Comparing the effects of morphological variation in locomotion using a salamander-like robot to salamanders locomotor system

Semester Project

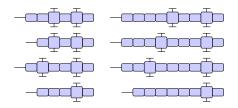
Dieter Baldinger

Supervision: Prof. Auke Jan Ijspeert Konstantinos Karakasiliotis

June 15, 2012

Motivation

Analysis of the behaviour of the salamander robot

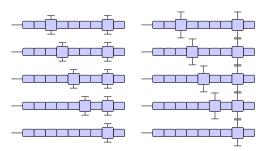


Questions

- How does the morphology and the environment affect the gait?
- What is the optimal morphology?
- Does the robot behave similar to real salamanders?

Background

This project is based on a previous work where the following robot configurations were analysed:


Issues

- Variable robot length
 - Different number of actuators
 - Reduced resolution for short robots
 - Results have to be normalized
- Unknown error of the amplitude

Scheme of improvement

Additional limbs make it possible to use a new set of configurations:

Improvements

- New set of limbs
- Uniform number of robot elements
- Additional robot morphology
- Measurement of the real flexion

Gait control

controllers

- joint angle: $\alpha_i = A_i \sin(2\pi f t + \phi_{lag}^i) + \psi_{offset}^i$
- ullet limb rotation: synchronous to the sine controller, $DF=rac{T_{stance}}{T_{cycle}}$

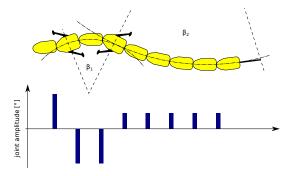


Figure: Determination of the amplitude for terrestrial gaits.

Test conditions

	walking	swimming
	\checkmark	\checkmark
	×	\checkmark
long limbs	✓	√
short limbs	\checkmark	×
frequency f [Hz] bending β_1 [°]	{0.3, 0.6, 0.9} {40, 60, 80}	{0.6, 0.9, 1.2}
amplitude A [°]	-	$\{10, 20, 30\}$
number of waves k	_	$\{0.25, 0.5, 0.75\}$
duty factor	{50%, 60%, 70%}	_

Data processing

There's only one experiment per parameter set.

Tracking system

- Coordinates of the LED's
- Three independent parts are analysed

Manual tracking

The video files have been tracked manually to determine the amplitude for the terrestrial experiments.

Results: walking

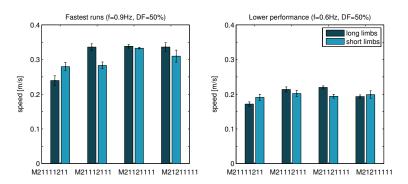
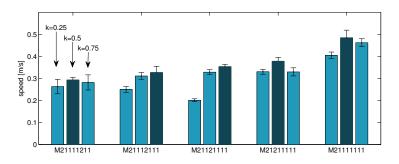
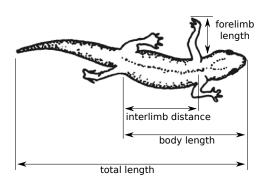


Figure: Selected results for walking experiments for $\beta_1 = 60^{\circ}$.

Results: swimming



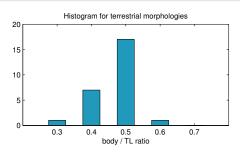

Figure: Selected results for swimming experiments for $A = 20^{\circ}$.

Conclusion: recommended robot configurations

Operation mode	Robot configuration	
Walking on land		
Swimming		
Walking and swimming		

Table: Selected robot configuration for different environments.

Comparison with salamanders: indices



Body proportions

- Hindlimb position: body length total length
- Wolterstorff Index (WI): forelimb length interlimb distance

Salamander proportions

Exemplary species and trend

	Species	body/TL	WI
te	Triturus dobrogicus	0.5	0.34 - 0.45
	Triturus cristatus	0.5	0.45 - 0.6
	<i>Trend</i>	∼ 0.5	0.3-0.6
aq	Proteus anguinus	0.65	0.11 - 0.16
	Pleurodeles waltl	0.5	~ 0.4
	Trend	∼ 0.5	$\textbf{\textit{0.1-0.4}}$

Comparison

Robot indices

Robot configuration	body/TL	WI short limbs	WI long limbs
	0.7	0.09	0.14
	0.6	0.11	0.17
	0.5	0.14	0.23
	0.4	0.21	0.35

Salamander indices

Habitat	body/TL	WI
Terrestrial Aquatic	0.5 0.5	0.3 - 0.6 $0.1 - 0.4$

