

Design of a demo experimental setup for human augmentation

Mike Domenik Rinderknecht

Supervisors:

Renaud Ronsse, Alessandro Crespi

Professor:

Auke Jan ljspeert

Microengineering, Semester Project 1 – Final Presentation January 2011

State of the art – Inspiration

R. Ronsse et al., "Human-robot Synchrony: Flexible Assistance using Adaptive Oscillators", *Biomedical Engineering, IEEE Transactions on*, 2010

Previous Semester Project

- Finalization of mechanical design (proper setting of SEE)
- Finalization of electronics (solve voltage and current problems)
- Establishment of communication EPOS \Leftrightarrow MATLAB
- Creation of an easy to use library with functions / blocks
- Setting up an experimental protocol (perform experiments with healthy people and analyze results)
- + Publication on the experimental results, depending on timing and results (ICORR 2011 Zürich)
- + Design of a new hardware setup including mechanical torque limitation

Series Elastic Element (SEE)

Deviation $\Delta \theta$

Applied \perp force at 30 cm	3 N
Measured angular deviation	0.26 rad
SEE spring rate	3.8 Nm/rad

Maximal possible deviation 0.28 rad Maximal SEE torque 1.1 Nm

⇒ Very small maximal torque !

Problem

Motor stall torque	2500 mNm					
Gearbox reduction	126:1					
Gearbox efficiency	75%					
$M_{elbow,max} = r \cdot M_{stall} \cdot \eta$						
Torque on elbow	236 Nm					
Equivalent force on forearm at 30 cm	788 N					
Equivalent mass for horizontal forearm	80 kg					

⇒ Admissible torque for the elbow ~ 15 Nm !

Solutions

Mechanical torque limititation

➡ Total disengagement at 15 Nm

Motor current limitation

$$M = k_M \cdot I \qquad I_{max} = \frac{M_{adm}}{r \cdot \eta \cdot k_M}$$

Torque constant
Maximal motor current
$$\begin{bmatrix} 60.3 \text{ mNm} \\ 2.63 \text{ A} \end{bmatrix}$$

⇒ Torque limitation at 15 Nm

New device

Goal: safe, flexible and simple design

Space for motor + gearbox

Standard Y-bearing plummer block units

New device

Various configurations possible

Electronics

Communication EPOS – MATLAB – Simulink

Frequency variations of a representative participant as a function of estimation errors

- Overestimating equivalent length
- ⇒ Smaller movement frequency, and vice-versa

- Overestimating inertia
 - Overestimating damping coefficient
- ⇒ Larger movement frequency, and vice-versa
 - t ⇒ Slightly larger movement frequency, and vice-versa

٠

Frequency evolution of a representative participant during the different configurations

Steady state frequencies of a representative participant

Wilcoxon rank-sum test on the frequencies

	$L_{-} > L_{0}$	$L_0 > L_+$	$L > L_+$	$I_{-} < I_{0}$	$I_0 < I_+$	$I_{-} < I_{+}$	$B_{-} < B_{0}$	$B_0 < B_+$	$B < B_+$
Participant 1	1	1	1	1	✓	1	1	1	1
	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001
Participant 2	1	✓	✓	×	✓	✓	✓	1	~
	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001
Participant 3	1	✓	✓	✓	×	✓	×	1	~
	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001
Participant 4	✓	✓	✓	✓	✓	✓	×	×	×
	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001
Participant 5	1	1	1	1	✓	1	1	1	1
	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001

⇒ 39 of 45 tests (87%) correspond to the predictions, confidence levels > 99.9%

Sensitivity

M. D. Rinderknecht, F. A. Delaloye, A. Crespi, R. Ronsse and A. J. Ijspeert,

"Assistance using adaptive oscillators: Sensitivity analysis on the resonance frequency"

- Iteration on SEE design, develop a new solution
- Accurate system identification of the new device to integrate a correct dynamical model into the control
- Further experiments with people

Thank you for your attention.