
Semester Project
Microengineering, Master Semester I

September 2010 - January 2011

Design of a demo experimental setup
for human augmentation

Author:
Mike Domenik Rinderknecht

Supervisors:
Dr. Renaud Ronsse

Dr. Alessandro Crespi

Professor:
Prof. Auke Jan Ijspeert

Contents

1. Introduction 1

2. Mechanics 2
2.1. SEE characterization . 2
2.2. Torque limitation . 3
2.3. Design of a new hardware setup . 4

2.3.1. Torque limiter . 4
2.3.2. Bearings . 4
2.3.3. Ground plate . 6
2.3.4. SEE . 6

3. Electronics 8

4. Low level control 9
4.1. PID tuning . 9
4.2. Current limitation . 9

5. High level control 11
5.1. Overview . 11
5.2. MATLAB . 11

5.2.1. Maxon EPOS DLL . 11
5.2.2. MATLAB DLL library . 11
5.2.3. MATLAB epos class . 12
5.2.4. MATLAB epos library . 12
5.2.5. MATLAB complete example . 12

5.3. Simulink . 14
5.3.1. Simulink epos library . 14

5.3.1.1. ’Initialize EPOS’ block 14
5.3.1.2. ’Exit EPOS’ block . 15
5.3.1.3. ’Get Position’ block . 16
5.3.1.4. ’Set Position’ block . 16
5.3.1.5. ’Real Time’ block . 16

5.3.2. Simulink rehab library . 17
5.3.2.1. ’Initialize REHAB’ block 18
5.3.2.2. ’Adaptive Oscillator’ block 19
5.3.2.3. ’Torque Estimator’ block 20
5.3.2.4. ’Position Estimator’ block 22
5.3.2.5. Unit converter blocks . 22

ii

5.3.2.6. ’Protocol’ block . 23
5.3.2.7. ’Torque Estimator with Error’ block 23
5.3.2.8. ’Error Protocol’ block 24

5.3.3. Simulink complete example . 25
5.4. Signal logging . 27

6. Experiments 30
6.1. Simulink Model . 30
6.2. Error in parameter identification: Model-based predictions 30
6.3. Participants . 32
6.4. Experimental protocol . 33
6.5. Data processing and statistical analyses 34
6.6. Results . 35

6.6.1. Movement frequency . 35
6.6.2. Sensitivity analysis . 36

7. Conclusion 38

8. Future work 39

9. Acknowledgements 40

A. Technical drawings 43

B. Software 52
B.1. Spring dimensioning . 52
B.2. SEE dimensioning . 53
B.3. EPOS files . 53
B.4. MATLAB complete example . 53
B.5. Simulink complete example . 53
B.6. Signal logging example . 54
B.7. Experiments . 54
B.8. System identification . 56

iii

1. Introduction

Modern research on rehabilitation robotics are exploring various ways to cope with the
interaction between robots and humans. One of these ways is to avoid forcing the human’s
movement to a predefined trajectory, and to permit the human the complete control of
the device at any moment. Hence, the robot should detect the user’s movement intention
and react accordingly to assist the movement. New techniques are being developped,
which can be through hardware adaptations, e.g. elastic elements between the actuators
of the device and the human (Series Elastic Elements, SEE), or by a high level control
using adaptive oscillators. The latter is able to synchronize to the human’s movement
and to estimate the movements parameters (e.g. position, velocity, and acceleration). In
consequence, the device can estimate the necessary torque/force to perform the movement
and assists the human by a fraction of this torque.
This project is the continuation of the previous work carried out by F. A. Delaloye [1], who
designed the mechanical setup used during this semester project. The goals of this project
were defined similar to the structure of this report and were very multifarious going
from mechanical design to high level control and some experiments with healthy humans.
Chapter 2 covers the characterization of the Series Elastic Element. In addition to that, as
the safety issue got completely forgotten in [1], there had to be taken some measures. The
problem was the high torque that could have been delivered to the human in a situation
of malfunction. Thus the torque had to be limited. There exist several methods to limit
the torque. Section 2.2 discusses a mechanical solution with a security clutch, Section 4.2
an electrical solution by limitating the current and finally Subsubsection 5.3.2.4 a very
high level torque saturation. As the first solution (i.e. the mechanical security clutch)
is the safest, but could not be integrated into the existing hardware setup, a new device
was designed in Section 2.3. Chapter 3 explains the solutions to the voltage and current
problems which could be solved quite easily by adding capacitors and diodes. Chapter 4
deals with the low level control of the device (i.e. the PID control of the motor and the
current limitation). Chapter 5 discusses the whole matter of high level control, such as
interfacing the device with the computer using MATLAB and Simulink and controlling
the device using an adaptive oscillator to assist the human’s forearm movement. Chapter
6 contains the performed experiments to investigate the robustness and sensitivity of
the approximative models used for the control. This Chapter corresponds to the main
part of the publication "Assistance using adaptive oscillators: Sensitivity analysis on the
resonance frequency" by Rinderknecht et al., being written in parallel to the project for
the International Conference on Rehabilitation Robotics 2011.

1

2. Mechanics

The hardware setup designed by F. A. Delaloye during a semester project [1] is a simple
one degree-of-freedom pendulum, parallel to the participant’s forearm, and controlled by a
motor through a Series Elastic Element (SEE). Figure 2.1 shows a top view of the assistive
device. The SEE introduces compliance and achieves series elastic actuation [2, 3, 4]. The
SEE was made of two disks: one coupled to the motor, the other to the pendulum and
both connected to each other via six tangential traction springs. The resulting torque
provided by the SEE was close to a linear function of the deviation angle between the
disks. The positions of the motor and of the participant’s elbow are measured by two
encoders. Since the participant’s forearm was not constrained, the rotation axis of the
elbow can be continuously aligned with the one of the assistive device. As consequence,
there is no need for additional passive degrees of freedom for axes alignment.

Figure 2.1.: Top view of the assistive device.

2.1. SEE characterization

In order to achieve the highest possible torque with the existing Series Elastic Element
(SEE) designed by F. A. Delaloye [1] (see Figure 2.2), the traction springs 08/1/1 from
Durovis were chosen.
In this section the identification of the SEE’s spring rate will be described. The procedure
of the experiment was as follows:

1. Let the pendulum hang vertically down and fix the motor position.

2

Figure 2.2.: Series Elastic Element.

2. Pull vertically to the pendulum with a dynamometer attached to the end of the
pendulum with a certain force F .

3. Measure the angular displacement ∆θ of the pendulum with the encoder.

With the values F = 3N , l = 0.33m and ∆θ = 830[encoder] = 0.2608rad knowing that
20000[encoder] =̂ 2π, the spring rate of the SEE kSEE can be calculated:

kSEE =
F · l
∆θ

= 3.8Nm/rad (2.1)

It can be observed that with a body length of 14mm the maximal possible angular
displacement is ∆θmax = 0.28rad, thus the maximal produced torque by the SEE τSEE

is:

τSEE = ∆θmax · kSEE = 1.1Nm (2.2)

This maximal torque is very low to assist the movement of the elbow. This is why the
experiments of Chapter 6 are done with a downward pendulum instead of a upward
pendulum in order to reduce the total torque. Subsection 2.3.4 will discuss some possible
future improvements.

2.2. Torque limitation

Given that the hardware design of F. A. Delaloye [1], which for the present is used to
perform the experiments with people, has no mechanical torque limiter, the idea of adding
one suggested itself. The reason why the torque has to be limited is because the motor is
able to produce a stall torque Mstall of 2500mNm (see data sheet [5]) which means that
after the reduction r of 126:1 of the planetary gearbox (see [6]) the human’s elbow could
receive a maximal torque Melbow,max of

Melbow,max = r ·Mstall · η = 236Nm (2.3)

with η = 75% being the efficiency of the gearbox. To explain the order of magnitude
of the maximal torque applied on the elbow, an equivalent force on the hand vertical to

3

the forearm can be calculated. For a forearm length of 30cm the result is 788N which
corresponds to 80kg approximatively. This shows that having no torque limitation is
inadmissible and dangerous.
But as there was not enough place to integrate a mechanical torque limiter into the
existing design, we decided to design a new platform described in Section 2.3 and to
implement only a torque limitation by limiting the motor current for this setup (see
Section 4.2).

2.3. Design of a new hardware setup

As a completely new device had to be built, the design of the SEE was put into question
as well. Section 2.1 shows that the existing design of the SEE is quite limited and not
very flexible. Therefore, the new setup should permit different designs of SEEs.

2.3.1. Torque limiter

The torque limiter ES2 (ES2/20/A/F/12/12/15/8-20) ([7], pp. 16-17) from R+W was
chosen (see drawing in Figure 2.3a). This torque limiter provides full disengagement in
case of overload and has to be re-engaged manually. In addition it possesses an elastomer
insert (Figure 2.3b) which should damp vibrations and compensate for misalignments
without backlash. The maximal permitted torque can be adjusted. In our case this will
be set to 15Nm approximatively.

(a) Drawing of the torque limiter ES2. (b) Elastomer insert.

Figure 2.3.: Torque limiter ES2. Source R+W.

2.3.2. Bearings

In order to have a much simpler design new SKF Y-bearing plummer block units (P 40,
YAR 203/12-2F) (see Figure 2.4) where bought instead of machining complicated parts.
The advantage of these bearings is that while mounting them, the orientation of the

4

shaft can be changed for some degrees simplifying the problem of a global mechanical
alignment of two coaxial bearings.

Figure 2.4.: Drawing of the Y-bearing plummer block unit: P 40, YAR 203/12-2F. Source
SKF.

The drawback of simplifying the mechanical parts is the a little bit more delicate mounting
as the bearings have to be correctly aligned by mounting them. Figure 2.5 shows the
mounting steps for one bearing. As in our case two bearings are mounted with one shaft,
the four screws fixing the two bearings have to be tightened up by very little incremental
steps on the same time, while checking all the time if the shaft spins well.

(a) Step 1: Lay the shaft with
the bearing on the housing
base and place the housing
cap over the bearing.

(b) Step 2: Align the unit and se-
cure it with the attachment
bolts. It is recommended
that washers and spring rings
be used to secure the nuts of
the screws.

(c) Step 3: Axially position the
shaft in the bearing and, if
possible, turn it a few times.
Fully tighten the grub screws
in the bearing inner ring ex-
tension.

Figure 2.5.: Mounting of the Y-bearing plummer block unit. Source SKF.

To adjust the height of the shaft’s position, the bearings are mounted on very simple
aluminum cuboids having two clearance holes for the screws. In case the shaft should be
at another height, one can simply remachine these simple blocks, instead of remachining
a hole new bearing as it would have been in the case of the previous design in [1].

5

2.3.3. Ground plate

The ground plate is designed big enough to avoid having parts (e.g. the motor) beyond
the plate’s border. In addition, several female threads were created to allow numerous
positions for the bearings. A total of six different configurations are possible, according
to the individual space requirements (see Figure 2.6).

Figure 2.6.: Ground plate with one of the six configurations.

2.3.4. SEE

Unfortunately the actual design of the SEE impedes a large choice of springs. Neither at
Durovis nor at other manufacturers compatible springs with a higher spring rate could
be found. Therefore there are three possibilities to obtain a higher torque:

• Put several springs in parallel

• Order customized traction springs

• Change the design of the SEE

With the new device there is more space for a new SEE design, which means that it
would be an easy task to put several springs in parallel. But in order to obtain around
6Nm, 36 traction springs would be necessary. An small problem would pose the possibility
of the spires of two adjacent springs getting into each other. A possible solution would
be to make notches on the pins which hold the springs. This would prevent the springs
from moving laterally. An other way would be to put small disks on the pins between the
springs. If the diameter of these disks is chosen in corresondance to the body length of the
springs, the disks could prevent the spring from being compressed and being deformated
in an irreversible manner.

The second idea, to order customized traction springs with a higher spring rate and
compatible lengths and deflections, sounds initially very promising, but after trying to
compute new springs with the Durovis Spring Computation software (see Appendix B.1),
one realizes that a SEE of this size, with a very high equivalent spring rate and a large
deviation angle (e.g. 20◦) is very hard to compute and nearly mechanically impossible.
For a small deviation angle and a very high kSEE it would be easier to find a good solution,
but the drawback is that small angular perturbances (from the motor for example), would

6

create very high torques on the elbow. A second problem of this SEE design is the fact that
the springs have to be mounted under traction. Already with the actual springs (08/1/1)
it requires some manual ability and time. In case of stiffer springs it would be nearly
impossible to mount them. Therefore a different mounting system or some pluggable
levers should be designed. Note that customized springs would cost each around 10 to
20 CHF at Durovis.

An other possibility would be the use of torsion springs. At the first view, one can
observe that it would be much easier to obtain higher torques, even with only one torsion
spring. The only drawbacks listed in [1] is the axial mounting. But as with the new
design there is much more space according to the configuration of the bearing positions,
it would be very easy to mount and unmount a torsion spring, as one of the two SEE disks
could be retractable, as well as the shaft of the pendulum. The only steps to perform
would be the unscrewing of the grub screws in the inner ring extension of the two "elbow
bearings" and the grub screw of the "elbow encoder". There is one point from [1] which
has to be amended a little bit, namely the bidirectionality of a torsion spring. First of
all the spring rates of a torsion spring normally differ for the two directions, because the
resistance against the direction of winding is higher, and second, a torsional leg spring
should be only loaded in direction of the winding, since otherwise the leg would break
after a short time. A solution to this problem would be the use of two torsion springs
which are wound in opposed directions connected in series such that there is always only
one of the springs loaded depending on the direction. This would require a third disk
or bushing between the two springs. A disadvantage of this system could be a small
discontinuity of torque at an angle of zero, but in case of a well dimensioned system, this
would be negligible. Another very promising idea would be to design something similar
as in [8], but without motorized stiffness regulator. In this construction very stiff springs
could be used, which would result in a high kSEE.

7

3. Electronics

By applying fast oscillations by hand to the pendulum, the EPOS produced always a
device error while trying to follow the rotation due to the fact that the motor had to
decelerate very fast. The motor works consequently as a generator and the energy flows
from the back to the EPOS and the power supply resulting in an increased voltage. The
EPOS Firmware Specification [9] suggests to put a capacitor (e.g. 2200µF) to solve the
problem. In our case one 2200µF and two 2350µF capacitors had to been added in
parallel between the power lines from the power supply to the EPOS. In addition two
diodes where added after the output of the power supply to prevent current going back to
the power supply and shutting down the power supply. The result can be seen in Figure
3.1. Due to the large capacitors, when cutting the current, the motor continued to turn
for around 5s, which in case of an emergency could cause high damage. Therefore the
emergency switch was displaced from the AC 230V to the power lines of the motor to
stop the motor instantaneously (not shown in Figure 3.1).

Figure 3.1.: Simplified schema including the added capacitors and diodes.

8

4. Low level control

4.1. PID tuning

After having connected the EPOS to the EPOS Studio software following the steps de-
scibed in [10], the PID controller for the position and the PI for the current were dimen-
sionned using the the "Expert Tuning". The implemented values of the PID/PI are listed
in Table 4.1.

P I D
Position 3655 3039 21703
Current 545 152 -

Table 4.1.: PID values for the position control and PI values for the current control.

4.2. Current limitation

The EPOS offers the possibility to limit the current of the motor, which results in limiting
the torque according to the equation of a motor combining the torque M and the current
I by the torque constant kM = 60.3mNm/A (see [11])

M = kM · I (4.1)

An admissible torque for the human elbow Madm is for our application around 15Nm,
thus one can calculate the maximal current delivered to the motor:

Imax =
Madm

r · η · kM
= 2.63A (4.2)

So the following constants in Table 4.2 were set with the EPOS Studio:

Object name Value
Output current limit 2632mA
Continuous current limit 2632mA
Thermal time constant 300s

Table 4.2.: Current limitation values.

The thermal time constant of motor winding is used to calculate the time how long the
maximal output current (i.e. output current limit) is allowed for the connected motor.

9

Even if the datasheet gives the value of 41.6s, it was set to 300s. As the nominal current
of the motor (i.e. maximal continuous current) is 3.12A and therefore higher than our
maximal output current limit of 2.63A, the thermal time constant could theoretically be
infinite, which legitimates a such high value of 300s. The output current limit and the
continuous current limit had been chosen identically to avoid exceeding the torque limit
at any moment.

10

5. High level control

The goal was to create an interface with MATLAB and Simulink as simple and intuitive
as possible, such that a new user could take these functions or blocks and reuse them
without long initiation. This Chapter will describe all parts in order to allow an easy use
of them.

5.1. Overview

All the necessary parts, such as loading and interfacing the Maxon DLL are written
in MATLAB. Therefore the user has the possibility to use only MATLAB to control the
device without touching Simulink. The Simulink part is divided into two libraries, namely
one composed of blocks which call the MATLAB files in order to control the device and
one composed of very high level control blocks such as an adaptive oscillator, a torque
estimator etc.

5.2. MATLAB

5.2.1. Maxon EPOS DLL

The Dynamic Link Library EposCmd.dll and its header file Definitions.h provided by
Maxon are required to communicate with the EPOS. Since they were written for Visual
C++, there appeared some variable type problems, but after making some small changes
in the header file, it worked in MATLAB too, but the file stdint.h has to be included
into the same folder. This DLL includes all possible functions listed in [12] to control
the EPOS. The reason why a library in MATLAB was written (see Subsection 5.2.4), is
because it is quite laborious to use the DLL directly.

5.2.2. MATLAB DLL library

The file library_dll.m takes care of loading and unloading the DLL into MATLAB.
The function has to be called as follows:

library_dll(action , dll , header)

where the input parameters are all strings. action has to be either ’load_library’ or
’unload_library’. The arguments dll and header are the two strings of the filenames
inclusive their extension, in our case ’EposCmd.dll’ and ’Definitions.h’ respectively.

11

5.2.3. MATLAB epos class

The file class_epos.m defines a class in MATLAB to facilitate the handling of all prop-
erties of the EPOS, as the communication parameters, motor position, etc. Instead of
giving each needed property by a parameter to a function, the whole object can be trans-
mitted. In order to create an object named for example "MyEpos" it is sufficient to
write:

MyEpos = class_epos;

Its properties can be easily read or written as for example the baudrate or the protocol
stack name:

my_baudrate = MyEpos.Baudrate;
MyEpos.ProtocolStackName = ’EPOS2_USB ’;

5.2.4. MATLAB epos library

The file library_epos.m creates an easy to use MATLAB interface for the Maxon EPOS
DLL. The function has to be called as follows:

library_epos(action , feedback , epos , arg1)

where the first two input parameters (i.e action and feedback) are strings and epos
an epos object. arg1 is an optional parameter and can be any type, but normally it
is a number, for example to set the motor position. action can be any name of an
implemented subfunction in the file library_epos.m. The parameter feedback has to
be either ’feedback’ or something else (e.g. ’’ or ’no feedback’). This will determine
if the called function shall display some informations in the MATLAB Command Window
or not. Below there are two examples showing how to call the function. The first one has
no optional argument but demands feedback, the second wants no feedback and sends
the position 2100 to the EPOS.

library_epos(’connect_device_manually ’, ’feedback ’, MyEpos);
library_epos(’set_position_must ’, ’’, MyEpos , 2100);

Note that not all possible functions of the DLL are interfaced in this file, but only a certain
choice of important functions. Thus this file could be extended if other functions would be
necessary. In order to add new functions please consult [12] and look for the commented
code in the file library_dll.m including libfunctionsview(dll_name). This command
will list the DLL functions with its input and output arguments in an external window.
Accessorily there might be some properties to be added in class_epos.m.

5.2.5. MATLAB complete example

For this MATLAB example example_matlab.m the following files are needed (all files
have to be in the same folder as the example file):

• EposCmd.dll

12

• Definitions.h

• stdint.h

• library_dll.m

• library_epos.m

• class_epos.m

Listing 5.1: example_matlab.m
1 % create object
2 MyEpos = class_epos;
3
4 % load library
5 MyEpos.EposDll = ’EposCmd.dll’;
6 MyEpos.EposHeader = ’Definitions.h’;
7 library_dll(’load_library ’, MyEpos.EposDll , MyEpos.EposHeader

);
8
9 % create connection
10 MyEpos.DeviceName = ’EPOS2 ’;
11 MyEpos.ProtocolStackName = ’EPOS2_USB ’;
12 MyEpos.InterfaceName = ’USB’;
13 MyEpos.PortName = ’USB0’;
14 MyEpos.Baudrate = 1000000;
15 MyEpos.Timeout = 500;
16 library_epos(’connect_device_manually ’, ’feedback ’, MyEpos);
17
18 % get device ready
19 library_epos(’clear_fault ’, ’feedback ’, MyEpos);
20
21 % application example
22 for position =0:1:1000
23 library_epos(’set_position_must ’, ’’, MyEpos , position);
24 end
25
26 % close device
27 library_epos(’close_device ’, ’feedback ’, MyEpos);
28
29 % unload library
30 library_dll(’unload_library ’, MyEpos.EposDll , MyEpos.

EposHeader);

13

5.3. Simulink

5.3.1. Simulink epos library

The simulink_epos_library.mdl contains several blocks to use the EPOS in Simulink.
There are two main blocks, ’Initialize EPOS’ and ’Exit EPOS’, which are needed to
establish the communication and to close the device. The other blocks are for example
to set or to get the position of the motor. As the list of blocks is not exhaustive, some
more blocks can be added easily. The blocks can simply be dragged into a new Simulink
Model file and be connected together.

5.3.1.1. ’Initialize EPOS’ block

The ’Initialize EPOS’ block does the following when starting:

1. Create an epos class object ’MyEpos’

2. Load the Maxon DLL

3. Establish the connection

4. Get the device ready (clear faults)

5. Set the device into Disable State

6. Set the maximal acceleration

To actually enable or control the EPOS other blocks are necessary. An example of a
block which does further initialization is described in 5.3.2.1.
A double click on the block opens the dialog to change the block parameters. The default
values are shown in brakets.

EPOS DLL tab:

• EPOS DLL (’EposCmd.dll’)

• EPOS Header File (’Definitions.h’)

Device Connection tab:

• Connection Method (Manual)

• Device Name (’EPOS2’)

• Protocol Stack Name (’EPOS2_USB’)

• Interface Name (’USB’)

• Port Name (’USB0’)

14

• Baudrate (1000000)

• Timeout (500)

System Properties tab:

• Maximal Acceleration (25000)

Behind this block is the Level-2 MATLAB S-Function simulink_epos_init.m where all
the low level properties and functions of the block are defined (except the block mask).
The actions listed above are all in the Start(block) callback of this S-Function, therefore
they are only executed when the Simlulink model (i.e. "simulation") is started. Even
if this block has an input and an output connection available, there is no data sent
through. As this block has to be at the very beginning of the model its input is normally
not connected. The successive blocks are connected to its output.
Note that the connection to the EPOS can be configured through a ’Open Device’ di-
alog, which can be chosen in the dialog of the block parameters. For this feature the
file simulink_epos_init_callback.m was necessary to disable de text inputs for the
connection in case the ’Open Dialog’ was selected.
Some tests showed that choosing a Timeout of 50ms can pose less problems for the
’Real Time’ block described in Subsubsection 5.3.1.5 (see for more details on the timeout
[9, 13]).
A further elegant step would be to add the motor torque limitation implemeted by the
current limitation shown in Section 4.2 in the System Properties tab, such that the user
could put the desired maximal torque, the torque constant, the reduction of the gearbox
and it’s efficiency in. The ’Initialize EPOS’ block could then calculate the maximal
current using Equation (4.2).

5.3.1.2. ’Exit EPOS’ block

The ’Exit EPOS’ block does the following when terminating:

1. Close the device (i.e. communication)

2. Unload the Maxon DLL

As in the case of the ’Initialize EPOS’ block, the ’Exit EPOS’ block is implemented by a
Level-2 MATLAB S-Function simulink_epos_exit.m. Its actions are all implemented in
the Terminate(block) callback which is only executed when stopping the "simulation"
in Simulink. It has to be placed at the very end of the model in order to be the last
executed block. Contrary to the previous block, normally only the input is connected.
There is on data transmitted on the connections.

15

5.3.1.3. ’Get Position’ block

The ’Get Position’ block reads the position of an encoder (units: 20000[encoder] =̂ 2π)
and sends the value via its output connection. The block takes no input value, but its
input has still to be connected to define the program flow.
A double click on the block opens the dialog to change the block parameters. The default
values are shown in brakets.

• Read EPOS Position Value (Motor Encoder)

The only parameter is the encoder one desires to read. It can be either the encoder on
the motor side or the Master Encoder on the elbow side. This block is implemented
as the Level-2 MATLAB S-Function simulink_epos_get_position.m, where this time
the actions are in the Outputs(block) callback which is executed on every cycle of the
model loop.

5.3.1.4. ’Set Position’ block

The ’Set Position’ block simulink_epos_set_position.m is exactly the same as the
’Get Position’ block with the difference that it takes a value as input (i.e. the demanded
position of the motor) and has no output data.
A double click on the block opens the dialog to change the block parameters. The default
values are shown in brakets.

• Add Master Encoder offset to position (Off)

This parameter defines if the offset between the master encoder (i.e. the elbow) and the
motor encoder shall be added to the demanded position. this offset will be defined in
5.3.2.1 within the ’Initialize REHAB’ block.

5.3.1.5. ’Real Time’ block

The ’Real Time’ block does actually not communicate with the EPOS, but can be very
useful if the control algorithm need a constant sample time or a clock (i.e. real time).
The problem with Simulink is, apart from the fact that Windows is no Real Time OS,
that its simulation run much faster than real time and don’t have a constant sample
time. There are ways to use Simulink for some external hardware with real time, as for
example with the Simulink Real-Time Workshop, or the Simulink Real-Time Windows
Target in case it has to be run on the comupter itself. The problem however, is that,
because Simulink has to compile the code into C code, not every arbitrary MATLAB
code is accepted. Therefore it was not possible to load the Maxon DLL. There are
some solutions, so called "soft real time" blocks, which are Simulink blocks placed into a
Simulink model slowing down the "simulation" speed to real time. On the MathWorks site
(http://www.mathworks.com/matlabcentral/fileexchange/) four such blocks can be
found, but every block has its drawback:

• Simulink Real Time Execution, [14]
Problem: Minimal time resolution of 15.6ms

16

• Real-Time Blockset7.1 for Simulink, [15]
Problem: Gets unstable after a certain time

• RTsyncBlockset, [16]
Problem: Time steps varying from 10 to 20ms

• Real-Time Pacer for Simulink, [17]
Problem: Differences on the order of 10 to 30ms

The most promising block was the first one (see [14]), due to its constant sample time.
But there was invincible minimum sampling time limit of 15.6ms due to a unknow reason.
In case the process would take more time (e.g. 20ms), the sampling time would have
taken 31.2ms. As our goal was to reach a sample time of 10ms an other solution had to
be found: our own soft-’Real Time’ block.
On every cycle the block checks the duration of the cycle in a while loop until reaching
the defined sample time. This method can consume around 15% of the CPU on an Intel
i5, but the big advantage is its precision and resolution, which are beyond comparison
to the four previously mentionned blocks. The idea to use pause instead to avoid CPU
load, does not perform well, as seen in [17].
A double click on the block opens the dialog to change the block parameters. The default
values are shown in brakets.

• Sample time [s] (0.01)

This ’Real Time’ block is normally placed at the beginning of the Simulink model, there-
fore its input is not connected. It has three outputs: the first one is only for the program
flow (the consecutive block is connected there), the second output dt is the actual du-
ration of the cycle and the third output t is the elapsed time in seconds from the start
of the "simulation" on. The two last outputs can of course be used for other functions
or blocks. In addition, the block prints the elapsed time on the MATLAB Command
Window, so that the user monitoring an experiment knows about the time. In case the
cycle duration should take exceptionally long (i.e. twice the sampling time), Problem
is printed on the Command Window. It can occur sometimes, that this event happens
very often. In this case it is recommended to close MATLAB completely and to restart
it again. Due to the fact that Windows is no Real Time OS, there will always be some
problems. Therefore if the device should be commercialized or if the device should need
a very precise time management, a microcontroller or a Real Time OS should definitively
be considered.
The ’Real Time’ block contains a Simulink Subsystem shown in Figure 5.1 which con-
tains a Level-2 MATLAB S-Function simulink_real_time.m performing the wait in the
Outputs(block) callback.

5.3.2. Simulink rehab library

The simulink_rehab_library.mdl includes some very high level blocks as which do
not actually touch the EPOS, except from one block (’Initialize REHAB’ block) which

17

Figure 5.1.: Subsystem of the ’Real Time’ block.

finalizes the initialization and takes care of the termination. The blocks can simply be
dragged into a Simulink Model file and be connected together.

5.3.2.1. ’Initialize REHAB’ block

The ’Initialize REHAB’ block is a block for further case specific initialization and termi-
nation which has to be placed between the ’Initialize EPOS’ block and the ’Exit EPOS’
block. The ’Initialize REHAB’ block does the following when starting:

1. Set the device to Master Encoder Mode

2. Get the offset between the master encoder and the motor encoder

3. Set the device to Position Mode

4. Set the device into Enable State

and the following when terminating:

1. Set the device to Master Encoder Mode

The ’Initialize REHAB’ block, which is implemented by a Level-2 MATLAB S-Function
simulink_rehab_init.m, measures the offset between the encoders, because this has to
be taken into account later on to avoid a prompt movement of the motor at the beginning
when the device is enabled. A very important point for this application, which includes
human interacting with the device, is the safety. Therefore this block assures to leave the
device in Master Encoder Mode after the "simulation" is stopped. In the Master Encoder
Mode the motor follows simply the movement of the master encoder (i.e. elbow in our
case) which means that the device does not stop abruptly but continues to move with
the human until he stops his movement and releases the handgrip.
Note that for initialization the pendulum should be in the vertical position bevore starting
the Simulink model and should not be touched until the running time is displayed in the
MATLAB Command Window.

18

5.3.2.2. ’Adaptive Oscillator’ block

The ’Adaptive Oscillator’ block is able to estimate the kinematics of a sinusoidal move-
ment. The adaptive oscillator is a tool developed by Righetti et al. [18, 19] and used in
many applications [20, 21]. A simplified version of the modified Hopf oscillator proposed
in [18] was used, by projecting this oscillator into polar coordinates and keeping the phase
equation only. An augmented phase oscillator [19] can be obtained:

φ̇(t) = ω(t) + νF (t) cosφ(t), (5.1)

where ω(t) is the intrinsic frequency of the oscillator, and ν the learning parameter
determining the speed of phase synchronization to the periodic input signal F (t). In
order to learn the frequency of the input F (t), instead of doing mere synchronization
only, the oscillator frequency was turned into a new state variable, integrating the phase
update:

ω̇(t) = νF (t) cosφ(t). (5.2)

From (5.2), it can be established that the integrator argument sums up to zero over one
period (i.e. ω converges) if the frequency ω is equal to the frequency of the input signal.
The adaptive oscillator input F (t) was the difference between the elbow angular position
θ(t) (measured by the device encoder) and the learned (i.e. estimated) position of the
elbow θ̂(t): F (t) = θ(t) − θ̂(t), this estimated position being the oscillator output plus
the offset α0(t):

θ̂(t) = α0 + α1 sinφ(t) (5.3)

The offset α0(t) and the amplitude α1(t) were finally learned by the following two inte-
grators:

α̇0(t) = ηF (t) α̇1(t) = ηF (t) sinφ(t) (5.4)

where η is the integrator gain.
Assuming the elbow movement to be (quasi-)sinusoidal, the same adaptive oscillator can
further provide an estimate of the elbow velocity and the acceleration:

ˆ̇θ(t) = α1ω(t) cosφ(t) (5.5)
ˆ̈θ(t) = −α1(t)ω(t)2 sinφ(t) (5.6)

As in [21], the values ν = 20 and η = 5 for the learning parameter and the integrator
gain, respectively, were used for the experiments in Chapter 6. Good behavior using these
parameters was confirmed during pilot tests.
A double click on the block opens the dialog to change the block parameters. The default
values are shown in brakets.

• Learning parameter (20)

19

• Integrator gain (5)

Figure 5.2 shows the Simulink Subsystem of the ’Adaptive Oscillator’ block. The adaptive
oscillator is implemented in an Embedded MATLAB Function. The unit delay blocks
are needed to keep the values of the last cycle. The output POstate is an array with the
four values (1) offset α0, (2) omega ω, (3) phi φ and (4) amplitude α1.

Figure 5.2.: Subsystem of the ’Adaptive Oscillator’ block.

5.3.2.3. ’Torque Estimator’ block

The ’Torque Estimator’ block receives as input the estimation by the adaptive oscillator
of the movement’s kinematics and uses them to predict the needed torque by using an
inverse dynamical model.
Assuming that the dynamics of the elbow (index h for "human") in parallel to the device
(index d for "device") are governed by the pendulum-like differential equation for the
angular position θ(t), it can be written:

(Ih + Id)θ̈(t) + (bh + bd)θ̇(t) + (mhglh +mdgld) sin θ(t) = τh(t) + τd(t) = τtot(t) (5.7)

where I is the inertia, m the mass, l the equivalent length, b the damping coefficient and
τ the torque. The total torque τtot(t) is composed by the torque provided by the human
τh(t) plus the torque provided by the assistive device τd(t). The control algorithm was
based on an estimation of the total torque τ̂tot(t) by plugging Equations (5.3), (5.5), and
(5.6) of the adaptive oscillator into (5.7), to obtain an inverse model:

τ̂tot(t) = (Ih + Id)
ˆ̈θ(t) + (bh + bd)

ˆ̇θ(t) + (mhglh +mdgld) sin θ̂(t) (5.8)

20

Finally, the device provided a fraction of this estimated torque to the human in order to
assist the movement:

τd(t) = κτ̂tot(t) (5.9)

where κ is the level of assistance. In theory, κ = 1 is the upper limit, corresponding to
the situation where the participant should perform the movement without providing any
torque. However, preliminary tests revealed that it was not possible to go over κ = 1/3
with our device, due to torque saturations, model approximations, and stability issues.
In this configuration, the device should provide about one third of the total torque.
The forearm mass mh, equivalent length lh, and inertia Ih were individually estimated
for each participant, using standard tables from [22]:

mh = 0.022Mbody [kg] (5.10)

lh = 0.682Lforearm [m] (5.11)

Ih = mh(0.827Lforearm)2 [Nms2/rad] (5.12)

where Mbody and Lforearm denote the total body weight and the total forearm length,
respectively. In order to calculate the damping coefficients bh and bd, respectively, the
damping ratios ζ have to be known. The damping ratio of the elbow for similar move-
ments around the upward vertical position is documented in the literature [23] and is
approximatively ζ = 0.2.

b = 2Iω0ζ [Nms/rad] (5.13)

where ω0 is the undamped angular frequency:

ω0 =

√
mgl

I
[rad/s] (5.14)

A double click on the block opens the dialog to change the block parameters. The default
values are shown in brakets.

Participant tab:

• Body mass [kg] (65)

• Forearm length [m] (0.3)

• Damping ratio [-] (0.2)

Device tab:

• Pendulum mass [kg] (0.391)

• Pendulum equivalent length [m] (0.3296)

21

• Pendulum damping ratio [-] (0.1719)

The default values of the device a only very approximative estimations and should be
identified more precisely as a future work. Of course, the values in the Participant tab
have to be adjusted individually.
This block is, as many others, a small Subsystem containing a Embedded MATLAB
Function. There is nothing particular to mention of the implementation.

5.3.2.4. ’Position Estimator’ block

The ’Postion Estimator’ block converts the assistive torque of the ’Torque Estimator’
block and converts into a difference of position between the motor and the elbow, knowing
the elbow position and the SEE equivalent spring rate. This difference is added to the
elbow position and sent through the output of the block.
A double click on the block opens the dialog to change the block parameters. The default
values are shown in brakets.

• Spring rate of SEE [Nm/rad] (3.8)

• Maximum SEE deviation [rad] (0.25)

The maximal permitted angular deviation of the SEE depends on the body length of the
springs, as well as on the size of the disks. The difference of the position of the motor and
the elbow should never exceed this value, because if it did, the human would perceive the
direct torque of the motor after the reduction. A minor side effect could be an irreversible
deformation of the springs. Thus, the position of the motor is being "saturated" in such
a case and so the torque as well. As the system doesn’t react immediately, precaution
should be taken to put in a slightly smaller number as the real value.
As the previous block, this block is a small Subsystem containing a Embedded MATLAB
Function.

5.3.2.5. Unit converter blocks

These blocks are very simple Simulink Function Blocks which convert the encoder pulse-
counts to radian (’[encoder] to [rad]’ block) and vice versa (’[rad] to [encoder]’ block)
according to the equation:

20000[encoder] =̂ 2π (5.15)

The value 20000 comes from the fact that the encoder is an incremental quadrature
encoder with 5000 pulses (i.e. 5000 · 4 = 20000). For more details see datasheet [24].
These blocks will be found often at the output of a ’Get Position’ block or at the input
of a ’Set Position’ block.

22

5.3.2.6. ’Protocol’ block

The ’Protocol’ block is contained in simulink_rehab_library.mdl too, even if it is very
case specific. The protocol defines the assistance level as a function of the time. As
this block is implemented in an Embedded Matlab Function and takes as input the time,
it could produce any profile of assistance. The way the ’Protocol’ block in this library
works, is by defining a profile of several successive trapezoids, where the start time,
end time, slope time and height (i.e. assistance level) can be defined for each trapezoid
independently (see en example in Figure 5.3). Afterwards, a succession of if conditions
to check the time in respect to the trapezoids is programmed. Then it applies the correct
assistance level to its first output connection, corresponding to the profile of the trapezoid.
Its second output nb is used in case one would like to know which of trapezoids is active,
therefore its output is the number of order of the trapezoid.

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
0

0.25

0.5

0.75

1

Time [s]

A
ss
is
ta
n
ce

L
ev
el

Assistance Level

Figure 5.3.: Trapezoid of an assistance protocol.

This kind of implementation looks kind of brute, but as this ’Protocol’ block could take
any form, it is not worth to implement something elegant. A very elegant solution would
be a graphical tool, in which the user could draw its profile by pieces of lines, which
would snap in an intelligent manner to the horizontal for example, and where the user
could drag and drop the vertices of the profile to adjust it.
Exactly as the other block, this ’Protocol’ block can be dragged into any Simulink model,
but the problem is that it can not be edited, without editing the source block in the
library. Therefore, if the block has to be changed, one can simply right click on the
dragged block, go to ’Link Options’ and ’Disable Link’ and repeat it again with ’Link
Options’ and ’Break Link’, to delete the link between the dragged block and the library
permanently in order to modify the block.

5.3.2.7. ’Torque Estimator with Error’ block

For the experiments in Chapter 6 we used a modified version of the ’Torque Estimator’
block of Subsubsection 5.3.2.3: the ’Torque Estimator with Error’ block.
In order to see the influence of a wrong estimation of the parameters Ih, bh and lh on the
movement’s frequency this block introduces some errors. The error on the mass has been
omitted, because it would show exactly the same effect as the error on the length. First
of all some simplifications and assumptions were introduced:

23

• The device was assumed to be transparent to the user, such that its inertia, damping
coefficient, and mass were not taken into account in (5.7): Id = 0, bd = 0 and
md = 0.

• The estimated kinematic variables (θ̂, ˆ̇θ, ˆ̈θ) were assumed to be equal to the actual
ones.

• As the movement is only of a small angular amplitude around the vertical position,
the approximation of small angles sin θ ≈ θ is being made.

It results in the equation (5.16) for the device’s torque where the indices h and d are being
omitted for the inertia, mass, length and damping coefficient for sake of simplicity.

τd = κ
(
Î θ̈ + b̂θ̇ + m̂gl̂θ

)
(5.16)

Î, b̂ and l̂ are the wrongly estimated parameters of the human as following:

Î = (1 + eI) I b̂ = (1 + eb) b l̂ = (1 + el) l (5.17)

where eI/b/l are the errors which will be created by the ’Error Protocol’ of Subsubsection
5.3.2.8.
As the device’s parameters are not taken into account, the Device tab of the block pa-
rameters has been removed.
A double click on the block opens the dialog to change the block parameters. The default
values are shown in brakets.

Participant tab:

• Body mass [kg] (65)

• Forearm length [m] (0.3)

• Damping ratio [-] (0.2)

5.3.2.8. ’Error Protocol’ block

The ’Error Protocol’ block used for the experiments of Chapter 6 creates percentaged er-
rors on the length, the inertia and on the damping coefficient (i.e. friction), corresponding
to a certain matrix defined in the MATLAB Workspace. The block takes as input the
number nb of the trapezoid created by the ’Protocol’ block. By this number the ’Error
Protocol’ knows when an assistance is provided and can introduce an error accordingly.
This error will then be introduced into the ’Torque Estimator with Error’ described in
Subsubsection 5.3.2.7 by connecting the ouputs with the corresponding inputs.
A double click on the block opens the dialog to change the block parameters. The default
values are shown in brakets.

• Error Protocol Matrix (error_protocol_matrix)

24

• Length Error Amplitude [%] (50)

• Inertia Error Amplitude [%] (50)

• Friction Error Amplitude [%] (50)

The error protocol matrix can be any matrix, but needs 3 rows for the parameters length,
inertia and damping coefficient and exactly as many columns as trapezoids defined in the
’Protocol’ block. For the experiments shown in Chapter 6 two error protocols were needed.
One protocol without errors and one protocol with a positive and negative error on each
parameter. The errors of the latter protocol had to be distributed randomly in time,
therefore a more complex structure of the block had to be created.
The file create_training_protocol.m creates a 3 by 7 matrix with zeros, as for the
training no errors have to be introduced.

training_protocol_matrix =

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

The file create_error_protocol.m takes as an input the number of random protocols
nb_protocols and creates as much 3 by 7 submatrices in one three dimensional matrix.
Below an example is being shown:

error_protocol_matrix (:,:,25) =

0 0 -1 0 0 1 0
-1 0 0 1 0 0 0
0 0 0 0 -1 0 1

Note that if MATLAB is restarted, the error_protocol_matrix has to be recreated,
because Simulink starts with the same random series due to a lack of random initialization.
Figure 5.4 shows the Simulink Subsystem of the ’Error Protocol’ block with as a core
an Embedded MATLAB Function. The memory block chooses a random index of a
submatrix of the error protocol matrix chosen in the block parameters dialog and keeps it
for the whole "simulation". Then this submatrix of that index is loaded in the Embedded
MATLAB code and updates its logic outputs according to the number of the active
trapezoid. Then the errors are amplified with its individual gains in order to be sent to
the ’Torque Estimator with Error’.

5.3.3. Simulink complete example

For this Simulink example example_simulink.mdl the following files are needed (all files
have to be in the same folder as the example file):

MATLAB files:

• EposCmd.dll

25

Figure 5.4.: Subsystem of the ’Error Protocol’ block.

• Definitions.h

• stdint.h

• library_dll.m

• library_epos.m

• class_epos.m

Simulink files:

• simulink_epos_library.mdl

• simulink_rehab_library.mdl

• simulink_epos_init.m

• simulink_epos_init_callback.m

• simulink_epos_exit.m

• simulink_epos_get_position.m

• simulink_epos_set_position.m

• simulink_real_time.m

• simulink_rehab_init.m

The following model configurations of the Simulink example file have to be chosen:

Solver:

• Simulation time > Start time: 0

• Simulation time > Stop time: inf

26

• Solver options > Type: Fixed-step

• Solver options > Solver: discrete

• Solver options > Fixed-step-size: 0.1

Data Import/Export:

• Save to workspace > Time: on, tout

• Save to workspace > Signal logging: on, logsout

• Save options > Limit data points to last: off

• Save options > Decimation: 1

• Save options > Format: Array

• Save options > Returns a single object: off

The Fixed-step-size of the Solver options actually has no influence at all, because it is
the ’Real Time’ block which dictates the time.
Figure 5.5 shows the complete Simulink model. Note that there is no classical "control
loop" but two subprogram flows instead. This is the way the blocks should be used.
One program flow with the initialization and termination blocks (i.e. ’Initialize EPOS’,
’Initialize REHAB’ and ’Exit EPOS’ blocks), where the application specific block is in
the middle, and the other program flow with the actual control of the device. Note that
the starting block is the ’Real Time’ block, because successive blocks need for example
the sample time value, therefore the ’Real Time’ block has to be placed ahead. All the
open endings of the subprograms are equipped with a flow terminator. Once Simulink
has gone through all the blocks, it will start again at the beginning. It is important to
avoid closing the second subprogram flow to a loop, because Simulink would may be start
with the wrong block. There is the possibility to give a certain priority to the blocks, but
with an open structure it is simpler and more evident.

5.4. Signal logging

In crucial part an experiment is the collection of data for a post-hoc processing. Unfor-
tunately it is not possible to plot the recorded data instantaneously in Simulink, because
it is very time consuming. Therefore the data has to be recorded in a different way: the
Simulink Signal logging.
In order to add a signal to the logging, the connection has to be right clicked. In the
appearing context menu choose ’Signal Properties...’. Then the signal’s name has to be
chosen and the checkbox ’Log signal data’ checked. Make sure that the checkbox ’Limit
data points to last’ is not checked. The same is valid for the checkbox of same name in
the model configurations under ’Data Import/Export’. Otherwise the data array will be
cut off after a certain number of cycles.

27

Figure 5.5.: example_simulink.mdl.

(a) Example of signal logging. (b) Signal Properties menu.

Figure 5.6.: Signal logging in Simulink.

In case a single value as for example the body mass of the participants wants to be logged,
one can check ’Limit data points to last’ and enter 1.
Note that many subsystems of the previously described blocks contain already signals
which are being logged, as for example in the ’Real Time’ block.
After having stopped the "simulation" and being returned to MATLAB, the data is
located in the variable logsout, which is a structure, in the MATLAB Workspace. The
easiest way to find out how the data is structured inside logsout, is to type simply

>> logsout

28

in the MATALB CommandWindow (without the ">>"). This will show different elements
as for example assistance_level which is of the class ’Timeseries’. To access its data,
type the following:

>> logsout.assistance_level.Data

The property .Time of assistance_level is the same for all the logged data and contains
the Simulink simulation time at every cycle. Note that this time has nothing to do with
the real time, thus normally it will not be used.
If a signal is logged from inside a subsystem, the shown element is of the class ’Subsys-
DataLogs’. In this case you can type for example for the ’Real Time’ block:

>> logsout .(’real time’)

The two elements, real_sample_time and real_time, will be displayed. They can be
accessed as the previous example:

>> logsout .(’real time’).real_sample_time.Data

The data is always structured as a vertical array and can be used as is in a post-hoc
processing script in MATLAB. If one desires for example to plot the elbow and the motor
position as a function of the time, a sample script could look like this:

Listing 5.2: example_logging.m
1 time = logsout .(’real time’).real_time.Data;
2 elbow_position = logsout.elbow_pos.Data;
3 motor_position = logsout.motor_pos.Data;
4
5 figure;
6 plot(time , elbow_position , time , motor_position);
7 title(’Positions ’);
8 legend(’elbow ’, ’motor ’);
9 xlabel(’Time [s]’);
10 ylabel(’Position [encoder] (2 PI = 20000) ’);

29

6. Experiments

The aim of the following experiments was to show the influence of a bad estimation of the
human’s parameters (i.e. inertia, damping coefficient and equivalent forearm length) on
the movements frequency. Therefore a sensitivity analysis was established to evaluate the
robustness of the used method on model approximations. This Chapter corresponds to the
main part of the publication "Assistance using adaptive oscillators: Sensitivity analysis
on the resonance frequency" by Rinderknecht et al. for the International Conference on
Rehabilitation Robotics 2011.

6.1. Simulink Model

Figure 6.1 shows the complete Simulink model used for the experiments. The correspond-
ing files inclusive the files for post-hoc processing are listed in Appendix B.7.

6.2. Error in parameter identification: Model-based
predictions

The parameters percieved by the human while being assisted are the following:

Ĩ = I − κÎ b̃ = b− κb̂ m̃l̃ = ml − κm̂l̂ (6.1)

We obtain a resulting dynamical system, which corresponds to what the human perceives
when assisted:

τh = Ĩ θ̈ + b̃θ̇ + m̃gl̃θ (6.2)

The system’s resonance frequency can be calculated from Equation (6.2):

ωr = ω0

√
1 − 2ζ2, (6.3)

where

ω0 =

√
m̃gl̃

Ĩ
(6.4)

is the natural frequency, i.e. the resonance frequency of the undamped dynamics, and
ζ = b̃/(2Ĩω0) is the damping factor.
As shown in Equations (6.3) and (6.4), the natural and resonance frequencies vary in
function of the system’s parameters Ĩ, b̃, m̃, and l̃. However, if the system’s parameters

30

Figure 6.1.: Complete Simulink model used for the experiments.

were correctly estimated (i.e. if Î = I, etc. . .), the natural and resonance frequencies
should not change with the level of assistance κ.
Let us now assume that the system’s parameters were not correctly estimated, i.e.:

31

Î = (1 + eI) I b̂ = (1 + eb) b l̂ = (1 + el) l (6.5)

where eI , eb, and el denote the errors of the corresponding variables.
Model predictions for the variation of the natural and resonance frequencies as a function
of the wrongly estimated parameters are shown in Figure 6.2, using the forearm intrinsic
parameters of a representative participant.

−50 −25 0 25 50

5

5.5

6

6.5

Error on length l̂ [%]

F
re
q
u
en
cy

[r
a
d
/
s]

ω̃0

ω̃r

−20 −10 0 10 20

5

5.5

6

6.5

Error on inertia Î [%]

F
re
q
u
en
cy

[r
a
d
/
s]

ω̃0

ω̃r

−100 −50 0 50 100

5

5.5

6

6.5

Error on damping coefficient b̂ [%]

F
re
q
u
en
cy

[r
a
d
/
s]

ω̃0

ω̃r

Figure 6.2.: Variation of the predicted frequencies ω̃0 (dashed blue) and ω̃r (solid red) as
a function of errors [%] on the estimated equivalent length l̂, inertia Î and
damping coefficient b̂.

Assuming that the participant performed the movement at the resonance frequency, which
was therefore adapted as a function of the resulting dynamics, the results shown in Figure
6.2 lead to the following predictions:

• overestimating the equivalent length l̂ should lead to a smaller movement frequency,
and vice-versa;

• overestimating the inertia Î should lead to a larger movement frequency, and vice-
versa;

• overestimating the damping coefficient b̂ should lead to a larger movement fre-
quency, and vice-versa.

In addition, we point out that the influence of the errors on the estimation of Î and
l̂ is higher than the influence of the error on the damping coefficient b̂. This will be
investigated by sensitivity analyses.

6.3. Participants

Five healthy, male participants took part to the experiment (age: 20-30years, weight:
60-90kg). The forearm mass m, equivalent length l, and inertia I were individually
calculated for each participant, using the Equations (5.10), (5.11) and (5.12) and the
estimated values Mbody and Lforearm. For all participants, we used the damping ratio

32

ζ = 0.1, i.e. approximatively half smaller than documented in the literature for similar
movements around the upward vertical position [23]. This was obtained after manual
tuning during preliminary tests.

6.4. Experimental protocol

Participants sat on a chair while having the right upper arm resting horizontally on a
support mounted on a table and the forearm hanging down, as shown in Figure 6.3.
They were asked to grab a handle attached to the assistive device, and to make cyclical
flexion/extension of the elbow about the vertical downward position.

Figure 6.3.: Side view of a participant using the assistive device.

Participants wore a hearing protector to decrease potential auditory feedback from the
motor noise, and had direct visual feedback about the forearm movement. The instruction
was to oscillate at a constant amplitude specified by two visual markers. Importantly,
the movement frequency was left free and the participants were asked to oscillate at the
most comfortable frequency.
Before doing the actual data acquisition, a training sequence of seven minutes was given
to the participants, in order to become familiar with the device. This sequence was
made of seven trials of one minute each, alternating between no assistance (κ = 0), and
movement assistance of κ = 1/3. After this training sequence, all participants reported
to be relaxed with the device and the assistance. Moreover, visual inspection of the data
revealed that they had all found a steady-state movement frequency. Data corresponding
to the training sequence were not recorded.
After a short break, participants did a second sequence of fifteen minutes long. Again,
this sequence was made up with a series of fifteen one-minute-long trials, alternating
between no assistance (κ = 0), and assistance with κ = 1/3. On top of that, during
the seven trials with assistance, an error in the estimation of the equivalent length el,
inertia eI , or damping coefficient eb of the human forearm model was introduced. The

33

different conditions were individually randomized for each participants, and comprised
the following:

• (el = −50%, eb = 0, eI = 0), denoted l̂−,

• (el = +50%, eb = 0, eI = 0), denoted l̂+,

• (el = 0, eb = 0, eI = −20%), denoted Î−,

• (el = 0, eb = 0, eI = +20%), denoted Î+,

• (el = 0, eb = −100%, eI = 0), denoted b̂−,

• (el = 0, eb = +100%, eI = 0), denoted b̂+,

• and (el = 0, eb = 0, eI = 0), i.e. no error, denoted l̂/Î/b̂0.

6.5. Data processing and statistical analyses

The measured position of the elbow θ(t) was low pass filtered using a foward/backward
Butterworth filter of 3rd order with a cutoff frequency of 4Hz. Moreover, the movement
offset was filtered out by filtering the signal using a similar lowpass Butterworth filter,
but with a cutoff frequency of 0.1Hz, and by subtracting this signal to the original one.
Movement frequency was estimated by extracting the zero crossings of the filtered signal
to calculate its instantaneous period. The instantaneous frequency was calculated by
taking the inverse of the period and multiplying by 2π.
To compare the measured frequencies between the different conditions, statistics were
performed on the data from the second half of each trial, such that only steady state
performance was analyzed. To establish the significance of the different observed move-
ment frequencies, Wilcoxon rank-sum tests were performed. This test reveals whether
the median of two different populations are different.
To establish whether the observed movement frequencies complied with quantitative pre-
dictions from the model, we performed sensitivity analyses, i.e. the sensitivity of the
steady-state frequency with respect to the three parameters was calculated. For the
equivalent length, this was equal to:

Sω
l̂

=
∆ω̄l̂

ω̄l̂0

· l̂0
∆l̂
, (6.6)

where ∆ω̄l̂ = ω̄l̂+
− ω̄l̂−

; ω̄l̂−
, ω̄l̂0

, ω̄l̂+
denote the median of the measured frequency during

the corresponding conditions; and ∆l̂/l̂0 = 100%, since errors of ±50% were tested.
Similar sensivities were computed for the inertia and the damping coefficient, Sω

Î
and Sω

b̂
,

respectively, with ∆Î/Î0 = 40% and ∆b̂/b̂0 = 200%.

34

6.6. Results

6.6.1. Movement frequency

Figure 6.4 shows both the "actual" instantaneous frequency (computed form the measured
position) and the estimated frequency ω from the adaptive oscillator during the whole
sequence of a representative participant. Both fit very well, as shown in the figure.

0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900

6

6.5

7

7.5

8

8.5

Time [s]

F
re
q
u
en
cy

[r
a
d
/
s]

measured ω
estimated ω

b̂− l̂+ Î− b̂+ l̂− l̂/Î/b̂0Î+

Figure 6.4.: Evolution of the measured frequency (dashed blue) and the estimated fre-
quency by the adaptive oscillator (solid red) in time. The label on top of the
graph shows the condition for the corresponding trial.

Figure 6.5 shows the steady-state frequencies of a representative participant in the dif-
ferent conditions. Variations are clearly visible across conditions, and, as expected from
model predictions, a positive error on the length el induced smaller frequency, and a
positive error on the inertia eI or on the damping coefficient eb induced larger movement
frequency.

−50 0 +50

6

6.5

7

7.5

8

8.5

Error on length l̂ [%]

F
re
q
u
en
cy

[r
a
d
/
s]

−20 0 +20

6

6.5

7

7.5

8

8.5

Error on inertia Î [%]

F
re
q
u
en
cy

[r
a
d
/
s]

−100 0 100

6

6.5

7

7.5

8

8.5

Error on damping coefficient b̂ [%]

F
re
q
u
en
cy

[r
a
d
/
s]

Figure 6.5.: Movement frequency for the different conditions, i.e. as a function of the
error on the estimated equivalent length l̂, inertia Î, and damping coefficient
b̂.

Table 6.1 shows the results for all participants, such that 9 (tests/participant) × 5 (par-

35

ticipants) = 45 tests were performed. Wilcoxon rank-sum tests revealed that these 45
comparisons all reached significance on the population medians, with a confidence level
of more than 99.9%. Regarding the predictions, 39 (87%) of these tests validaded the
model-based assumptions (as shown by a 3 in Table 6.1) and 6 (13%) revealed a trend
being opposed to the corresponding model-based assumption (as shown by a 5 in Table
6.1).

Table 6.1.: Accordance of the relationships between medians of measured frequency for
two different conditions with the model-based predictions. All p-values are
statistically significant (p < 0.001).

L− > L0 L0 > L+ L− > L+ I− < I0 I0 < I+ I− < I+ B− < B0 B0 < B+ B− < B+

Participant 1
3 3 3 3 3 3 3 3 3

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Participant 2
3 3 3 5 3 3 3 3 3

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Participant 3
3 3 3 3 5 3 5 3 3

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Participant 4
3 3 3 3 3 3 5 5 5

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Participant 5
3 3 3 3 3 3 3 3 3

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

6.6.2. Sensitivity analysis

The model predicted that the changes in resonance frequency has not the same sensitivity
to changes in the different estimated parameters. For instance, an overestimation of Î and
b̂ should both lead to larger resonance frequency (as observed for most of the participants,
see Table 6.1), but at a much higher rate (higher slope) for Î than b̂. This can be observed
form the slopes in Figure 6.2.

−0.2

−0.1

0

0.1

0.2

0.3

l̂ Î b̂

Model parameters

S
en
si
ti
v
it
y
S
ω

Figure 6.6.: Sensitivity of the movement frequency to variations in the estimated model
parameters, namely the equivalent length l̂, inertia Î, and damping coefficient
b̂. Mean ± standard error of the mean among the 5 participants.

36

To establish whether the observed movement frequencies complied with these quantitative
predictions, sensitivity analyses were performed, as explained in Section 6.5. The results
are shown in Figure 6.6 and are coherent with the model-based predictions. As expected,
Sω
l̂

and Sω
Î

are higher in absolute value than Sω
b̂
, and the sensitivity to the error in

equivalent length Sω
l̂
is negative, while the other two are positive.

The small sensitivity of the participants behavior to the estimate of the damping co-
efficient is a good point to establish the robustness of our assistive method to model
approximations, since the damping coefficient b is by far the most difficult parameter to
estimate.

37

7. Conclusion

The main part of the project was to create an intuitive and easy to use interface within
Simulink, where a new user could design a control structure for the assistive device. An
appropriate library with many functions and blocks has been created which could be
used either with MATLAB only or together with Simulink. Unfortunately it posed more
problems than expected to realize a constant sample time for the real time device control,
but a workaround with the soft ’Real Time’ block has been found. In terms of ’Real
Time’-performance, MATLAB and Simulink can be sufficent for this kind of preliminary
research on assistive devices using adaptive oscillators, but in case of commercialization
of such an assistive device for the elbow, it would be very advisable to implement the
whole high level control including the adaptive oscillator and the other modules on a
microcontroller, or on a Real Time OS.
The other points, as for example the finalization of the electronics and the choice of springs
for the existing SEE, have been fulfilled too. There has been several small attempts of a
system identification of the device, with the aim of having a more accurate model, but
they were all discarded, due to lack of accuracy and benefit for the experiments.
As expected, some first experiments of assisting the participant’s movement by a Serial
Elastic Actuator controlled by an adaptive oscillator have been carried out and the sensi-
bility of the estimation of some model parameters on the resonance frequency have been
studied. As a supplement, a pulication about these experiments and the results could be
written for the International Conference on Rehabilitation Robotics 2011, taking place
in Zürich.
In addition to all that, a new hardware setup including a security clutch has been created
in order to fulfill the safety issues. The new device was designed to be much more flexible
than the old one, such that many different SEE designs could be integrated. At the same
time a significant lower manufacturing price was achieved. Futhermore a housing for the
electronics, which was missing in the old setup, was designed to prevent electric shocks
from exposed 230V cables and contacts.

38

8. Future work

The next steps I would propose for this project, would be to perform an iteration on
the SEE design and develop an optimal and more adequate solution for the new device.
An example of a completely different design which could be adapted is shown in [8]. A
second step would be realizing a very accurate system identification of the new hardware
setup, in order to integrate its dynamical model and its parameters into the control loop.
This system identification should produce more precise results than the identification of
Appendix B.8 using a simple approximated inertia, calculated using the equations of a free
pendulum and the measurement of the free oscillation frequency. In my opinion these two
points are very crucial for the progress of this rehabilitation project. Therefore a student
with a large background in mechanics, control engineering and dynamical systems should
be taken into consideration for these future steps.

39

9. Acknowledgements

Special thanks to Renaud Ronsse and Alessandro Crespi for the profitable discussions
and their excellent supervision as well as to Auke Jan Ijspeert for enabeling this project.
Thanks to all the volunteers which participated in the experiments and to Jean-Paul
Brugger and his team for machining the parts. Finally, I would like to thank my family
for their great support during this very busy semester.

40

Bibliography

[1] F. A. Delaloye, “Series elastic actuator (SEA): Laboratory set up for human augmen-
tation and assistance,” Semester Project, Ecole Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland, 2010.

[2] H. Vallery, J. Veneman, E. van Asseldonk, R. Ekkelenkamp, M. Buss, and H. van
Der Kooij, “Compliant actuation of rehabilitation robots,” IEEE Robotics Automa-
tion Magazine, vol. 15, no. 3, pp. 60–69, Sep. 2008.

[3] G. A. Pratt and M. M. Williamson, “Series elastic actuators,” in Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems 95. ’Human Robot In-
teraction and Cooperative Robots’, vol. 1, Aug. 1995, pp. 399–406.

[4] M. Zinn, B. Roth, O. Khatib, and J. K. Salisbury, “A new actuation approach
for human friendly robot design,” The International Journal of Robotics Research,
vol. 23, no. 4-5, pp. 379–398, 2004.

[5] Maxon DC Motor RE 40 148877, Datasheet, Maxon Motor, 2010.

[6] Maxon Planetary Gearhead GP 52 C 223096, Datasheet, Maxon Motor, 2010.

[7] R+W Torque Limiter, Model ES2, R+W Coupling Technology, 2010.

[8] S. Wolf and G. Hirzinger, “A new variable stiffness design: Matching requirements
of the next robot generation,” in Proc. IEEE International Conference on Robotics
and Automation ICRA, Pasadena, California, May 2008, pp. 1741–1746.

[9] EPOS2 Positioning Controllers, Firmware Specification, Maxon Motor, 2010.

[10] EPOS2 Positioning Controllers, Getting Started, Maxon Motor, 2010.

[11] Maxon DC Motor and Maxon EC Motor, Key information, Maxon Motor, 2010.

[12] EPOS2 Positioning Controllers, Windows 32-Bit DLL, Maxon Motor, 2009.

[13] EPOS2 Positioning Controllers, Communication Guide, Maxon Motor, 2010.

[14] G. Rouleau, Simulink Real Time Execution, The MathWorks, Jul. 2010.
[Online]. Available: http://www.mathworks.com/matlabcentral/fileexchange/
21908-simulink®-real-time-execution

[15] L. Daga, Real-Time Blockset7.1 for Simulink, The MathWorks, May
2007. [Online]. Available: http://www.mathworks.com/matlabcentral/fileexchange/
3175-real-time-blockset-7-1-for-simulink

41

[16] S. Shapovalov, RTsyncBlockset, The MathWorks, Aug. 2009. [Online]. Available:
http://www.mathworks.com/matlabcentral/fileexchange/24975-rtsync-blockset

[17] G. Vallabha, Real-Time Pacer for Simulink, The MathWorks, Oct. 2010.
[Online]. Available: http://www.mathworks.com/matlabcentral/fileexchange/
29107-real-time-pacer-for-simulink

[18] L. Righetti, J. Buchli, and A. J. Ijspeert, “Dynamic hebbian learning in adaptive
frequency oscillators,” Phisica D, vol. 216, pp. 269–281, 2006.

[19] J. Buchli, L. Righetti, and A. J. Ijspeert, “Frequency analysis with coupled nonlinear
oscillators,” Phisica D, vol. 237, pp. 1705–1718, 2008.

[20] L. Righetti, J. Buchli, and A. J. Ijspeert, “Adaptive frequency oscillators and appli-
cations,” The Open Cybernetics and Systemics Journal, vol. 3, pp. 64–69, 2009.

[21] R. Ronsse, N. Vitiello, T. Lenzi, J. van den Kieboom, M. C. Carrozza, and A. J.
Ijspeert, “Human-robot synchrony: Flexible assistance using adaptive oscillators,”
IEEE Trans. Biomed. Eng., pp. 1558–2531, Oct. 2010.

[22] D. A. Winter, Biomechanics and Motor Control of Human Movement, 4th ed. New
Jersey: Wiley, 2009.

[23] C.-C. Lin, M.-S. Ju, and C.-W. Lin, “The pendulum test for evaluationg spasticity
of the elbow joint,” Arch Phys Med Rehabil, vol. 84, no. 1, pp. 69–74, Jan. 2003.

[24] Incremental Encoder RI 58-D / RI 58TD, Datasheet, Hengstler, 2010.

42

A. Technical drawings

Files:

• appendix\technical_drawings\ground_plate.jpg

• appendix\technical_drawings\ground_plate_drilling_list.jpg

• appendix\technical_drawings\bearing_pedestal.jpg

• appendix\technical_drawings\motor_fixture.jpg

• appendix\technical_drawings\shaft_motor.jpg

• appendix\technical_drawings\shaft_elbow.jpg

• appendix\technical_drawings\pendulum_fixture.jpg

• appendix\technical_drawings\pendulum.jpg

43

Figure A.1.: Ground plate. 1x.

44

Figure A.2.: Ground plate drilling list.

45

Figure A.3.: Pedestal base for bearings. 4x.

46

Figure A.4.: Motor fixture. 1x.

47

Figure A.5.: Motor shaft. 1x.

48

Figure A.6.: Elbow shaft. 1x.

49

Figure A.7.: Pendulum fixture. 1x.

50

Figure A.8.: Pendulum. 1x.

51

B. Software

B.1. Spring dimensioning

Files:

• appendix\spring_dimensioning\setup.exe

• appendix\spring_dimensioning\Durovis\Durovis.exe

• appendix\spring_dimensioning\Durovis\Durovis.LNG

• appendix\spring_dimensioning\Durovis\DUR_DRU.QSF

• appendix\spring_dimensioning\Durovis\DUR_SCH.QSF

• appendix\spring_dimensioning\Durovis\DUR_ZUG.QSF

• appendix\spring_dimensioning\Durovis\index.html

• appendix\spring_dimensioning\Durovis\df.htm

• appendix\spring_dimensioning\Durovis\sf.htm

• appendix\spring_dimensioning\Durovis\zf.htm

• appendix\spring_dimensioning\Durovis\DF_HELP.JPG

• appendix\spring_dimensioning\Durovis\DUR_DF.JPG

• appendix\spring_dimensioning\Durovis\DUR_SF.jpg

• appendix\spring_dimensioning\Durovis\DUR_ZF.jpg

• appendix\spring_dimensioning\Durovis\SF_HELP.JPG

• appendix\spring_dimensioning\Durovis\ZF_HELP.JPG

• appendix\spring_dimensioning\Durovis\unins000.exe

• appendix\spring_dimensioning\Durovis\unins000.dat

• appendix\spring_dimensioning\springs\1.dfb

• appendix\spring_dimensioning\springs\2.dfb

• appendix\spring_dimensioning\springs\3.dfb

52

B.2. SEE dimensioning

Files:

• appendix\see_dimensioning\see.m

• appendix\see_dimensioning\see_graph_K_R.m

• appendix\see_dimensioning\see_graph_L_F.m

• appendix\see_dimensioning\see_graph_L_K.m

• appendix\see_dimensioning\see_graph_L_R.m

B.3. EPOS files

Files:

• appendix\epos_studio\EPOS2 Project.pjm

B.4. MATLAB complete example

Files:

• appendix\example_matlab\EposCmd.dll

• appendix\example_matlab\Definitions.h

• appendix\example_matlab\stdint.h

• appendix\example_matlab\library_dll.m

• appendix\example_matlab\library_epos.m

• appendix\example_matlab\class_epos.m

• appendix\example_matlab\example_matlab.m

B.5. Simulink complete example

Files:

• appendix\example_simulink\EposCmd.dll

• appendix\example_simulink\Definitions.h

• appendix\example_simulink\stdint.h

53

• appendix\example_simulink\library_dll.m

• appendix\example_simulink\library_epos.m

• appendix\example_simulink\class_epos.m

• appendix\example_simulink\simulink_epos_library.mdl

• appendix\example_simulink\simulink_rehab_library.mdl

• appendix\example_simulink\simulink_epos_init.m

• appendix\example_simulink\simulink_epos_init_callback.m

• appendix\example_simulink\simulink_epos_exit.m

• appendix\example_simulink\simulink_epos_get_position.m

• appendix\example_simulink\simulink_epos_set_position.m

• appendix\example_simulink\simulink_real_time.m

• appendix\example_simulink\simulink_rehab_init.m

• appendix\example_simulink\example_simulink.mdl

B.6. Signal logging example

Files:

• appendix\example_logging\example_logging.m

B.7. Experiments

Files:

• appendix\experiments\EposCmd.dll

• appendix\experiments\Definitions.h

• appendix\experiments\stdint.h

• appendix\experiments\library_dll.m

• appendix\experiments\library_epos.m

• appendix\experiments\class_epos.m

• appendix\experiments\simulink_epos_library.mdl

54

• appendix\experiments\simulink_rehab_library.mdl

• appendix\experiments\simulink_epos_init.m

• appendix\experiments\simulink_epos_init_callback.m

• appendix\experiments\simulink_epos_exit.m

• appendix\experiments\simulink_epos_get_position.m

• appendix\experiments\simulink_epos_set_position.m

• appendix\experiments\simulink_real_time.m

• appendix\experiments\simulink_rehab_init.m

• appendix\experiments\model.mdl

• appendix\experiments\create_training_protocol.m

• appendix\experiments\create_error_protocol.m

• appendix\experiments\save_data.m

• appendix\experiments\load_data.m

• appendix\experiments\clear_data.m

• appendix\experiments\plot_data.m

• appendix\experiments\process_data.m

• appendix\experiments\measured_sensitivity.m

• appendix\experiments\theoretical_torque.m

• appendix\experiments\theoretical_sensitivity.m

• appendix\experiments\data_participant_1.mat

• appendix\experiments\data_participant_2.mat

• appendix\experiments\data_participant_3.mat

• appendix\experiments\data_participant_4.mat

• appendix\experiments\data_participant_5.mat

• appendix\experiments\format_ticks.m

55

B.8. System identification

Files:

• appendix\system_identification\fit.m

• appendix\system_identification\exp_cos.m

• appendix\system_identification\free_pendulum.mat

• appendix\system_identification\motor_pendulum.mat

• appendix\system_identification\device_data.txt

56

