
Toward a systematic way to evaluate
feature selection for iEEG analyses

 

Introduction  

Epilepsy is a neuro-logical disorder characterized by a recurrence of a brief abnormal and uncontrollable
electrical discharge of the brain called seizure. According to World Health Organization (WHO),
approximately 50 million people world- wide have epilepsy. Upon all these patients, approximately 70% are
responding to prevalent cure like medications and surgeries, while 30% are untreated or poorly treated.

One of the promising solution to help the patients who can not control their seizures using medications
and surgeries is to use implantable electrical stimulators that can monitor their brain activity and generate
an electrical stimulation to stop their seizure when it is detected by the device. Di!erent studies have
shown how stimulations can help stop an occurnig seizure but in order to do so in real time in an
implanted device require an e"cient way of detecting when a seizure is occurring.

It is know that machine learning can help achieve this goal, and many studies have presented methods that
can detect a seizure with low computational cost. However, as seizure signature can vary a lot from a
patient to another and as a consequence most of those methods lacks of generalization.

In order to overcome this weakness, we will focus on one of the key component of machine learning :
feature selection. Fiding the relevant feature for a given problem can often drasticly improve the
performance of a model wether it's a classi#cation or a regression task. But without a way of quantifying
the quality of a given feature for a model or a patient it is hard to know if the selected feature are the best
for our problem.

The aim of this project is to present a systematic way to evaluate feature selection for iEEG analyses and to
apply this method to extract insights from the SWEC-ETHZ iEEG Database.

Dataset  

The SWEC-ETHZ iEEG Database is composed of two datasets:

Long-term Dataset: 2656 hours of anonymized and continuous intracranial
electroencephalography (iEEG) of 18 patients with pharmaco-resistant epilepsies.
Short-term Dataset: 100 anonymized intracranially recorded electroencephalographic (iEEG)
datasets of 16 patients with pharmaco-resistant epilepsy.

For this study we will only focus in the #rst dataset (Long-term Dataset). The iEEG signals were recorded
intracranially by strip, grid, and depth electrodes. After 16-bit analog-to-digital conversion, the iEEG signals
were median-referenced and digitally band-pass #ltered between 0.5 and 120 Hz using a fourth-order
Butterworth #lter prior to analysis and written onto disk at a rate of 512 or 1024 Hz. Forward and backward



Patient number of seizures mean duration std duration min duration max duration
1 2 601.787 16.9381 589.81 613.764
2 2 88.0625 2.55547 86.2555 89.8695
3 4 64.6619 4.14865 60.5449 68.234
4 14 41.9404 13.779 7.77257 68.6968
5 4 16.6878 0.512328 15.9232 17.013
6 8 45.8905 32.8707 29.3444 126.882
7 4 69.5688 38.6222 14.1287 98.8148
8 70 21.9668 53.88 6.22336 413.385
9 27 42.377 35.5274 18.7427 148.283

10 17 70.8471 10.7102 61.2513 106.262
11 2 91.5471 11.9259 83.1142 99.98
12 9 146.461 33.0413 106.836 194.754
13 7 103.004 60.9422 40.1964 188.44
14 60 25.8067 24.3826 6.37323 100.775
15 2 94.5809 35.5882 69.4163 119.746
16 5 190.445 50.6856 120.293 245.196
17 2 97.9362 1.28925 97.0246 98.8479
18 5 199.132 100.565 71.4387 300.651

#ltering was applied to minimize phase distortions. All the iEEG recordings were visually inspected by an
EEG board-certi#ed and experienced epileptologist (K.S.) for identi#cation of seizure onsets and endings
and exclusion of channels continuously corrupted by artifacts.

Exploratory data analysis  

The iEEG recordings of the 18 patients are provided into .mat #les. Each #le contains one hour of
recording and the data is stored in TxM array where T is the number of iEEG electrodes and M is the
number of sampling points for one hour. An additional #le provided for each patients also gives
informations about the sampling frequency, the beginning and the end of the seizures (in seconds).

The following table gives an idea of the duration range of the seizure for each patients in seconds.

We can also notice with the following table that:

Some patients (8, 14) have much more seizures during the recording period than overs (1,2).
Duration of seizures from a patient to another can vary a lot ranging from (6.22s for patient 5 to
613.74s for patient 2).
Duration of a seizure for a given patient can vary a lot (std of patient 18 is more than 100s)

 

 

To get a better view of the repartition of seizure duration, and the repartition of the number of seizures for
each patients, we can refer to the following #gures.

 



Figure 1. Histogram of seizure duration for all patients

Figure 2. Histogram of the number of seizures per patitients for all patients

 

Histogram of seizures duration

 

Histogram of the number of seizure per patient

 

In addition to the heterogeneity of the seizures between patients and for a given patient, we can also
observe heterogeneity within the recordings of a given seizure depending on the electrode on which we
collect the signals. The following plot shows the plot of 5 electrodes of patient 2 during a period where a
seizure occurs (the seizure is highlighted in blue).

 



Figure 3. Plot of iEEG signals of patient 2 on 5 sensors during seizure 1

 

Example of seizure signal

This #rst exploration of the data gives an idea of how hard it can be to #nd a generalized machine learning
model which is able to detect a seizure with high accuracy, low false alarm rate and with a small delay for
all patients. These observations motivates us to #nd a way to select relevant features for each patients
according to their seizure episode history in order to design a speci#c machine learning model which could
maximize the previous metrics.

Methods  

In this part, we will present the method that we designed in order to evaluate feature selection for iEEG
analyses according to each patient. In order to do so, we will de#ne three metrics that we will focus on.
After that, we will present how those metrics were computed with di!erent features and #nally we will
present the results that we obtainned with our method. As a simple start for our experiment, the
classi#cation will be based on a threshold. Seizures will be considered as detected when the value of the
feature's signal is above the given threshold and as undetected if it's value is below the given threshold.

Metrics  

Precision: The accuracy is de#ned as the number of detected seizure upon all seizures. A seizure is
considered as detected if there is at least one positive classi#cation (one of the feature value is above
the given threshold) of the feature signal within the range of the seizure. This metric is important
for our problem as we want to be sure that the system will detect all the seizures of the patient in
order to generate a stimulation that will stop the seizure.
False alarm: The False alarms are the number of points that are classi#ed as seizure outside a real
seizure. This metric is very important as we don't want the patient to receive a stimulation when no
seizure occurs. It can be dangerous for him.
Delay: The delay is de#ned as the number of seconds between the real beginning of a seizure and
the #rst signal being classi#ed as a seizure. This metric is also capital as the stimulation needs to
occur as soon as possible in order to stop the seizure e"ciently.



Figure 4. Feature computation example with sliding window

 

Features  

In order to extract informations from the signal during short period of time we need to compute di!erent
features. A feature is a value that we compute from a window that we shift across all the input signal. Each
point of the feature signal is generated from a window of size . An example is given in Figure
4.

Implemented features  

For now, the following features have been tested on patient 1 and 2 in order to ensure that all of the
functions work correctly and are generic enough in order to be applied to the full dataset. All features are
calculated using a sliding window of size sliding_window=128 and a step size of size step_size=64 .

Min  

 



Max  

 

Energy  

 

 

 



Line length  

Line length is de#ned as the running sum of the absolute di!erences between all consecutive samples
within a prede#ned window. The value of this feature grows as the data sequence magnitude or signal
variance increases.

 

Moving Average  

Moving average is commonly used with time series data to smooth out short-term $uctuations and
highlight longer-term trends or cycles.

Feature calculation

 



Skewness  

Skewness indicates the symmetry of the probability density function of the amplitude of a time series. It is
a good indicator of the tendency of the time series amplitude in a given portion of time (here we look at
this value during a window).

A window with many small values and few large values is positively skewed (right tail) and will have a
positive skewness while a window with many large values and few small values is negatively skewed (left
tail) and will have a negative skewness.

Feature calculation

 

Kurtosis  

Kurtosis measures the peakedness of the probability density function of the amplitude of a time series. A
kurtosis value close to zero indicates a Gaussian-like peakedness. Probability density function with
relatively sharp peaks have a positive kurtosis while probability density function that have relatively $at
peaks have a negative kurtosis.

Feature calculation



 

Figure 5. Local binary pattern calculation

Local Binary Patterns  

Local binary patterns is a type of visual descriptor used for classi#cation in computer vision. LBP was #rst
described in 1994, it has since been found to be a powerful feature for texture classi#cation. Even if we are
not dealing with images in our case, an adapted version of the LBP for 1D dimentional signals can possibly
be a good feature for the task of seizure classi#cation. The choice of this feature is particularly motivated by
a paper using this feature for voice signal segmentation and voice activity detection. More informations
about this work can be found here : Local binary patterns for 1-D signal processing.

Feature computation

Inside each of our sliding window (here the window go from 1 to 21), we shift a window in order to extract
the  neighbours of a given data point  (here  is equal to 8). Then we substract to each of the neighbors
of  the value of  and set their values to 1 if the result is equal or positive or 0 si the result is negative.

Here is an example of how to compute the LBP for a window and the generate the histogram of patterns.
We can see that we obtain two di!erent histograms for two di!erent signals:

 

https://ieeexplore.ieee.org/document/7096717


 

At the end, we can compare the similarity between two signals within a window by comparing the
histograms obtained with the previous method. In order to do so, we use the Kullback– Leibler (KL)
divergence as described in Quantitative Analysis of Facial Paralysis Using Local Binary Patterns in
Biomedical Videos.

Phase synchrony  

Neurons initiate electrical oscillations that are contained in multiple frequency bands such as alpha (8–12
Hz), beta (13–30 Hz) and gamma (40–80 Hz) and have been linked to a wide range of cognitive and
perceptual processes. It has been shown that before and during a seizure the amount of synchrony between
these oscillations from neurons located in di!erent regions of the brain changes signi#cantly. Thus, the
amount of synchrony between multiple neural signals is a strong indicator in predicting or detecting
seizures. To quantify the level of synchrony between two neural signals, a phase locking value (PLV) can be
computed that accurately measures the phase-synchronization between two signal sites in the brain.

Feature computation

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4806065


 

As the signal obtainned from the raw phase synchrony is very noisy, we process it in order to make it more
smoother. Here we computed the minimum in sliding windows of size  with a step
size of . The signal is also inverted in order to consider the asynchrony between the
signals wether than the synchrony.

 

 

 

 

 

 

 



Algorithm  

The algorithm used to compute the Precision, the Delay and the False alarm rate is very simple.

Given a threshold t, we do the following:

Precision: we check if there is a value of our feature which is superior to t within each seizure range
(it means that the seizure have been detected by the system). We return the number of detection
upon the number of seizures.

Delay: we compute the number of values between the begining of the seizure and the #rst detection
of a seizure (feature value >t). We convert the number of values (which is in the feature space a
number of window slices) into a number of samples (number of values in the sampling space). We
then convert the obtained value to time using the sampling frequency fs.

 

 



False Alarm: we count the number of values of the feature signal that are above the threshold
outside a seizure.

 

Feature scoring  

In order to measure how good is a feature to classify if a seizure is occuring or not, we need to di#ne a way
to score it with respect to the metrics that we described earlier. In order to #nd the best threshold for the
detection of a given seizure, we need to minimize false alarms, delay and to maximize precision.

By looking at the plot from the following Figure, we can see that when looking at the false alarms and the
delays according to di!erent threshold values, we can #nd the best possible threshold  by #nding
the point with the minimal distance with the origin.

When we #nd this  value, we still need to quantify how good this threshold is with respect to our
metrics. To do so, we compute a score by using the following formulae. The idea is to take the inverse of the
norm 2 of  coordinates in the space of ou metrics: .



We know that if this distance is low, we have good metrics (FA are low and Delay also) and so our score
needs to be high. That's why we take the inverse of this norm. With , , 

 we have:

Remarks:

 is a small number avoiding division by zero
We consider that each point in a 3-D coordinates point in the space of False Alarm, Delay and
Precision for a given threshold value
FA and D are normalised before the computation of the score
We enforce the Delay to be inferior to 

 are wights that can be de#ned to give more importance of some metrics upon others

 

Then another thing that we need to guaranty is that for all our seizures, we have  thresholds that are
close to each other. This means that a given  value can be applied to almost all the seizures of a
given patient and still be the best for all these di!erent seizure: This means that our feature can perform
well on all the seizures of a given patient.

In order to compute this second score, we look to how close are the di!erent couples ( , )
are in the space of  and . To do so we sum up the distance between each
points. The higher is this value, the less these points are closed to each others.

 

At the end, the S2 score is computed as:

 



 Patient 1 Patient 2
Min 6875.6 85.7
Max 10.9 15.8
Moving average 31.8 10.4
Energy 23.4 15.7
Line length 48.6 27.9
Kurtosis 28.1 55.8
Skewness 8.4 10.1
Local binary pattern 201.5 166.3
Phase synchrony 140.4 32.6

 Seizure 1 Seizure 1 Seizure 1 Seizure 2 Seizure 2 Seizure 2

 FA Delays Threshold FA Delays Threshold

Min 76 6.1 0.151 76 6.9 0.151

LBP 2658 0.0 0.81 3216 6.0 0.80

Skewness 2469 1.2 0.32 92 0.1 0.55

Final score computation  

With the di!erent S1 scores that we get for each seizures for a given patient and the resulting S2 score, we
can then compute the #nal score of the feature for a given patient. One term represent the average of the
scores that we obtained upon all seizures and the second one is the inverse of the S2 score with represents
how close are these optimal values between each others.

 

Results  

As we can see in this table, features have di!erent scores depending on the patient on which they are
applied. With patient 1, Min feature seems to perform extremely well while Skewness seems not that good.
For patient 2, we see that the Local Binary pattern performs better.

The following tables show the metrics that we get by using the best threshold found by our method. The
results are presented for all of the seizures of patient 1 and 2. The two #rst lines show the two best feature
and the #rst one show the worst one according to the score that we de#ned earlier in this work.

Patient 1 metrics  

 

 

Patient 2 metrics  



 Seizure 1 Seizure 1 Seizure 1 Seizure 2 Seizure 2 Seizure 2

 FA Delays Threshold FA Delays Threshold

LBP 157 0 0.75 108 3 0.77

Min 2024 8.7 0.19 2024 0.87 0.19

Skewness 3965 2 0.30 378 0 0.50

 

Conclusion  

This project allowed me to discover how machine learning can be applied to epileptic seizure detection and
how feature selection is important in order to get good metrics for classi#cation.

One of my main contribution to this project was to propose a systematic way of quanti#ying how good is a
feature for a given patient with respect to the metrics that we considered to be relevant for this speci#c
problem (False alarms, Delay and precision). By #nding a way to score features, I was able to show that
some of them might perform better on one patient or another.

The next steps for this study would be

To #ne tune the score formula in order to ensure that we do not give too much importance to a score
compared to another (S2 score can induce high scores when thresholds are the same for all the
seizure even if the metrics for this feature is not really good).
To validate the fact that using features with high scores to train our classi#ers can result in better
accuracy for a patient seizure detaction
Find e"cient ways to implement the di!erent features into hardware in order to integrate them in
the #nal design of the implentable seizure detection device.
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