ANS 2006 WINTER MEETING

17th Topical Meeting on the Technology of Fusion Energy (TOFE)

MULTI-REGIONAL LONG-TERM ELECTRICITY SUPPLY SCENARIOS WITH FUSION

Swiss Federal Institute of Technology - Lausanne (EPFL) Laboratory of Energy Systems (LASEN)

> Edgard Gnansounou, <u>edgard.gnansounou@epfl.ch</u> Denis Bednyagin, <u>denis.bedniaguine@epfl.ch</u>

Albuquerque, NM • November 14, 2006

LASEN

Outline

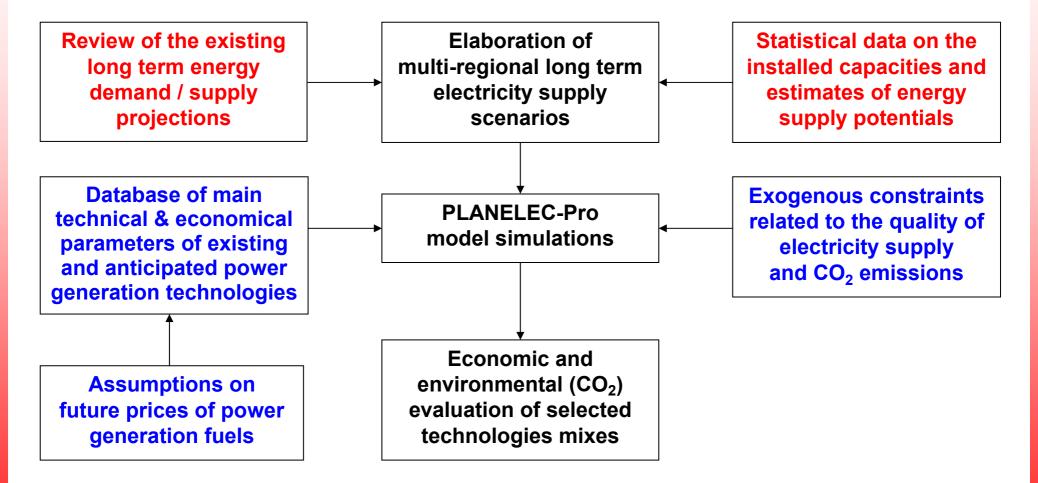
- Approach / PLANELEC model
- Assumptions and Input Data
- Overview of Selected Scenarios
- Main Findings
- Conclusions and Recommendations

Motivation

- The existing global long-term energy scenario studies (e.g. IIASA / WEC, IPCC SRES) does not consider Fusion power as potential energy supply option
- Region-specific conditions (availability of primary energy resources; CO₂ emission caps; public policy to support innovative technologies)
 may affect significantly the deployment rates of Fusion
- Need to complement the existing energy scenario studies emphasized on Fusion (e.g. Lako et al., 1999; Schmidt et al., 2000; Tokimatsu et al., 2002) with an in-depth prospective analysis of future regional electricity supply mixes

Objectives

<u>Main Goal</u>

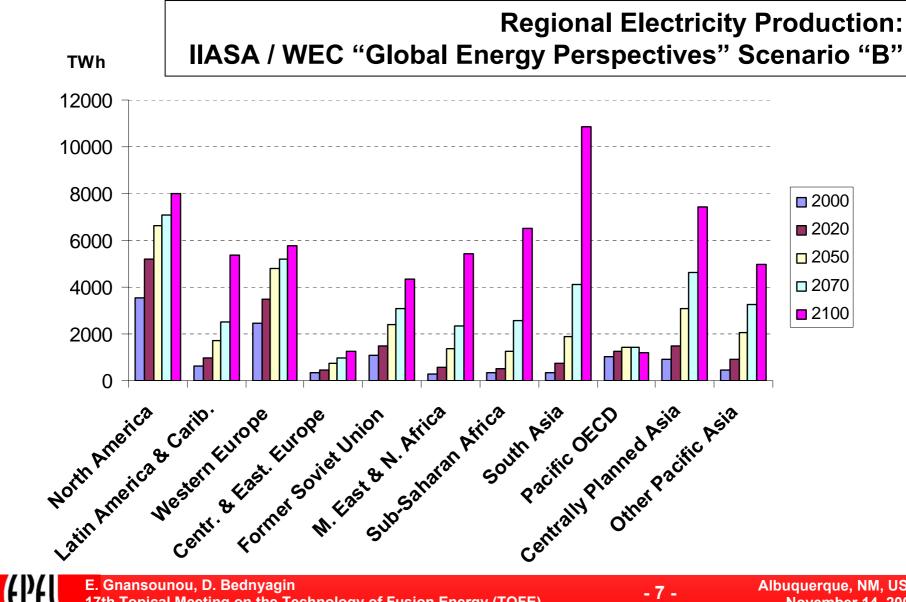

To assess possible market shares of Fusion power in future regional electricity supply mixes

Specific tasks

- Building of credible multi-regional electricity supply scenarios
- Estimation of possible shares in total electricity production of different power generation technologies, including Fusion
- Simulation of selected scenarios with PLANELEC model to assess economic and environmental performance of Fusion power generation

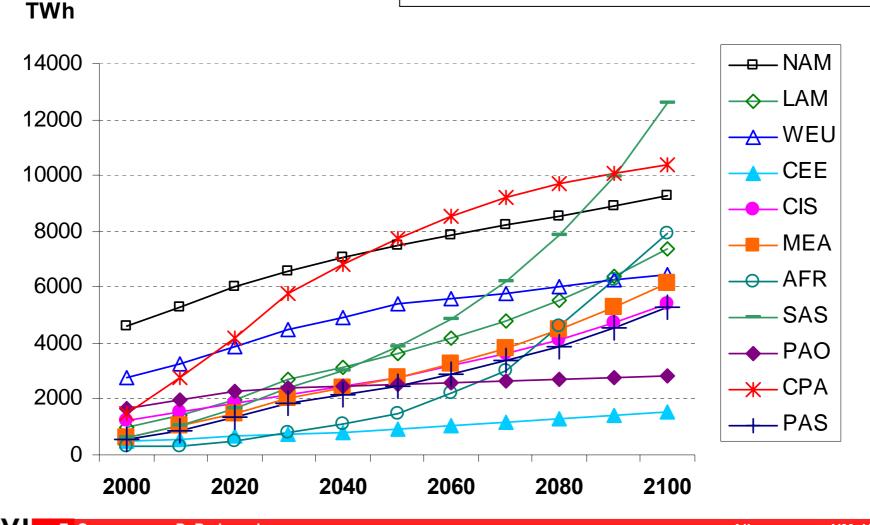
Approach / PLANELEC model

- 5 -


Approach / PLANELEC Model

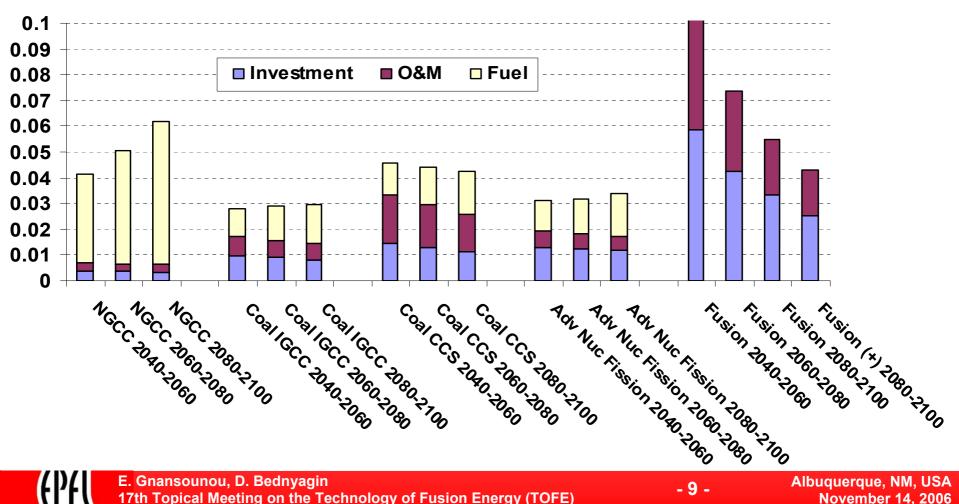
Main indicators

- Impact on the levelized system electricity cost of the evolving share of Fusion power and competing electricity supply options (advanced nuclear fission, coal with CO₂ capture & sequestration)
- Total discounted cost of the system expansion plan
- Cumulated CO₂ emission reductions compared to Baseline scenario
- Technology-specific CO₂ abatement cost


Overview of Existing Energy Scenarios

17th Topical Meeting on the Technology of Fusion Energy (TOFE)

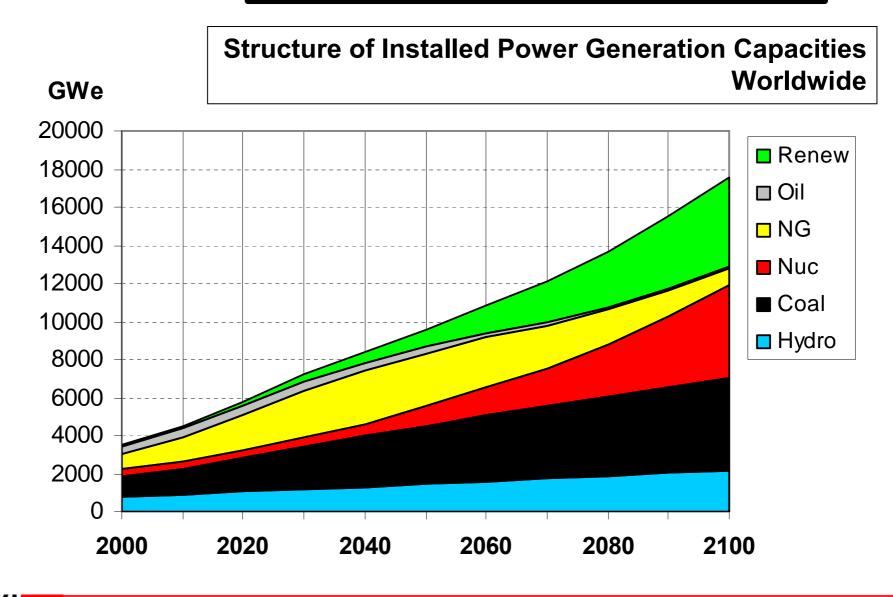
Input Assumptions in PLANELEC Model


E. Gnansounou, D. Bednyagin 17th Topical Meeting on the Technology of Fusion Energy (TOFE)

- 8 -

Input Assumptions in PLANELEC Model

€ / kWh


Simulated Scenarios

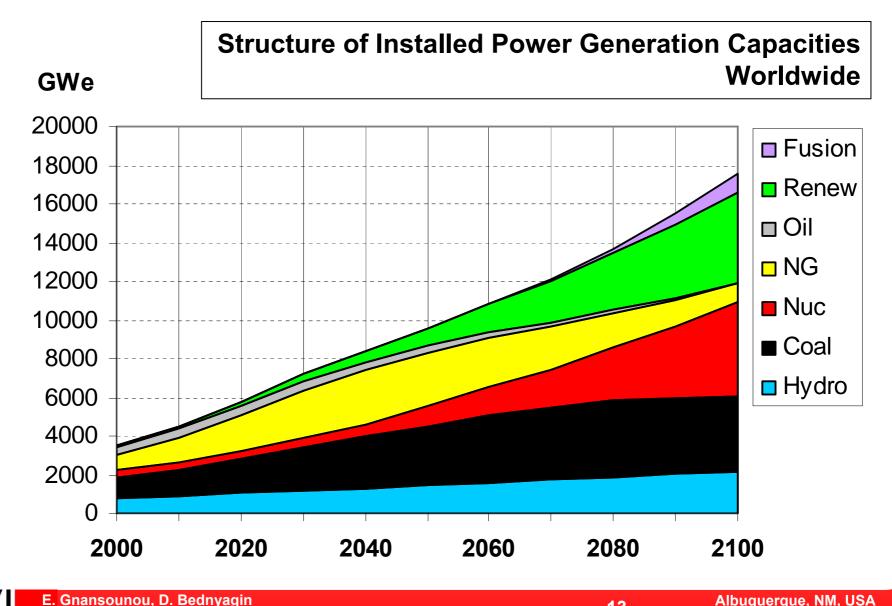
"Baseline " (no Fusion)

- Introduction of Fusion" (Fusion power plants are built in the countries participating in ITER initiative; 330 GWe of Fusion capacities by 2100)
- "Massive Deployment of Fusion" (Fusion power plants are built world-wide; 950 GWe of Fusion capacities by 2100)
- "Coal CCS" (Indicative scenario: the same 950 GWe capacity of Coal with CO₂ Capture & Storage power plants are built world-wide; no Fusion)
- "Extra Nuclear Fission" (Indicative scenario: additional 950 GWe capacity of advanced nuclear fission power plants are built world-wide; no Fusion)
- "CO₂ tax" (the above scenarios in the case of the Western Europe region are simulated under CO₂ tax: € 20 and € 50 / t CO₂)

- 10 -

Baseline Scenario

E. Gnansounou, D. Bednyagin 17th Topical Meeting on the Technology of Fusion Energy (TOFE)


Total Fusion Power Generation Capacities in Selected Fusion Scenarios (GWe)

Region	Moderate Introduction				Massive Deployment					
	2060	2070	2080	2090	2100	2060	2070	2080	2090	2100
NAM	6	24	48	81	120	15	58	100	200	300
LAM	-	-	-	-	-	-	-	3	12	30
WEU	6	24	42	66	90	9	35	60	123	186
CEE	-	-	-	-	-	-	-	-	6	18
CIS	-	-	3	9	15	-	3	9	24	42
MEA	-	-	-	-	-	-	-	3	12	30
AFR	-	-	-	-	-	-	-	-	6	15
SAS	-	3	9	18	30	-	6	30	60	99
PAO	3	6	12	21	33	3	9	21	36	60
СРА	-	3	12	24	42	-	9	30	75	140
PAS	-	-	-	-	-	-	-	3	12	30
Total	15	60	126	219	330	27	120	259	566	950

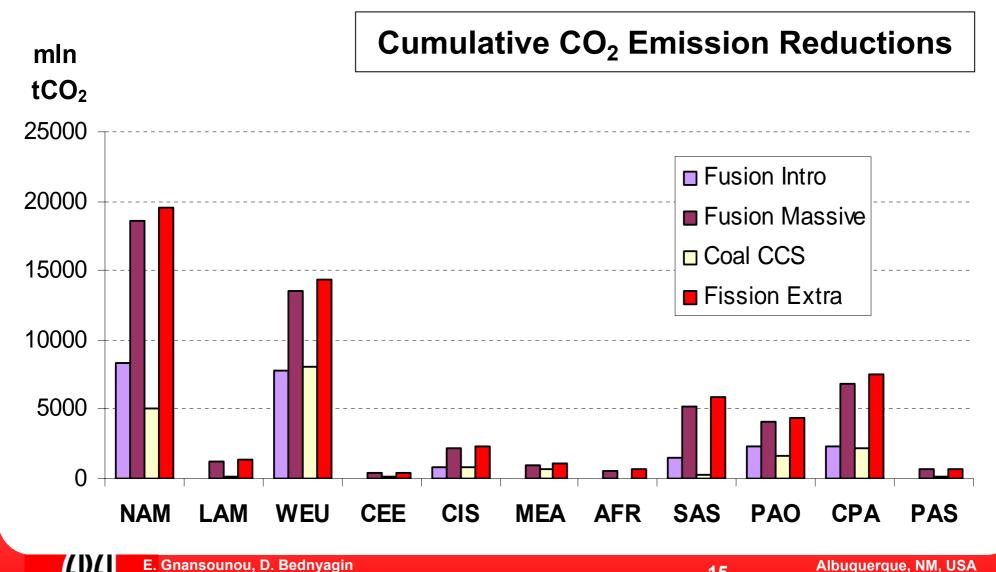
E. Gnansounou, D. Bednyagin

17th Topical Meeting on the Technology of Fusion Energy (TOFE)

"Massive Deployment of Fusion"

17th Topical Meeting on the Technology of Fusion Energy (TOFE)

- 13 -


Fusion Share in Total Regional Electricity Generation (2100) and Increment of Levelized System Electricity Cost (2080 – 2100)

	Modera	ate Introduction	Massive Deployment		
	Fusion share (%)	Electricity cost increment (€cent / kWh)	Fusion share (%)	Electricity cost increment (€cent / kWh)	
NAM	9.2	0.20	22.9	0.28	
LAM	-	-	2.9	0.02	
WEU	9.9	0.26	20.4	0.38	
CEE	-	-	8.3	0.04	
CIS	2.0	0.04	5.6	0.06	
MEA	-	-	3.5	0.04	
AFR	-	-	1.4	0.01	
SAS	1.7	0.03	5.6	0.04	
ΡΑΟ	8.3	0.21	15.1	0.30	
СРА	2.9	0.04	6.8	0.06	
PAS	-	-	4.1	0.03	

E. Gnansounou, D. Bednyagin 17th Topical Meeting on the Technology of Fusion Energy (TOFE)

- 14 -

17th Topical Meeting on the Technology of Fusion Energy (TOFE)

Albuquerque, NM, USA November 14, 2006

- 15 -

CO_2 Abatement Cost (\in / t CO_2)

	Fusion Intro	Fusion Massive	Coal CCS	Fission Extra
NAM	40.3	27.0	19.3	3.2
LAM	-	15.2	64.2	2.3
WEU	40.0	32.3	16.8	9.6
CEE	-	18.0	24.2	3.7
CIS	32.7	18.3	15.0	2.4
MEA	-	25.6	19.2	4.1
AFR	-	15.8	167.4	2.5
SAS	26.9	12.1	71.0	1.8
ΡΑΟ	48.6	37.0	22.8	3.9
СРА	25.3	12.5	15.4	1.5
PAS	-	25.8	34.2	5.5

E. Gnansounou, D. Bednyagin

17th Topical Meeting on the Technology of Fusion Energy (TOFE)

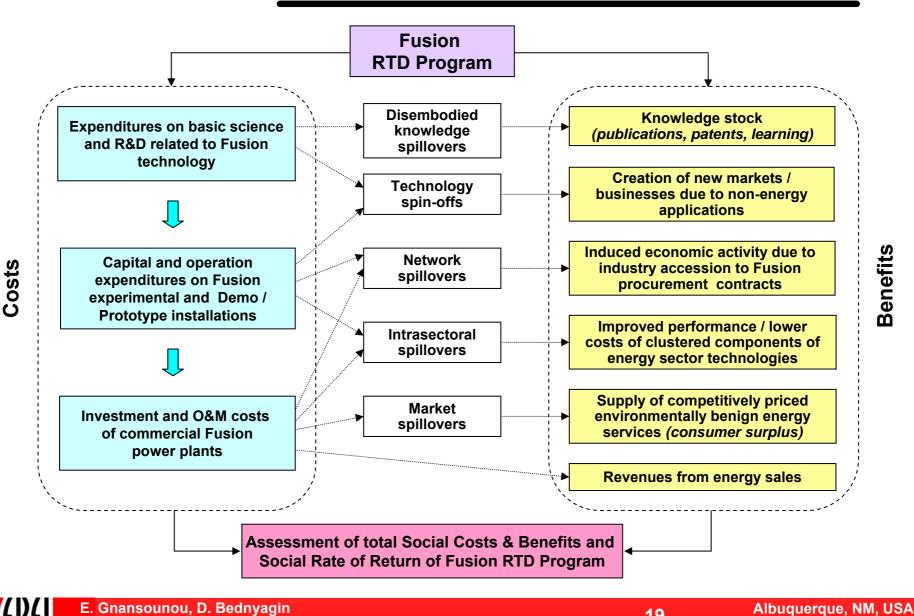
- 16 -

Evolution of Levelized System Electricity Cost (€cent / kWh) in the Western Europe Region at Different Levels of CO₂ Tax

	Baseline	Fusion Intro	Fusion Massive	Coal CCS	Fission Extra
€ 20 / tCO ₂					
2040 - 2060	4.6	4.7	4.7	4.7	4.6
2060 - 2080	4.5	4.6	4.6	4.5	4.4
2080 - 2100	4.4	4.6	4.6	4.4	4.4
€ 50 / tCO ₂					
2040 - 2060	5.4	5.4	5.4	5.4	5.3
2060 - 2080	5.2	5.3	5.2	5.2	5.1
2080 - 2100	5.0	5.1	5.0	4.9	4.8

E. Gnansounou, D. Bednyagin

17th Topical Meeting on the Technology of Fusion Energy (TOFE)


- 17 -

- Massive deployment of Fusion power (≈ 20% market share) entails only a modest increase of levelized system electricity cost (by ≈ 0.3 – 0.4 €cent / kWh)
- Potential contribution of Fusion to reduction of global CO₂ emissions from power generation is estimated at 1.8 - 4.3 %
- Reasonably good commercial prospects for Fusion power by the end of the century, but substantial public funding and other forms of support will be required during initial deployment stage
- Evaluation in terms of social rate of return taking into account spillover benefits may provide additional arguments for policymakers to support Fusion RTD program

- 18 -

Further Work: Estimating Spillover Benefits and Social Rate of Return of Fusion RTD Program

17th Topical Meeting on the Technology of Fusion Energy (TOFE)

- 19 -