Design of an intuitive and responsive remote control interface for robots

The Universal Robot Controller

Master Thesis Presentation by La Spada Luca
The 03 February 2016

Ijspeert Auke Jan - Master Project supervisor Crespi Alessandro - Assistant Estier Thomas - External expert

Outline

Introduction
Architecture
Results
Conclusion

Outline

Introduction

Architecture

Results

Conclusion

Motivation

- Remote-controllers
 - Non-autonomous robots and fully autonomous robots
 - Lack of evolutions

- Ascertainment
 - Almost each robot has its dedicated remote-controller
 - Majority of people possess a mobile device (smartphone, tablet, etc.)
- One remote-controller to rule them all
 - Custom GUIs for each robot
 - Access to sensors data

Goal

- Developing a *versatile* remote-controller application
 - Run on various mobile devices
 - Compatible with various robots
 - Represent the same information differently
- Providing a framework to design GUIs
 - Targeting B2B
 - Reusability of components
 - Several layouts for the same robot
 - Intuitive & Responsive

Proof of concept

AmphiBot III by BioRob

Absolem by Bluebotics

ROVéo Mini by Rovenso

Outline

Introduction

Architecture

Result

Conclusion

Choices

- Android
 - Reduce the complexity by supporting one OS
 - 80% of the market share worldwide
- Hybrid Apps
 - External: Native App
 - Internal: Web App
- Web technologies (JavaScript, HTML5, CSS)
 - Multi-platform
 - Flexibility
 - Intuitive & Responsive

Native Apps

- Single platform affinity
- Platform SDK
- Access to all native APIs

Hybrid Apps

- Cross-platform affinity
- Web technologies
- Runs locally
- Access to native APIs

Mobile Web Apps

- Cross-platform affinity
- Web technologies
- Runs on web server

Access to device capabilities

Platform affinity

Communications Protocol AmphiBot III

Communications Protocol ROVéo Mini

SSH RoveoMini
Android Application (URC) Telnet Arduino Yún

Communications Protocol Absolem

External

Internal

Internal

Internal Menu

Universal Robot Controller

Connect

Settings

Driver Manage

Current Settings

Robot ip and port:

Set the robot ip in settings.:Set the robot port in settings.

Driver: Interface: Choose a driver in settings.

Choose an interface in settings.

Internal Driver Manager

Internal Settings

Settings	
Choose your active driver:	
myLocal:///drivers/luk/dummy/	\$
Choose the interface associated with the chosen driver:	
myLocal://interfaces/luk/light-dummy/	\$
Set the IP and port of your robot:	
192.168.0.4	Test & Save
6789	

Internal GUI

l injected the draft gui for roveomini !!!!

7.77 V

Outline

Introduction

Architecture

Results

Conclusion

AmphiBot III

ROVéo Mini

Absolem (1)

Absolem (2)

• Laser range finder

Absolem (3)

• Mobile device motion sensor

URC in action

Universal Robot Controller

Connect

Settings

Drivers Manage

Current Settings

Robot ip and port:

Interface:

Set the robot ip in settings.:Set the robot port in settings.

Choose a driver in settings.

Choose an interface in settings.

Outline

Introduction

Architecture

Results

Conclusion

Now

- Control a wide variety of robots
- Reusability widgets
 - Use existing JavaScript component
- Several interfaces for a robot
 - Debug
 - Consumer
 - Adaptability & Accessibility
- Easily portable to other support (iOS, Windows Phone, PC)

Improvement

- Create an UDP bridge
- Improve *settings* webpage
- Universal Robot Repository is a proof of concept