply of bonds or by

making transfers to investors. These two policies can reduce the strength of the negative

effect of the interest rate on risk aversion. A larger supply of bonds increases the interest

rate and thus reduces risk aversion. Transfers to investors help them secure their level of
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reference consumption and thus make them less risk averse.

Although we illustrate our model with the lost decade, we believe it to have broader

applications. First, regarding the methodology, we believe we are the first to show that

decreasing relative risk aversion can be a source of multiple equilibria in a business cycle

model. Second, whether the economy is in one equilibrium or the other is not linked to the

fundamentals of the economy but is instead the result of the coordination between a large

number of investors. The spell of this safer but less productive regime is potentially very

long if agents do not coordinate out of it. Our mechanism could thus explain phenomena

characterized by jumps and persistence that are difficult to reconcile with similar changes

in the fundamentals and in which fear or anxiety are thought to play an important role.

In particular, the prolonged recession in the US following the 2007 crisis is often compared

to the lost decade in Japan.

According to Hayashi and Prescott (2002), the lost decade is mostly the result of a

lower TFP. Our mechanism is consistent with this finding. The safety trap implies a

lower TFP as investors invest increasingly in safer and less productive assets. Another

explanation for the lost decade which is also consistent with a lower TFP is the one pro-

posed by Caballero et al. (2008). They argue that banks kept on lending to unproductive

firms – the zombies – during the lost decade. This prevented more productive firms to

enter and decreased TFP. We view this explanation as complementary to ours.

Our framework can also be consistent with the liquidity trap view of Japan’s lost

decade (Krugman et al., 1998). Although our model is a real model and hence has no

room for monetary policy, it provides a possible explanation for low interest rate situations

such as liquidity traps.

Preferences with decreasing relative risk aversion have received empirical support.

For example, Carroll (2002) and Calvet et al. (2009) find that wealthier investors hold

riskier portfolios. Furthermore, our use of a reference level of consumption in the util-

ity function relates our paper to the habit formation literature. Standard references in

macroeconomics include Jermann (1998) and Boldrin et al. (2001).1 A first difference

1See also Abel (1990) and Constantinides (1990) for early references in the asset pricing literature.
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with the habit formation literature is that it uses a time-varying reference point, whereas

it is constant in our framework. But this difference is only superficial, since similar results

would obtain with sticky enough external habits.2 A second difference is that we obtain

a non-monotonic demand for capital and thus multiple equilibria. This additional result

comes from our choice of using continuous-time finance methods to solve our model.3

This methodological choice allows us to derive closed-form solutions without resorting to

local approximations.

The paper is organized as follows. Section 2 introduces the model. Section 3 solves for

the equilibrium. Section 4 analyzes the dynamics. Section 5 confronts the model’s pre-

dictions with Japan’s lost decade. Sections 6 discusses some policy implications. Section

7 concludes.

2 Model

This section builds a business cycle model with decreasing relative risk aversion and

portfolio choice between a risky and a safe technology. The model predicts that the

demand for risky capital can be a hump-shaped function of the interest rate, which we

show in the next section can be a source of multiple equilibria.

2.1 Setup

Time is continuous, infinite, and indexed by t. The economy is populated by a con-

tinuum of investors of length one who allocate their wealth between safe and risky assets

to maximize their utility.

The lifetime utility of investors is given by the expected sum of their consumption

stream c discounted at the rate ρ:

Wt = Et

∫ ∞
t

e−ρsu(cs)ds, (1)

2In fact, extending our framework to habit formation by making the reference point more time-
dependent would enable us to accommodate trend growth, which is absent in our model.

3See Merton (1998) for a presentation of these methods and Kraay et al. (2005), Angeletos and
Panousi (2009), and Benhima (2010) for examples of business cycle models using these methods.
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with u being of the form:

u(c) = ln(c− c̄), (2)

where c̄ is the level of reference consumption. This utility function has decreasing relative

risk aversion. When consumption moves closer to its reference point, investors become

more risk averse.

Investors allocate their wealth ω between risky capital k, safe capital z, and bonds b:

ωt = kt + zt + bt, (3)

Bonds deliver a return Rb
t and are in zero supply.4 The two types of capital k and z

deliver a flow of capital income in units of final good of, respectively,

dkt = (F (kt, l
k
t )− wkt lkt )dt+ σktdvt (4)

and

dzt = (G(zt, l
z
t )− wzt lzt )dt, (5)

where F and G are constant returns to scale functions, and are strictly increasing and

concave in each of their arguments, lk and lz are capital-specific labor, wk and wz are the

costs of labor, and dvt is a macroeconomic shock to the return of the risky technology,

where vt is a standard Wiener process.

The budget constraint of investors is given by the following equation:

dωt = dkt + dzt + (Rb
tbt − ct)dt. (6)

Finally, the supply of each type of labor is inelastic and equal to one. We also assume

that labor is not supplied by the main character of our story (the investor) but by a

secondary protagonist (the workers) who plays no further role in our model. The main

motivation for doing so is to generate external decreasing returns on capital in the simplest

4Bonds thus play no role in the economy. However, they allow us to characterize the return on safe
assets as the interest rate.
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framework possible.5 The main advantage is that we do not have to carry around human

wealth and this greatly simplifies both the presentation of the results and the resolution

of the model. A possible interpretation is that workers are hand-to-mouth, that is, they

consume all their labor income. This is a natural equilibrium outcome in a model where

the entrepreneurs’ revenue is risky while the workers’ revenue is not, and workers face

a no-liability constraint. In such a setting, workers would end up hand-to-mouth as the

result of a low interest rate.6

2.2 Profit Maximization

Investors choose the amounts of labor lk and lz that maximize Equations (4) and (5).

Labor markets are competitive within each type of capital-specific labor and investors

thus take the wages wk and wz as given. Optimal labor demands therefore equalize

wages and the marginal productivities of labor: wkt = F2(k̃t, 1) and wzt = G2(z̃t, 1), where

k̃ = k/lk and z̃ = z/lz are the capital-labor ratios. These equations define the optimal

capital-labor ratios as functions of wages: k̃(wkt ) and z̃(wzt ).

Using the fact that the production functions exhibit constant returns to scale, we can

show that the returns on safe and risky capital are constant:

dkt/kt = rtdt+ σdvt (7)

dzt/zt = Rtdt (8)

where rt = F1(k̃(wkt ), 1) and Rt = G1(z̃(wzt ), 1). These private returns expressions are

derived using the constant returns to scale assumption and the Euler theorem. They are

taken as given by investors.

Arbitrage imposes that the return on bonds is equal to the return on the safe tech-

nology, that is, Rb
t = Rt. We can thus refer to R as the interest rate.

5Labor supply is inelastic in our model, but one might consider what happens with a more elastic
supply. In that case, the external decreasing returns on capital, which are key to our results, will be less
strong. However, one should expect that, as long as labor supply is sufficiently inelastic, our results will
survive.

6See for example Kiyotaki and Moore (2008).
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The budget constraint of investors therefore boils down to:

dωt = (rtkt +Rt(zt + bt)− ct)dt+ σktdvt. (9)

2.3 Utility Maximization

At each period t, investors consume ct and allocate their wealth ωt between bonds

bt, risky capital kt, and safe capital zt to maximize their lifetime utility (1), taking the

returns rt and Rt as given and under the constraints (3), (9) and

kt ≥ 0, zt ≥ 0. (10)

The solution to this problem is given by the following Proposition (see proof in the

Appendix):

Proposition 1 For a given level of wealth ωt and given returns rt and Rt such that Rt ∈

(c̄/ωt, rt], the solution {ct, kt, zt, bt} to the problem of the investor is given by Equation

(3) and:

ct − c̄ = ρ(ωt − ω̄t), (11)

kt
ωt

=
rt −Rt

σ2γt
, (12)

where

∆t = rt −Rt. (13)

γt =
−ωt∂2Wt/∂ω

2
t

∂Wt/∂ωt
=

ωt
ωt − ω̄t

, (14)

ω̄t =
c̄

Rt

, (15)

The presence of reference consumption introduces the notion of reference wealth ω̄t,

defined in Equation (15). ω̄t is the quantity of safe assets necessary to secure the level

of reference consumption c̄. It is decreasing in the interest rate. Indeed, when Rt is low,

entrepreneurs need more safe assets to compensate for their lower return. We show in

the following that this has important implications on savings and portfolio allocation.
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Equation (11) describes the saving behavior. Consumption decreases with reference

wealth and thus increases with the interest rate. In other words, investors cut on con-

sumption when the interest rate is low in order to compensate for the lower returns on

savings and maintain their reference level of consumption. Therefore, reference consump-

tion introduces a strong income effect of the interest rate on savings. This is consistent

with Muellbauer and Murata (2011) who document a positive correlation between the

interest rate and consumption in Japan after controlling for wealth.

For c̄ > 0, Equation (14) shows that risk aversion decreases with wealth ωt and with

the interest rate Rt. Both a higher wealth and a higher interest rate indeed enable

households to better cope with adverse shocks and secure reference consumption.

Equation (12) is a standard portfolio allocation rule. It states that the share of wealth

invested in risky capital is increasing with the excess return ∆t, defined in Equation (13),

decreasing with risk σ and with risk aversion γt.

The main insight from Equation (12) is that the interest rate Rt has two contradictory

effects on the demand for risky capital. The first effect goes through the excess return ∆t

and is negative. This is a standard arbitrage effect in asset pricing theory. The second

effect is positive and goes through risk aversion γt. As already noted, a higher interest

rate makes investors less risk averse and this increases their demand for risky capital. We

show below that the risk aversion effect dominates for a low interest rate while the excess

return effect dominates for a high interest rate. The demand for risky capital is thus a

hump-shaped function of the interest rate.

Finally, the policy functions expressed in Lemma 1 are well-defined only if the solution

is an interior one, that is if the constraints described in Equation (10) are satisfied, and

if the value function is well-defined, that is, if c > c̄. These policy functions are therefore

valid only if:

Rt ∈ (c̄/ωt, rt]. (16)

Equation (11) indeed shows that a lower Rt would violate the constraint c > c̄, in which

case lifetime utility W is not well-defined. Equation (12) further shows that a higher Rt

would violate the constraint k ≥ 0.
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3 Equilibrium

This section defines and solves for the equilibrium.

Note that entrepreneurs are heterogeneous but their policy functions are linear in

wealth, which implies that the aggregate variables are the same as the individual ones

described in the previous section. We therefore keep the same notations, but we refer

from now on to the aggregate variables instead of the individual ones.

The period-t equilibrium is defined as follows:

Definition 1 (Equilibrium) For a given aggregate wealth ωt, the equilibrium at date

t is defined by the level of risk aversion γt, the excess return ∆t, the level of reference

wealth ω̄t, the vector of aggregate quantities (ct, kt, zt, bt, l
k
t , l

z
t ) and the vector of prices

(rt, Rt, R
b
t , w

k
t , w

z
t ) such that:

(i) The excess supply of bonds is equal to zero: bt = 0;

(ii) Workers supply lkt = 1 and lzt = 1;

(iii) For given returns rt and Rt, investors’ aggregate consumption ct, risky capital kt,

safe capital zt are such that Equations (3) and (11)-(15)are satisfied and that in-

equalities (10) and ct > c̄ hold.

(iv) wkt = F2(kt, 1), wzt = G2(zt, 1), Rt = Rb
t , rt = F1(kt, l

k
t ) and Rt = G1(zt, l

z
t ).

We also drop indexes t from now on unless confusing.

3.1 Equilibrium Returns

Labor markets are competitive for each type of labor and wages are set equal to

the marginal product of labor. Then, solving for the equilibrium wages, the equilibrium

returns on capital in Equations (7) and (8) become:

r = r(k) (17)

R = R(z), (18)
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where r(k) = F1(k, 1) and R(z) = G1(z, 1). Given the properties of F and G, these

marginal returns r and R are strictly positive and decreasing with, respectively, k and

z. Intuitively, a higher demand for capital increases the demand for labor and, thus, the

equilibrium wage. This decreases the equilibrium return on capital. We further restrict

F and G so that r and R satisfy the following assumption:

Assumption 1 The functions r and R satisfy the following conditions:

(i) r(k) and R(z) are strictly decreasing, with limk→+∞ r(k) = limz→+∞R(z) = 0, ρ <

limk→0 r(k) < +∞ and ρ < limz→0R(z) < +∞;

(ii) r(k) ≥ R(k) for any given k;

(iii) There exists ωmin > 0 such that r(k) = R(ωmin − k) and R(ωmin − k)ωmin = c̄ are

both satisfied for some k ≥ 0;

(iv) r(ωmin) < R(0);

(v) r(k)k and R(z)z are strictly increasing, with limk→+∞ r(k)k = limz→+∞R(z)z = +∞

and limk→0 r(k)k = limz→0R(z)z = 0.

This assumption will guarantee that the problem is well-defined. Condition (i) is close

to the implication of Inada conditions on F and G. The only deviation from the Inada

conditions is that the limit of marginal returns goes to a finite number when the capital

stock goes to zero in (i). This will ensure that the excess return on risky capital remains

finite. Conditions (ii) to (iv) ensure that r and R are well-behaved. These conditions

imply that for ω ≥ ωmin, there is a unique interior solution to r(k) = R(ω − k), where

ωmin defines the minimum level of wealth that can sustain a level of consumption at least

equal to c̄. Finally, condition (v) imposes some of the Inada conditions on r(k)k and

R(z)z, the equilibrium revenues for entrepreneurs.

3.2 The Aggregate Demand for Risky Capital

The next step we take to solve the equilibrium is to replace the equilibrium returns

derived below into the demand for capital given by Equation (12). This section analyzes
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the properties of the resulting demand for risky capital.

Bonds b are in zero supply and thus the whole demand for safe investment is absorbed

by safe assets z = w− k. Using Equation (3), we can also rewrite R(z) as R(ω − k). We

obtain a function D that only depends on k, ω, and σ:

D(k, ω, σ) =
∆(k, ω)

σ2γ(k, ω)
ω, (19)

with ∆(k, ω) = r(k)−R(ω − k) and γ(k, ω) = ω
ω−c̄/R(ω−k)

. An equilibrium stock of risky

capital k is then a fixed point of function D.

To understand formally the behavior of D, we take the derivative of D with respect

to k:

D1(k, ω) =
r′(k) +R′(ω − k)

σ2γ(k, ω)
ω − c̄R′(ω − k)∆(k, ω)

σ2(R(ω − k))2
(20)

The two terms summarize the two contradictory effects of k on D. First, a negative

excess return effect through a lower ∆ (first term). Second, a positive risk aversion effect

through a lower γ (second term). The risk aversion effect is strictly positive if c̄ > 0 and

if returns are decreasing (R′ < 0), which is implied by Assumption 1. A higher stock of

risky capital means that fewer resources are invested in safe assets, which increases the

interest rate, makes investors less risk-averse and thus more willing to hold risky assets.

For a high enough value of k (R close to r), ∆ is close to zero, which implies that the

excess return effect dominates. For a low value of k (R close to c̄/ω), γ goes to infinity,

so the risk aversion effect dominates. The function D is therefore hump-shaped in k, as

represented in Figure 8. Finally, note that for low enough values of c̄, the risk aversion

effect vanishes and the demand for risky capital becomes monotonically decreasing.

As illustrated in Figure 8, D is equal to zero for two values, kL(ω) and kH(ω), where

kH(ω) is the solution to ∆ = 0, that is:

r(k) = R(ω − k) (21)
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and kL(ω) is the solution to γ → +∞, that is:

R(ω − k)ω = c̄ (22)

so D is positive only for kL(ω) ≤ k ≤ kH(ω). If ω decreases, then the range over which

D is positive becomes smaller, as represented by the curve with ω = ω1. We show that

k ∈ (kL(ω), kH(ω)] is actually a necessary condition for the demand for risky capital to

be well-defined. The conditions on k that ensure a well-behaved D are summarized in

the following Lemma (see proof in the Appendix):

Lemma 1 Define ωmax as the unique ω > ωmin such that kL(ω) = 0. Under Assumption

1:

(i) if ω > ωmin, then kH(ω) and kL(ω) are uniquely defined, with kL(ω) < kH(ω);

(ii) if ωmin < ω ≤ ωmax, where ωmax is the unique ω > ωmin such that kL(ωmax) = 0,

then kL(ω) ≥ 0 and D is well-defined for k ∈ (kL(ω), kH(ω)];

(iii) if ω > ωmax, then kL(ω) < 0 and D is well-defined for k ∈ [0, kH(ω)];

This result is derived as follows. For a given ω, the restriction (16) can be rewritten

in equilibrium as R(ω−k) ∈ (c̄/ω, r(k)]. This new restriction can be rewritten as a range

of k ∈ (kL(ω), kH(ω)]. The demand for risky capital D is only well defined in this range,

which requires that k > 0 and c > c̄. Indeed, these are the conditions under which the

policy functions of Proposition 1 are valid. Lemma 1 tells us that this range is non-trivial

for ω > ωmin, that is, if the economy is not too poor. Besides, if ω is large enough, then

this range is wide enough to include 0. This case is illustrated in Figure 9 by the case

with ω = ω2. The intuition is that when the economy is rich, any equilibrium with k ≥ 0

can sustain c > c̄.
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3.3 Multiple Equilibria

An equilibrium stock of risky capital k is a solution to:

D(k, ω, σ) = k (23)

The following proposition gives the solution (see proof in the Appendix):

Proposition 2 Under Assumption 1, for a small σ and ωmin < ω ≤ ωmax:

(i) there are two well-defined solutions to Equation (23), denoted kL(ω, σ) and kH(ω, σ),

with kL(ω, σ) < kH(ω, σ);

(ii) these solutions converge respectively to kL(ω) and kH(ω) as σ goes to zero.

Let us first describe part (i). If a well-defined equilibrium exists, it must satisfy (23).

This relationship defines implicitly the equilibrium stock of capital as a function of ω and

σ. Because the function D can be hump-shaped, there can exist up to two non-degenerate

equilibria: A standard and a safe one. These equilibria are given by the intersection of

the 45 degree line and of the demand curve in Figure 8.7

The standard equilibrium corresponds to the part of the demand curve that is

downward-sloping and where the standard excess return effect dominates. It is char-

acterized by a relatively large stock of risky capital that we denote kH(ω, σ), where the

superscript H refers to the equilibrium variables associated with the standard regime.

The safe equilibrium corresponds to the part of the demand curve that is upward-

sloping and where the unconventional risk aversion effect dominates. It is characterized

by a smaller stock of risky capital than the standard equilibrium that we denote kL < kH ,

where we use superscript L to denote the equilibrium variables associated with the safe

regime. This implies a lower interest rate, a higher risk aversion, and a lower consumption

than in the standard equilibrium.

7Actually, k = 0 defines a third equilibrium, but this equilibrium is not well-defined since in that case
we would have c ≤ c̄. Indeed, if we abstract from the concern that c must be higher than c̄, an equilibrium
must satisfy k = max{0, D(k, ω, σ)}. The function k → max{0, D(k, ω, σ)} defines a continuous mapping
from the compact [0,+∞] to itself. As expected for this type of fixed point problem, the number of
equilibria is odd: there are three solutions 0, kL(ω, σ) and kH(ω, σ). However, because of the value
function definition problem for c ≤ c̄, our problem only admits two well-defined solutions.
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The multiplicity of equilibria comes from decreasing risk aversion. Indeed, with a

low c̄, only the standard equilibrium exists. In the limit, when c̄ goes to zero relative to

ω, the risk aversion effect disappears in Equation (20) and the function D is downward

sloping, so the equilibrium is unique. This case is represented by the grey line in Figure

9 (ω = ω3). On the opposite, with a higher c̄ relative to ω, the demand for risky capital

becomes upward sloping for a low k. This case is represented by the solid and dashed

lines in Figure 9 (ω = ω1 or ω2). A second equilibrium with few risky assets then results

from a feedback from risk aversion to the interest rate. If the interest rate is low, then

risk aversion is high and so is the demand for safe assets, which in turn decreases the

interest rate. Finally, there exists no equilibrium with a positive k if the demand for

capital is too low, for example, because there is too much risk or because wealth is too

small. This case is represented by the dotted line in Figure 9 (ω = ω0).

Part (ii) of Proposition 2 describes the limit case where σ goes to zero, for which we

can obtain closed-form solutions. The standard equilibrium corresponds to the solution

of a standard Ramsey problem. Absent risk, the risky technology has no excess return.

In the safe equilibrium, investors are infinitely risk-averse (which is implied by ω = ω̄)

and only consume their level of reference consumption. They invest a larger share of their

wealth in safe capital, which implies a positive excess return. Note that this equilibrium

is not well-defined, since it implies ω = ω̄ and c = c̄. However, it is useful to consider

it because it can be interpreted as a limit equilibrium to which the economy converges

when σ moves closer to 0.

3.4 Equilibrium Stability

One possible limitation of our result is that only the standard equilibrium is locally

stable under a market process based on Walrasian tâtonnement. We show in this section,

however, that local stability can be obtained with a more general market process in which

the convergence to equilibrium is costly.8 Although we are able to show that our safe

equilibrium can be locally stable under some conditions, we acknowledge that this may

8See also Graham and Temple (2006).
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not always be true.

For a given period t, aggregate wealth ωt is fixed. Aggregate investment is determined

through an intra-period market process, starting from an arbitrary initial value. The

stability or instability of a given equilibrium depends on the specific market process. We

first show that in a world with Walrasian tâtonnement, only the equilibrium kH(ω, σ) is

stable. The given initial aggregate level of risky capital kinit defines the aggregate returns

r(kinit) and R(ω− kinit). Agents then adjust their demand for these given prices until an

equilibrium is reached. This demand then evolves according to:

k̇ + k = D(k)

where D(k) refers to D(k, ω, σ).

When we linearize this dynamic equation around ki(ω, σ), i ∈ {L,H}, we obtain:

˙(k − ki(ω, σ))

k − ki(ω, σ)
= D′(ki(ω, σ))− 1

with D′(kH(ω, σ))− 1 < 0 and D′(kL(ω, σ))− 1 > 0, which means that only kH(ω, σ) is

a stable equilibrium. But this dynamics hinges on the hypothesis that agents incur no

cost when they change their plans.

We now assume that agents have a convex disutility both when they do not satisfy

their notional demand and when they adjust it and show that kL(ω, σ) becomes locally

stable under certain conditions. We assume that the agents have the following intra-

period objective:

min
ks,s>0

∫ ∞
0

[
1

2
(D(k̄s)− ks − k̇s)2 + C(k̇s, k̄s)]ds, (24)

where C(k̇, k̄) is strictly convex in k̇ and k̄, with C12 > 0 and C(0, k̄) = 0 for all k̄, and k̄

refers to the aggregate stock of capital. The first term corresponds to the disutility agents

get from not satisfying their notional demand D(k̄), which depends on the aggregate level

of risky capital through prices. The second term C is an external diseconomy of scale.

It can be seen as the result of a matching friction in the market for risky capital: when
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the aggregate demand for capital is large, it becomes more and more difficult for investor

households to adjust their capital stock. We discard the discount rate because the market

process takes place within one period. A stationary solution to this problem must satisfy

D(k) = k, which is the case for k = kH(ω, σ) and k = kL(ω, σ).

We establish the following proposition:

Proposition 3 (Equilibrium stability) Consider the market process that solves Equa-

tion (24):

(i) If C = 0, then k̇ = D(k)− k;

(ii) if C12(0, kL) < D′(kL), then only kH is locally stable;

(iii) if C12(0, kL) > D′(kL), then both kH and kL are locally stable.

Part (i) establishes that the Walrasian tâtonnement is the solution to the households’

intra-period objective when there is no matching friction. Parts (ii) and (iii) state that

kH is a locally stable equilibrium, independently of the matching friction, but kL becomes

stable if diseconomies of scale are strong enough. However, kL never exhibits saddle-path

stability, and the market dynamics around kL can be quite complicated, as illustrated in

Figure 10. We assume in what follows that the condition that ensures the stability of kL,

that is C12(0, kL) > D′(kL), is satisfied for all the relevant values of ω.

3.5 Comparative statics

Before turning to the dynamics, we show analytically that our two equilibria have

opposite implications regarding the effect of wealth on the stock of risky capital: it is

positive in the standard equilibrium and negative in the safe equilibrium. This is a key

implication of our model because it helps us discriminate between the two equilibria. We

state it formally in the following proposition (see proof in the Appendix):

Proposition 4 Under Assumption 1, for a small σ and ωmin < ω ≤ ωmax:

(i) kH is increasing in ω;
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(ii) kL/ω is decreasing in ω; kL is decreasing in ω in the neighborhood of ωmax.

The intuition of this result is as follows. A lower wealth switches the economy from

the curve D(k, ω2, σ) to the curve D(k, ω1, σ) in Figure 9. A higher wealth increases the

demand for risky capital, everything else equal. In the standard regime, this increases the

equilibrium level of risky capital. In the safe equilibrium, paradoxically, the equilibrium

level of risky assets decreases when agents are wealthier. This is because a lower interest

rate makes agents even more risk averse.

We also examine the implied correlations of wealth with consumption, interest rates

and the misallocation of resources. We define a measure of misallocations as y(ω)−y∗(ω),

where y∗(ω) is the maximum level of production that can be technically achieved when

aggregate wealth is equal to ω. The following Proposition shows how these variables

comove with ω in the standard and the safe equilibrium (see proof in the Appendix):

Proposition 5 Under Assumption 1, for a small σ and ωmin < ω ≤ ωmax:

(i) RH is decreasing and yH(ω) − y∗(ω) is invariant in ω; cH is increasing in ω if c̄ <

R2|r′+R′|
|r′R′| ;

(ii) RL is decreasing, yL(ω)− y∗(ω) is decreasing and cL is invariant in ω in the neigh-

borhood of ωmax.

The interest rate is always decreasing in wealth. This is not surprising since investment

in the safe technology increases with wealth in both regimes. In the standard regime,

it is optimal to dispatch investment in the two technologies. In the safe regime, agents

invest even more in the safe technology, as they invest less in the risky technology.

When the level of risk is small, resources are allocated optimally in the standard

regime, so misallocations do not vary with wealth. However, in the safe regime, resources

are more and more misallocated as investors become richer, because they are more and

more unwilling to invest in the risky technology.

In the standard equilibrium, consumption is increasing in wealth, as long as c̄ is not

too large. Indeed, if c̄ was too large, then the income effect of the interest rate would

be large and would depress consumption as the interest rate falls with wealth. In the
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calibrated version of the model, c̄ is not so large that it would generate this pathological

behavior for consumption in the standard regime. In the safe regime, consumption is not

affected by wealth since investors are stuck at their reference level when σ is close to zero.

4 Dynamics

The dynamics of the economy is obtained by replacing Equation (11) into Equation

(9). This gives the following expression for the expected growth rate of wealth:

ω̇

ω
=
R− ρ
γ

+ ∆
k

ω
. (25)

Wealth grows as the result of two components: an aggregate saving component (first

term) and a saving composition component (second term). The first term gives the

dynamics of wealth in the absence of excess return on capital. It is positive if the return

on savings R is higher than the propensity to consume out of wealth ρ, and it is lower

when wealth is close to its reference level (γ is high), as agents cut on savings to maintain

consumption at its reference level. The second term represents the additional increase in

wealth that comes from the excess return on risky capital.

We first describe the dynamics of the standard equilibrium and then the dynamics of

the safe equilibrium, which we refer to as the safety trap.

4.1 The Standard Dynamics

The dynamics of the standard equilibrium is given by the following proposition (see

proof in the Appendix):

Proposition 6 Under Assumption 1 and starting from an initial level of wealth ω0 >

ωmin:

(i) If σ goes to zero, there are two possible steady-state levels of wealth ω∗ and ωmin.

They are the solutions respectively to RH(ω, 0) = ρ and R(ω)ω = c̄. If ωmin ≥ ω∗,

the economy converges to ωmin. If ω∗ ≥ ωmin, the economy converges to ω∗.
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(ii) If σ small and ω∗ ≥ ωmin, then ω∗ is increasing in σ.

First consider the limit case with no risk. In the standard regime, we have ∆H = 0,

so the second term in Equation (25) disappears and wealth is thus exclusively driven by

the saving behavior of agents:

ω̇

ω
=
RH − ρ
γH

. (26)

The steady-state w∗ is the solution to RH = ρ. It corresponds to the long-run level of

wealth to which an economy with no reference consumption would converge. The steady

state ωmin is the solution to 1/γH = 0. It corresponds to the case where agents do not

save because they are stuck at their reference consumption.

If ωmin < ω∗, the problem is well defined around ω = ω∗, and the economy con-

verges to that level. The dynamics is represented in Figure 11. Starting from ω < ω∗,

the growth rate of wealth is positive until the economy reaches ω∗, because the return

on assets is large. Aggregate wealth and consumption therefore increase steadily along

the convergence path. Also, both safe and risky capital increase. With σ > 0, the dy-

namics is qualitatively very similar to the case without risk. The only difference is that

entrepreneurs accumulate more wealth in the long-run, because risk creates a precau-

tionary wealth accumulation. More specifically, risk reinforces the income effect of the

interest rate, so investors tend to accumulate more wealth when the interest rate is low.

If ω∗ ≤ ωmin, an economy starting from a level of wealth ω ≥ ωmin converges to ωmin.

This happens if c̄ is large or if the two technologies are not very productive. In that case,

the economy is not productive enough to sustain a level of consumption greater than

reference consumption in the long run. In the remainder of the paper, we will discard

this case and only consider the situation where ωmin < ω∗.

4.2 The Safety Trap

The dynamics of the safe equilibrium which we refer to as the safety trap is given by

the following proposition (see proof in the Appendix):

Proposition 7 Under Assumption 1 and starting from an initial level of wealth ωmin <
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ω0 < ωmax:

(i) If σ goes to zero, ωmin and ωmax are the two unique steady state levels of wealth in the

safe regime. The economy converges to ωmax, which is the only stable steady state.

(ii) If σ is small, then the economy converges to ωmax, but never reaches ωmax.

Consider the limit case with no risk. In the safe regime, γ is infinite, so the first term

in Equation (25) disappears and the growth rate of wealth is driven exclusively by the

composition of savings:

ω̇

ω
= ∆Lk

L

w
. (27)

Agents are stuck at their reference consumption and do not save, so wealth increases over

time only because of the excess return on capital. The possible steady states are the

solutions to ω̇ = 0, that is, either ∆L = 0, which corresponds to ωmin, or kL = 0, which

corresponds to ωmax.

The economy converges to a steady state ωmax if it starts at ω < ωmax. The dynamics

is represented in Figure 11. In that case, investors hold a positive level of risky capital

that yields a positive excess return, and their wealth keeps increasing as long as that level

is strictly positive. However, the structure of investment changes as wealth increases. The

wealthier the economy, the lower their investment in risky capital, as predicted already

in Proposition 4. Here, the entrepreneurs are in a safety trap: they accumulate wealth,

but this accumulation does not make them less risk-averse. Indeed, because of decreasing

returns in the safe technology, the interest rate decreases along the convergence path,

which compensates for the effect of a higher wealth on risk aversion. As the level of risky

capital decreases, the growth rate of wealth falls until ω reaches ωmax where k = 0 and

ω̇ = 0.

5 Japan’s Lost Decade: A Safety Trap?

In this section, we argue that Japan’s lost decade resembles a safety trap. We also

show that several alternative shocks on fundamentals are difficult to reconcile with this
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episode.

5.1 Our Story

We confront the stylized facts of Japan’s lost decade with a calibrated version of our

model. We first show that the correlation between aggregate wealth and investment in

risky capital in the safety trap contrasts sharply with the standard dynamics, as predicted

by Proposition 4. This provides us with a simple test that helps us characterize the lost

decade as a safety trap. Further checks are implemented by considering other variables.

Finally, we simulate the transitory dynamics following a switch from the standard to the

safe equilibrium, which replicates the dynamics observed during the lost decade.

5.1.1 Calibration

We first describe the calibration that we use for our simulation exercise. Our objective

here is not to obtain realistic quantitative predictions as our model is far too simple

but rather to verify that our story can make sense for reasonable parameter values.

When we represent graphically the dynamics, we use as production functions F (k, lk) =

(k + alk)α(lk)1−α and G(z, lz) = (z + alz)α(lz)1−α with α = .3 and a = 0.1. When a = 0,

these production functions are Cobb-Douglas, but do not satisfy Assumption 1, as the

implied r(k) and R(z) go to infinity when k and z go to zero. We therefore choose a

small, but positive a in order to mimic the Cobb-Douglas technology without violating

Assumption 1. We set ρ = .05, which implies that the interest rate in the standard

equilibrium with no risk is 5%. We also set σ = .02, implying a volatility of 2% which is

consistent with the volatility of output in Japan in the 1980s. The remaining parameter

c̄ is matched such that in the standard equilibrium the ratio of reference consumption

to steady-state consumption is equal to .73. This corresponds to the calibration chosen

by Boldrin et al. (2001) and implies that investors become infinitely risk averse if they

consume 73% of their steady-state consumption, all other things being equal. This gives

us c̄ = 5.7.

Importantly, we find that ωmin < ω∗ < ωmax. This means that, when the economy is
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at the standard steady state, there is the possibility that the investors coordinate on the

safe equilibrium.

5.1.2 Correlations

Table 1 gives the correlations between total households’ wealth and risky assets, TFP,

consumption c, and the interest rate R, both in the data and in our model. Column (1)

gives the empirical correlations in 1981-1989, which corresponds to the period before the

lost decade, and in 1990-1999, which corresponds to the lost decade period. Column (2)

gives the correlations obtained for the calibrated model. These correlations are computed

locally around the corresponding steady state. This column only presents the signs of

the correlations as our model is not rich enough to produce reliable quantitative results.

In the pre-lost decade period, risky assets are positively correlated with wealth, while

they are negatively correlated during the lost decade. According to Column (2), the

predictions of Proposition 4 survive in the calibrated model: this correlation is positive

in the standard dynamics, while it is negative in the safety trap dynamics. The dynamics

of risky assets therefore help us identify the lost decade as a safety trap.

Table 1 also helps us to check whether our model is consistent with the dynamics

of other key variables. First, we consider the comovement of TFP and wealth. TFP

is measured as y/(k + z)α, which is how it is measured in practice, that is under the

hypothesis that the aggregate production function is Cobb-Douglas. Interestingly, the

correlation between TFP and wealth changes during the lost decade: it switches from

positive to negative. This is consistent with our calibrated model, which predicts that the

correlation in the standard equilibrium is positive and negative in the safe equilibrium.

This is because, in the standard equilibrium, investors become less risk-averse when they

become richer, which makes them invest more in the risky technology. On the opposite,

in the safe equilibrium, they become more risk-averse and less willing to take risks, which

increases the misallocation of resources.

Second, the behavior of the interest rate is also consistent with our hypothesis since

its correlation with wealth is negative in both episodes and in both regimes.
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Finally, consider the correlation between consumption and wealth. This time, the

predicted correlation during a safety trap is at odds with the empirical correlation during

the lost decade. One possible reason is that our model is too simple and for example does

not distinguish between the intertemporal elasticity of substitution and the coefficient of

risk aversion as in Epstein and Zin (1989). In the model, as investor become more risk

averse, their intertemporal elasticity of substitution decreases. This makes the income

effect dominant: since the interest rate decreases as wealth increases, investors cut heavily

on consumption. We show in the following that a simpler way to correct for this is to

introduce explicitly the probability to switch from one regime to the other in the model.

In that case, the dynamics of consumption of each regime is “contaminated” by the other.

We extend our model to allow for the possibility to switch from one regime to the

other.9 These switches represent changes in the expectations of investors and can be

interpreted as animal spirits or sunspot shocks. Let pL be the probability to switch from

the standard to the safe regime and pH the probability to switch from the safe to the

standard regime. We calibrate pL and pH so that a safety trap occurs every 50 years and

lasts 5 years. The resulting correlations are represented in Column (3). Now, the two

equilibria contaminate each other and the correlation between consumption and wealth

is positive in the safe regime as well, while the signs of the other correlations remain

unchanged. The safety trap now matches all the empirical correlations of Japan’s lost

decade presented in Table 1.

This result is not too sensitive to the calibration of the switching probabilities. If we

increase the average duration of the safety trap by decreasing pH , consumption becomes

less sensitive to wealth because investors expect to stay longer in the safe equilibrium. We

have to make safety traps last more than 20 years on average to make the comovement

between consumption and wealth turn negative. Although this may look like a reasonable

value for Japan’s lost decade, what matters is not the objective probability but rather

the subjective probability used by investors when making their economic decisions. In

the 1990s, it is doubtful whether the Japanese expected this recession to last more than

9This extension is presented in more details in a supplementary material, available on request.
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a decade and this is why we believe our initial calibration makes more sense.

5.1.3 Experiment

So far, we have examined the correlations of some key variables with wealth around

the safe and standard steady states. Here, we go further and examine the following

hypothesis: the dynamics of the lost decade is the result of a switch from the standard

to the safe equilibrium.

Figure 12 shows the simulations corresponding to this experiment within our cali-

brated model with positive switching probabilities. Starting from the standard steady

state, agents coordinate on the safe equilibrium, entering the safety trap. The simulations

show that at this point wealth starts increasing while the stock of risky capital decreases

at the same time. This implies that the demand for safe assets increases and thus that

the interest rate decreases. This reallocation from risky to safe capital also implies a

lower TFP. Finally, we find that consumption increases with wealth on the convergence

path, but drops on impact.

These simulations are overall consistent with the Figures 1 to 7 described in the

Introduction. Again, we fail to completely match the behavior of consumption. We get it

right along the convergence path but wrong on impact. The initial drop in consumption

occurs because the elasticity of intertemporal substitution falls at impact, due to the

increase in the coefficient of relative risk aversion. In a more general model where these

two coefficients would be distinct, this effect could be avoided.

5.2 Alternative Stories

We have shown that Japan’s lost decade can be consistent with a switch from the stan-

dard to a safe equilibrium. In this section, we investigate whether it could alternatively be

consistent with shocks on fundamentals in the standard equilibrium. We simulate shocks

on wealth, the productivity of safe assets, the productivity of risky assets, and on risk.

Although some of these shocks can generate a negative correlation between wealth and

risky assets on impact, this correlation always becomes positive on the transition path
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to the new steady-state, as predicted by Proposition 4. Figure 13 reports the results of

these simulations using the same calibration as the previous section.

The first shock we consider is a negative shock on wealth, which corresponds to a

negative dv in our model. This shock moves the economy away from its steady state, and

induces both risky and safe capital to fall on impact, and the interest rate to increase.

After impact, the variables of the model go back to the initial steady state, which im-

plies that both total wealth and risky capital increase while the interest rate decreases.

Here, the increase in risky capital on the convergence path is at odds with the empirical

evidence.

We then consider an unexpected permanent increase in the productivity of safe assets.

This makes investors increase their holdings of safe capital and decrease their investment

in risky capital on impact. As a result, the interest rate increases on impact. In the

long run, wealth increases and investors hold more and more both risky and safe assets.

As a consequence, the interest rate decreases. Here, the increase in risky capital on the

convergence path contradicts the actual Japanese experience during the lost decade.

We next examine a permanent lower productivity of risky assets. Our model predicts

a drop in risky capital and a lower interest rate on impact. In the long run, investors

become poorer which further decreases the stock of risky assets and increases the interest

rate. The decreasing wealth is at odds with the data.

The dynamics generated by a permanent positive shock on risk decreases the stock

of risky capital on impact. As risk increases, risky capital becomes less attractive and

investors allocate more of their wealth to safe assets, which decreases the interest rate.

They thus start accumulating more wealth because of the income effect. Thus, the stock

of risky capital increases in the long run. To be reconciled with the data, we would need

a steady rise in volatility. This explanation is, however, difficult to reconcile with Figure

6, which shows that although the volatility of the Nikkei initially increased in 1990, it

then quickly faded away.

26



6 Policy Implications

The safety trap mechanism relies on a market failure between agents who coordinate

on the safe equilibrium. This section discusses two policies that can potentially crowd

out the safe equilibrium: the supply of bonds and transfers.

The existence of the safe equilibrium relies on the possibility of a low interest rate since

it increases risk aversion. By supplying a sufficient amount of public bonds b̄ > 0, the

government can sustain a minimum interest rate and hence crowd out the safe equilibrium,

as represented in Figure 14. Indeed, in that context, the equilibrium investment in the

safe technology z is equal to ω − k − b̄, which means that the equilibrium interest rate

is at least R(ω − b̄). By maintaining a lower bound on the interest rate, the government

prevents risk aversion from being too high, and therefore crowds out the safe equilibrium.

This policy implication is reminiscent of Woodford (1990) and Holmström and Tirole

(1997)’s conclusion that public liquidity can crowd in investment.

However, this prediction has to be taken with a grain of salt. Our model points to the

need to guarantee minimal returns to investors but does not incorporate the issue that

firms or borrowers would benefit from a lower interest rate. This trade-off is absent in

our framework and would require a more complete model to be addressed. Besides, this

is only a partial equilibrium analysis. In general equilibrium, the source of financing for

government debt would be crucial. If government debt was financed exclusively through

taxes on investors, then the net effect of government debt would be neutral, because the

Ricardian equivalence would hold in such a model. If it was financed through taxes on

both investors and workers, then government debt, which is held by investors only, could

have real effects.

Another possible policy that would help crowd out the safe equilibrium is to make

transfers to investors. To see that, consider the budget constraint (9), where we include

constant transfers τ̄ from the government:

dωt = (rtkt +Rt(zt + bt)− c̃t)dt+ σktdvt
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where c̃t = ct− τ̄ . Instantaneous utility can be rewritten as ln(c̃t− ˜̄c), with ˜̄c = c̄− τ̄ < c̄.

The program of investors is the same as before, but with a lower apparent reference

consumption. This is because part of the actual reference consumption is guaranteed

to households by government transfers. As illustrated in Figure 14, the government can

crowd out the safe equilibrium with sufficient transfers.

Again, one has to be cautious about this prediction, because it is a partial equilibrium

analysis. For transfers to investors to have a real effect, it would be important that they

are financed at least partially by other sources than investors themselves. An alternative

could be a redistributive tax from rich to poor investors that would guarantee that their

revenues do not go below a certain level. Such an optimal taxation problem is, however,

beyond the scope of this paper.

7 Conclusion

In this paper, we study the role of risk aversion as a determinant of poor economic

performance. Our general mechanism is that risk averse investors invest in safer and less

profitable projects, which generates a lower TFP. We build a business cycle model with

endogenous risk aversion and portfolio choice and illustrate it with Japan’s lost decade.

Our model predicts a hump-shaped demand for risky capital. For low interest rates,

investors become very risk averse and thus demand safer assets while for high interest

rates investing in risky capital is not profitable anymore. This implies that our model can

have two equilibria. The first one is standard and corresponds to the Ramsey solution. In

the second equilibrium, the safe one, investors are more risk-averse and as a consequence

consume less and invest in safer assets. This second equilibrium generates a safety trap

because investors increasingly invest in safe assets even though they become wealthier.

The predictions of the model when the economy is in a safety trap are consistent with

the empirical evidence on Japan’ s lost decade. In a switch from the standard to the

safe equilibrium, consumption, TFP, and the interest rate decrease, and investors invest

a larger share of their wealth in safe assets, the more so, the higher their wealth.

28



More generally, our model provides a framework to think about episodes of poor

economic performance that are difficult to reconcile with parallel changes in fundamentals

and that are thought to be related to fear of risk.

Finally, our mechanism relies on exogenous switches between the two equilibria, that

reflect changes in anticipations and which we could interpret as animal spirits. However,

we do not provide a more fundamental explanation for why these switches happen and

we believe this could be an interesting avenue for future research.
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Appendix: Proofs

Proof of Proposition 1

Let W (ω,R, r) be the value function of the agent. R and r evolve according to

∂R = µR(t)∂t + σR(t)∂dv and ∂r = µr(t)∂t + σr(t)∂dv. The parameters µR(t), µr(t),

σR(t) and σR(t) might depend on the equilibrium values for k and z but the agents are

infinitesimal so they do not take this into account for their maximization problem.

We first assume that c > c̄ so the value function is well-defined and that the non-

negativity constraint on k is satisfied. Using Ito’s Lemma, we can derive the following

Bellman equation:

ρW (ω,R, r) = max
c,k

{
ln(c− c̄) +

∂W

∂ω
(rk +R(ω − k)− c) +

∂W

∂R
µg(t) +

∂W

∂r
µf (t)

+
∂2W

∂ω∂R
σσRk +

∂2W

∂ω∂r
σσrk +

∂2W

∂ω2

σ2k2

2
+
∂2W

∂R2

σ2
R

2
+
∂2W

∂r2

σ2
r

2

}

The first-order conditions with respect to c and k associated with this Bellman equa-

tion are:

1

c− c̄
=
∂W

∂ω

∂W

∂ω
(r −R) +

∂2W

∂ω∂R
σσR +

∂2W

∂ω2
σ2k = 0

An educated guess of the general form of the value function is:

W = α ln(ω − ω̄) + β(R, r),

The parameters α and ω̄, along with Equations (11) and (12), are found by substituting

the value function into the first-order conditions:

α = 1/ρ,

ω̄ = c̄/R.
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Second, we examine whether the value function is well-defined over a relevant set of

prices. If R > c̄/ω, then ω > ω̄, which implies that the value-function is well-defined and

that c > c̄. Besides, ω > ω̄ implies that the demand for capital is of the same sign as

r−R. Therefore, if r ≥ R, then k ≥ 0, which means that the non-negativity constraint on

k is satisfied. As a result, R ∈ (c/ω, r] ensures that the solution is interior and therefore

that the policy functions are well-defined.

Proof of Lemma 1

Proof of (i)

Consider ω > ωmin.

First, according to Assumption 1, r(k)−R(ω−k) is strictly decreasing on [0, ω], with

r(k) − R(ω − k) strictly negative for k = 0 and strictly positive for k = ω/2. There is

therefore a unique kH(ω) > 0 that satisfies r(kH(ω))−R(ω − kH(ω)) = 0.

Second, since, according to Assumption 1, R is strictly decreasing, then R(ω −

kL(ω))ω − c̄ = 0 defines kL(ω) uniquely as ω −R−1′(c̄/ω).

We now prove kH(ω) > kL(ω). Since r(kH(ω)) = R(ω−kH(ω)), then R(ω−kH(ω))ω =

r(kH(ω))kH(ω) +R(ω − kH(ω))(ω − kH(ω)). Given that r(k)k and R(z)z are increasing

functions, and that kH(ω) and ω − kH(ω) are both increasing in ω, this implies that

R(ω−kH(ω))ω is increasing in ω. Therefore, R(ω−kH(ω))ω > R(ωmin−kH(ωmin))ωmin.

Using the definition of ωmin given in Assumption 1, we derive: R(ωmin−kH(ωmin))ωmin =

c̄. As a result, we have R(ω − kH(ω))ω > c̄. Besides, by definition of kL(ω), c̄ =

R(ω − kL(ω))ω. Consequently, we have R(ω − kH(ω))ω > R(ω − kL(ω))ω, which is

equivalent to R(ω − kH(ω)) > R(ω − kL(ω)). Since, according to Assumption 1, R is a

strictly decreasing function, this implies that kH(ω) > kL(ω).

Proof of (ii) and (iii)

We first have to prove that there exists a unique ωmax such that kL(ωmax) = 0 and that

ωmax > ωmin. kL(ωmax) = 0 is equivalent to R(ωmax)ωmax = c̄. According to Assumption

1, R(ω)ω is a strictly increasing function with values between 0 and +∞, so there exists
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a unique ωmax satisfying kL(ωmax) = 0.

We now prove that ωmax > ωmin. ωmin must satisfy R(ωmin − kH(ωmin))ωmin = c̄.

Besides, according to Assumption 1, and given that kH(ωmin) is uniquely defined, we have

kH(ωmin) ≥ 0. Since R is a decreasing function, this implies R(ωmin)ωmin < R(ωmin −

kH(ωmin))ωmin. Finally, since R(ωmin−kH(ωmin))ωmin = c̄ = R(ωmax)ωmax, then we have

R(ωmin)ωmin < R(ωmax)ωmax, which imposes ωmax > ωmin.

Now, we show that k ∈ [0, kH(ω)]
⋂

(kL(ω), kH(ω)] is a necessary condition for D to be

well-defined, that is, for the condition R(ω−k) ∈ (c̄/ω, r(k)] to be satisfied. kH(ω) is the

solution to r(k)−R(ω− k) = 0, with r(k)−R(ω− k) strictly decreasing in k. Therefore,

r(k) ≥ R(ω − k) imposes k ≤ kH(ω). kL(ω) is the solution to R(ω − k)ω − c̄ = 0, with

R(ω − k)ω − c̄ strictly increasing in k. Therefore, R(ω − k)ω > c̄ imposes k > kL(ω).

The condition k ≥ 0 that D is therefore well-defined for k ∈ [0, kH(ω)]
⋂

(kL(ω), kH(ω)].

Finally, we have ∂kL/∂ω(ωmax) = 1 − εz(ωmax), where εz(z) = R(z)/|R′(z)z|. Since

R(z)z is increasing in z according to Assumption 1, we should have R(z) + R′(z)z > 0,

which implies that εz > 1, so ∂kL/∂ω(ωmax) < 0. By continuity, since ωmax is the

only solution to kL(ω) = 0, a level of ω > ωmax would then imply kL(ω) < 0.

Conversely, ω < ωmax would imply kL(ω) > 0. Therefore, k ≥ 0 that D is well-

defined for k ∈ [0, kH(ω)]
⋂

(kL(ω), kH(ω)] = (kL(ω), kH(ω)] when ω < ωmax and for

k ∈ [0, kH(ω)]
⋂

(kL(ω), kH(ω)] = [0, kH(ω)] when ω ≥ ωmax.

Proof of Proposition 2

Proof of (ii)

The limit solutions must solve ∆(k, ω)/γ(k, ω) = 0. kH(ω) and kL(ω) correspond

respectively to ∆(k) = 0 and 1/γ(k) = 0. Besides, according to Lemma 1, kH(ω) and

kL(ω) are uniquely defined for ω > ωmin. If, additionally, ω ≤ ωmax, then kL(ω) satisfies

the non-negativity constraint (see Lemma 1).

34



Proof of (i)

Equation (23) is equivalent to:

σ2k =

(
r(k)−R(ω − k)

)(
ω − c̄

R(ω − k)

)
. (28)

According to (i), for a given ω ∈ (ωmin, ωmax], the two limit solutions when σ goes to

zero are kH(ω) and kL(ω). Given that r(k) − R(ω − k) is decreasing in k and that

ω − c̄
R(ω−k)

is increasing in k, the right-hand side of Equation (28) is strictly positive if

and only if kL(ω) < k < kH(ω), where, according to Proposition 3, the demand for k is

well-defined. By continuity, for a small enough σ, there exist two interior solutions within

(kL(ω), kH(ω)).

Proof of Proposition 3

Consider first the case where there are no adjustment costs, that is C = 0. The

optimality condition for households’ intra-period objective is the following:10

D(k)− k = k̇D′(k)− k̈

The initial demand kinit is given and the following “transversality” condition must be

satisfied:

lim
s→∞

[D(ks)− ks − k̇s] = 0

The market process of k follows a second-order differential equation with an initial and a

terminal condition. It has therefore a unique solution. We can check that the Walrasian

tâtonnement, which is characterized by k̇ = D(k) − k, satisfies both the optimality and

the transversality conditions. This process is locally stable only for kH . This proves (i).

Consider now the case where there are adjustment costs. C(k̇, k̄) is positive and

strictly convex in k̇ and k̄, with C12 > 0 and C(0, k̄) = 0 for all k̄. The optimality

10See Howitt and McAfee (1988).
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condition for households is now:

D(k)− k = k̇[D′(k)− C12(k̇, k)]− k̈[1 + C11(k̇, k)]

The initial demand kinit is given and the following “transversality” condition must be

satisfied:

lim
s→∞

[D(ks)− ks − k̇s − C1(k̇s, ks)] = 0

This second-order differential equation in k can be rewritten as system of two first-

order differential equations in k and x, where x = k̇:

ẋ =
D′(k)− C12(k̇, k)

1 + C11(k̇, k)
x− [D(k)− k] (29)

k̇ = x (30)

A linear approximation of this system around (x, k) = (0, ki), i ∈ {L,H} yields the

following linear dynamic system:

 ẋ

k̇

 =

 D′(ki)−C12(0,ki)
1+C11(0,ki)

−[D′(ki)− 1]

1 0


 x

k


The roots (λ1, λ2) of this dynamic system must satisfy:

λ1 + λ2 =
D′(ki)− C12(0, ki)

1 + C11(0, ki)

λ1λ2 = D′(ki)− 1

Saddle-stability occurs if and only if there are two real roots with opposite signs, that is

if λ1λ2 < 0. This is the case only if i = H. This means that for i = L, the equilibrium is

not a saddle point. However, it will be locally stable if λ1 + λ2 < 0, which is equivalent

to D′(ki) < C12(0, ki).
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Proof of Proposition 4

Proof of (i)

Differentiating the equilibrium Equation (23) with respect to ω when σ is close to

zero and k = kH(ω) yields ∂kH/∂ω = R′/(r′ +R′) > 0. This proves (i).

Proof of (ii)

Differentiating (23) with respect to ω when σ close to zero and k = kL(ω), we

obtain ∂kL/∂ω = 1 + R(zL(ω))/(R′(zL(ω))ω) = 1 − εz(z
L(ω))zL(ω)/ω, with εz(z) =

R(z)/|R′(z)z| > 1. First, it implies that:

∂(kL/ω)

∂ω
=
∂kL/∂ω

ω
− kL

ω2
= − 1

ω
(εz(z

L(ω))− 1)

(
ω − k
w

)
< 0

Second, since, kL(ωmax) = 0, it implies that ∂kL(ωmax)/∂ω = 1 − εz(ωmax) < 0. This

proves (ii).

Proof of Proposition 5

Proof of (i)

When σ goes to zero, we have k = kH .

First, we have shown in the proof of Proposition 4 that ∂kH/∂ω = R′/(r′ + R′) > 0,

which implies that ∂zH/∂ω = r′/(r′ + R′) > 0. zH is then increasing in ω. Since

RH = R(zH) is a decreasing function of zH , then RH is increasing in ω.

Second, differentiating the equilibrium Equation (23) with respect to ω when k =

kH(ω) and using ∂zH/∂ω = r′/(r′ + R′) >, we get ∂cH/∂ω = ρ
(

1 + c̄
zH

r′R′

(r′+R′)R2

)
=

ρ
(

1− c̄
zH

|r′R′|
|r′+R′|R2

)
. Therefore, cH is increasing in ω if c̄ < R2|r′+R′|

|r′R′| .

Third, when k = kH , we have rH = RH , which means that f ′(kH) = g′(ω − kH).

This means that kH(ω) and zH(ω) = ω − zH(ω) maximize aggregate production for ω.

We therefore have y∗(ω) = f(kH(ω)) + g(zH(ω)) = yH(ω), and yH − y∗ = 0, which is

independent of ω.
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Proof of (ii)

When σ goes to zero, we have k = kL.

First, ∂zL/∂ω = 1 − ∂kL/∂ω. According to Proposition 4, we have ∂kL/∂ω < 0 in

the neighborhood of ωmax, so ∂zL/∂ω > 0.

Second, when k = kL, we have c = c̄, which is independent of ω.

Second, ∂zL/∂ω = 1− ∂kL/∂ω. According to Proposition 4, we have ∂kL/∂ω < 0 in

the neighborhood of ωmax, so ∂zL/∂ω > 0.

Third, when k = kL, we have ∂(yL − y∗)/∂ω = [rL − RL]∂kL/∂ω − (RH − RL).

rL − RL > 0 and we have shown in Proposition 4 that ∂kL/∂ω < 0 in the neighborhood

of ωmax, so the first term is strictly negative. Similarly, kH > kL, so zH < zL and

RH > RL. As a result, the second term is negative as well. Therefore, ∂(yL−y∗)/∂ω < 0

in the neighborhood of ωmax.

Proof of Proposition 6

Proof of (i)

We first show that ωmin is the unique steady state such that RH(ω)ω = c̄. Since

rH(ω) = RH(ω), we have RH(ω)ω = rH(ω)kH(ω) + RH(ω)zH(ω). Given that r(k)k

and R(z)z are increasing functions, this implies that RH(ω)ω = r(kH(ω))kH(ω) +

R(zH(ω))zH(ω) is increasing in ω. Besides, for ω = 0, the non-negativity constraint

on k and z implies that k = z = 0, so RH(0)0 = f(kH(0))kH(0) + g(zH(0))zH(0) = 0.

Since kH ≥ 0 and R is decreasing, we can write RH(ω)ω = R(ω − kH(ω))w ≥ R(ω)ω,

which goes to +∞ when ω goes to +∞. Therefore, RH(ω)ω goes to infinity as well. To

summarize, RH(ω)ω is increasing with values between 0 and +∞ for ω between 0 and

+∞, so ωmin is the unique steady state such that RH(ω)ω = c̄.

Second, RH(ω) = R(zH(ω)) is decreasing with value between 0 and ∞. Therefore,

there exists a unique steady state ω∗ such that RH(ω∗) = ρ.

If ω∗ ≥ ωmin, ωmin and ω∗ are the two steady states and only ω∗ is stable. Indeed,

for ωmin < ω < ω∗, RH(ω)ω > c̄ and RH(ω) > ρ, so ω̇ > 0. For ω > ω∗, we still have
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RH(ω)ω > c̄ but RH(ω) < ρ, so ω̇ < 0. If ω∗ < ωmin, ωmin is the unique well-defined

steady state. This steady state is stable since RH(ω)ω > c̄ and RH(ω) < ρ for ω > ωmin.

Finally, we check whether the following transversality condition is satisfied:

lim
t→∞

Etωtu
′(ct)e

−ρt = 0 (31)

In the standard regime, when the steady state is wS, ct converges to a level that is strictly

higher than c̄, so the marginal utility converges to a finite level, which ensures that the

transversality condition is satisfied. When the steady state is ωmin, c converges to c̄. For

the transversality condition to be satisfied, the marginal utility must diverge to infinity

at a lower rate than ρ. In order to infer the growth rate of marginal utility, consider the

Euler equation with respect to safe capital:

Et∂u
′(ct)/∂t

u′(ct)
= ρ−Rt (32)

Since z is finite and strictly positive in steady state, R is strictly positive. Therefore,

the convergence rate of marginal utility is strictly lower than ρ. This ensures that the

transversality condition holds in the long-run.

Proof of (ii)

Differentiating Equation (25) with respect to σ2, we get the following:

∂ω̇

∂σ2
=

∂k

∂σ2

(
r(k)−R(ω − k) + r′(k)k +R′(ω − k)(ω − k) +

ρc̄R′(ω − k)

R(ω − k)2

)
(33)

In the standard regime, for σ close to 0, we have r(k) = R(ω − k), so this simplifies to:

∂ω̇

∂σ2
=

∂k

∂σ2

(
r′(k)k +R′(ω − k)(ω − k) +

ρc̄R′(ω − k)

R(ω − k)2

)
> 0

The fact that ω∗(σ) is increasing in σ when ω∗ > ωmin then derives from the fact that ω̇

is increasing in σ and that ω∗ is stable (Proposition 5). This proves (ii).

A similar argument as in (i) proves that the transversality condition is satisfied.
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Proof of Proposition 7

Proof of (i)

A first possible steady-state is the solution to ∆L(ω) = 0. This implies RH(ω)ω = c̄,

the solution of which is ωmin. The second possible steady-state is the solution to kL(ω) =

0, which is ωmax. These are the two unique steady states.

We have kL(ω) > 0 and ∆L(ω) ≥ 0 for all ω ∈ [ωmin, ωmax] (see the proof to Lemma

1). Therefore, ωmax is stable while ωmin is not.

Proof of (ii)

We first prove that ωmax is still a steady state for σ > 0. In the safe regime, we

cannot derive the sign of the derivative in Equation (33) for all ω > ωmin. However, for

ω = ωmax, ∂k/∂σ
2 = 0, so ∂ω̇/∂σ2 = 0. This proves the first part of (ii). Next, we

prove that ωmax is an inaccessible boundary in the safe regime. In the neighborhood of

ω = ωmax, using ωmax − ω̄L(ωmax) = kL(ωmax) = 0, the following approximation holds:

∂ω =

[
(R(ωmax)− ρ)

(
1− c̄R′(ωmax)

(R(ωmax))2

)
+(r(0)−R(ωmax))

(
1 +

c̄

ω2
maxR

′(ωmax)

)]
(ω − ωmax)∂t

+ σ

(
1 +

c̄

ω2
maxR

′(ωmax)

)
(ω − ωmax)∂v

Using:

εz(ωmax) = −R(ωmax)/ωmaxR
′(ωmax) = −R(ωmax)

2/c̄R′(ωmax) = −c̄/ω2
maxR

′(ωmax),

we derive:

∂ω =

[
(R(ωmax)− ρ)

(
1 +

1

εz(ωmax)

)
+ (r(0)−R(ωmax)) (1− εz(ωmax))

]
(ω−ωmax)∂t

+ σ (1− εz(ωmax)) (ω − ωmax)∂v.

40



Since εz(ωmax) > 1, we can write:

∂ω = γ(ω − ωmax)∂t+ σκ(ω − ωmax)∂v

where γ and κ are strictly positive constants. This implies:

∂x = γ∂t+ σκ∂v

with x = log(ωmax − ω) defined on (−∞, log(ωmin)). Cox and Miller (2001) have shown

that such a process with γ > 0 has a non-degenerate steady state and that −∞ is an

inaccessible boundary. Since x = log(ωmax − ω), this implies that ωmax is an inaccessible

boundary for ω. This proves the second part of (ii).

In the safe regime, consumption converges to c̄, which implies that the marginal utility

goes to infinity. For the transversality condition to be satisfied, the marginal utility must

diverge to infinity at a lower rate than ρ. The dynamics of ωt is of the form:

∂ω = R(ωt)ωt∂t+ [r(ωt)−R(ωt)]k(ωt) + σk(ωt)∂v

Using the Euler equation and Ito’s Lemma, we can show that the dynamics of u′(ct) is

the following:

∂u′(ct) = (ρ−Rt)u
′(ct)∂t+ σk(ωt)ρ

(
1 +

c̄R′(z(ωt))

R(z(ωt))2

)
∂v

Using Ito’s Lemma, we can show that:

∂ωtu
′(ct)

ωtu′(ct)
=
R(ωt)

ωt
+ ρ−Rt + σ2k2

t ρ

(
1 +

c̄R′(z(ωt))

R(z(ωt))2

)

When ωt goes to ωmax, since k(ωmax) = 0 and R(ωmax) = 0, the growth rate of ωtu
′(ct)

converges to ρ−Rt, which is strictly lower than ρ. The transversality condition is therefore

satisfied.
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Table 1: Comparing the data and the implications of the model.

(1) (2) (3)
Data Model Model w/ switching

1981-89 1990-99 Standard Safe Standard Safe
Corr(ω, k) .99* -.90* + - + -

Corr(ω, TFP ) .97* -.71* + - + -
Corr(ω,R) -.30 -.92* - - - -
Corr(ω, c) .97* .97* + - + +

* p < 0.05

ω refers to the log of the total assets held by Japanese households in real yen. Source: Bank of Japand k

refers to the logarithm of the stock of risky assets held by Japanese households in real yen. Risky assets

include the categories “Shares and other equities” and “Securities other than shares”. R refers to the

real interest rate of Japan in %. It is the real average interest rate on certificates of deposits. c refers to

the the log of the household final consumption expenditure in Japan in real yen. Real values are adjusted

for inflation as measured by the GDP deflator. TFP is computed using the formula: TFP=ln(GDP)-

.33ln(K)-.67ln(L), where GDP is in real yen; K is derived from the formula Kt+1 = .93Kt + It, where

I is the gross capital formation in real yen, K1970 = I1970/.07, and L is the total labor force. Sources:

Bank of Japan and WDI.
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Figure 1: GDP of Japan
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Unit: trillion real yen. Real yen are yen adjusted for inflation as measured by the GDP deflator. Source:

WDI.

Figure 2: Stock of risky assets held by Japanese households
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Risky assets include the categories “Shares and other equities” and “Securities other than shares”. Unit:

trillion real yen. Source: Bank of Japan. Real yen are yen adjusted for inflation as measured by the

GDP deflator. Source: WDI.
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Figure 3: Total assets held by Japanese households

0
50

00
10

00
0

15
00

0

1980 1990 2000 2010
Year

Unit: trillion real yen. Source: Bank of Japan. Real yen are yen adjusted for inflation as measured by

the GDP deflator. Source: WDI.

Figure 4: TFP of Japan
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TFP is computed using the formula: ln(TFP)=ln(GDP)-.33ln(K)-.67ln(L), where GDP is in constant

yen; K is derived from the formula Kt+1 = .93Kt + It, where I is the gross capital formation in constant

yen, K1970 = I1970/.07, and L is the total labor force. Source: WDI.
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Figure 5: Interest rate in Japan
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Unit: %. The interest rate is the real average interest rate on certificates of deposits. Source: Bank of

Japan. The real value is obtained using the GDP deflator. Source: WDI.

Figure 6: Volatility of the Nikkei
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Standard deviation of the Nikkei over the past year. Source: Yahoo finance.
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Figure 7: Household final consumption expenditure in Japan
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Unit: trillion real yen. Real yen are yen adjusted for inflation as measured by the GDP deflator. Source:

WDI.
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Figure 8: The equilibrium stock of risky capital
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D(k, ω, σ) is the demand for risky capital k as a function of wealth ω and risk σ. The equilibrium stock

of risky capital are the fixed points to k = D(k, ω, σ).
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Figure 9: The demand for risky capital.

 

 

kH(ω0)kL(ω0) kH(ω1)kL(ω1) kH(ω2)kH(ω2) kH(ω3)

D(k, ω0, σ)
D(k, ω1, σ)
D(k, ω2, σ)
D(k, ω3, σ)
45◦ line

D(k, ω, σ) is the demand for risky capital k as a function of risk σ and for different values of wealth ω,

with ω0 < ω1 < ω2 < ω3. The equilibrium stock of risky capital are the fixed points to k = D(k, ω, σ).
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Figure 14: Policy analysis

 

 

k

D(k, ω, σ)

D(k, ω, σ) with high b̄
D(k, ω, σ) with high τ̄
45◦ line

In the “High b” case, D(k, ω, σ) is the demand for risky capital k as a function of wealth ω and risk σ,

when government supplies a positive amount of government bonds b̄. In the “High τ” case, D(k, ω, σ)

is the demand for risky capital k as a function of wealth ω and risk σ, with c̄ − τ̄ the reference level of

consumption.
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