Hardware Integration of a Universal Gripper to the Roombot

Final Presentation – January 2017

Denisart Théo-Tim

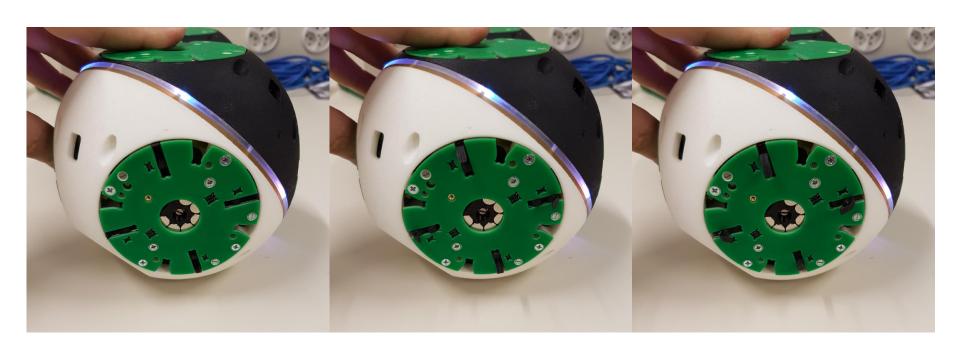
Master in Mechanical Engineering

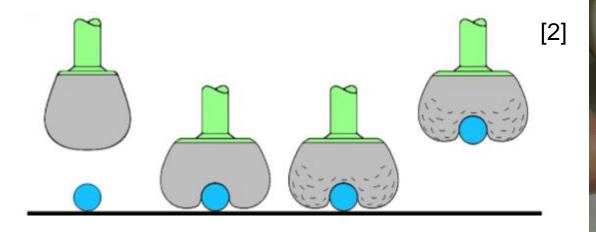
Semester project 10 ECTS

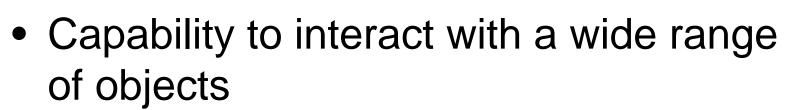
Supervisors: Simon Hauser, Mehmet Mutlu

Professor: Auke Ijspeert

Introduction

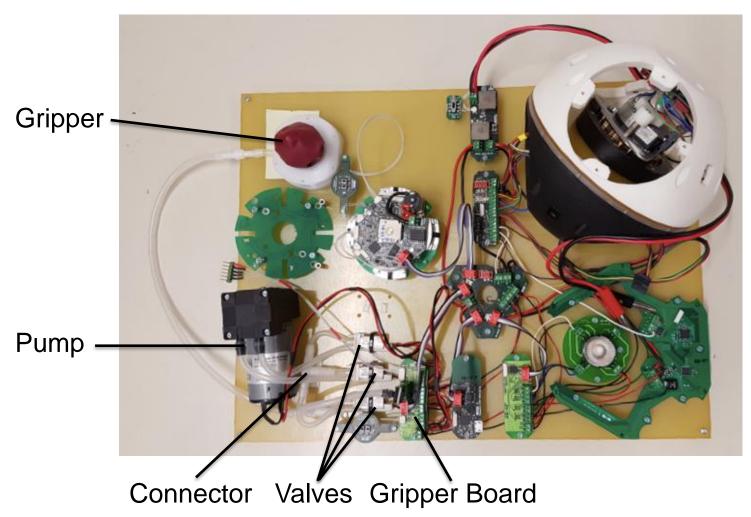



Goal 1


 Increase manipulative capabilities of the Roombots

Universal Gripper

Works on the jamming of granular media

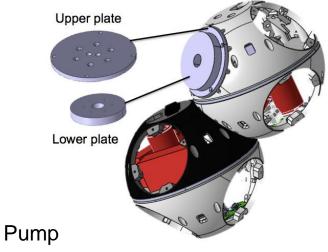


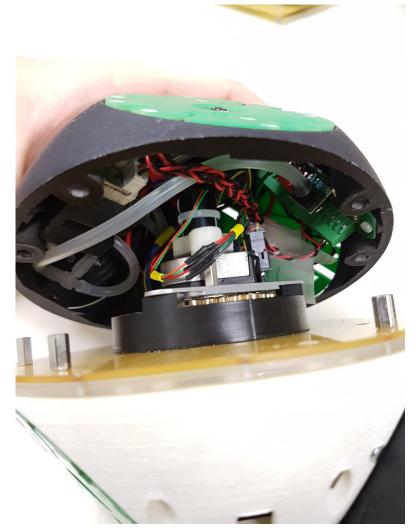
Compliant gripping: Human interaction

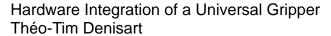
FÉDÉRALE DE LAUSANNE

Design

Design







PCB

Setup Iteration

Setup 1

 Structural links attached with tape

Rubber support

→ Success rate: 16%

Setup Iteration

Setup 2

 Structural links using clamps

 Reworked vertical motion

→ Success rate: 100%

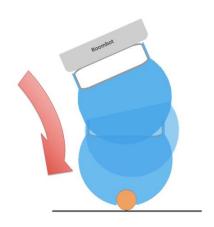
Setup Iteration

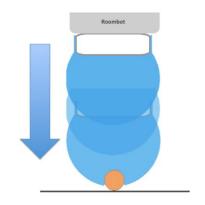
Setup 3

 Removal of rubber support

Slight membrane inflation

→ Success rate: 100%


Picking up a Pen



Observations

- Pressure onto the object
- Strong structural link
- Vertical motion
- Slight membrane inflation

Applications

Conclusion

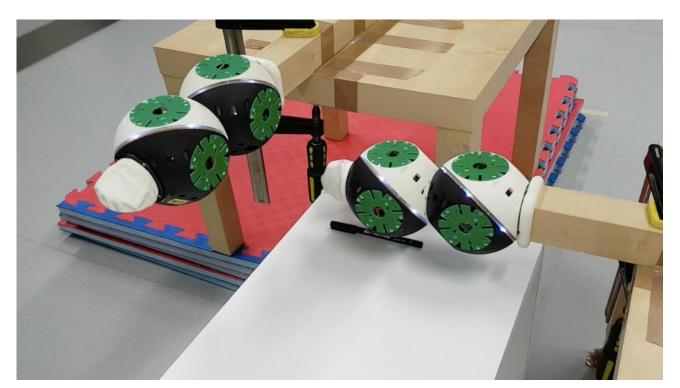
Integration into the Roombot

Untethered universal gripper

 Wide new range of interactions and applications for the Roombots (objects, human)

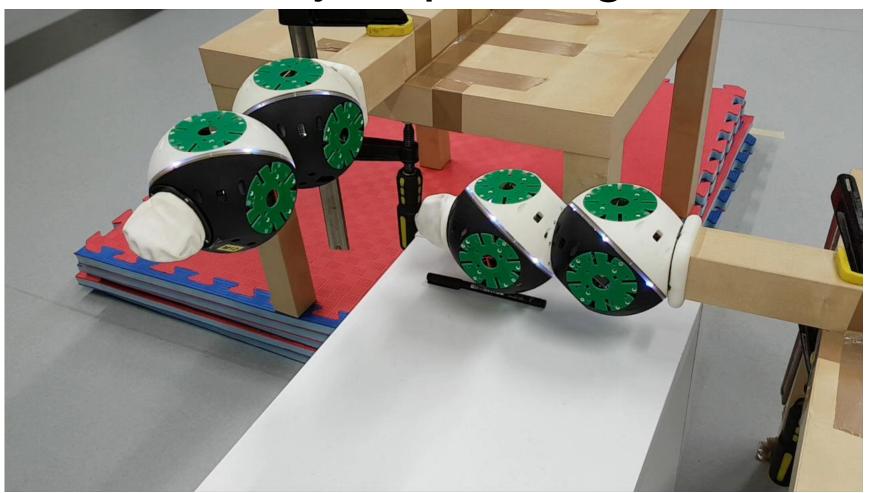
Introduction Goal 2

Object passing in robotic:


Complex control

Computational cost

Orientation sensitive


Goal 2

 Mid-air object passing between two Roombot modules

Object passing

Module 2 Module 1

Inflation module 2

Contact between modules

Inflation module 1

Movement module 2

Air suction module 2

Object pickup

Conclusion

Object passing:

- Novelty in modular robotic
- Innovative strategy that doesn't require high precision

Future Work

Object pickup:

 Influence of parameters (membrane, granules, etc...)

Object passing:

 Conditions for object passing (motion, strategy, direction, type of objects, etc...)

Thank you!

Questions?

References

- Simon Hauser, Peter Eckert, Alexandre Tuleu and Auke Ijspeert, Friction and "Damping of a Compliant Foot Based on Granular Jamming for Legged Robots", IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) June 2016.
- Allen Jiang, Georgios Xynogala, Prokar Dasgupta, Kaspar Althoefer and Trishantha Nanayakkara,
 "Design of a Variable Stiffness Flexible Manipulator with Composite Granular Jamming and Membrane Coupling", IEEE/RSJ 2012
- Allen Jiang, Asghar Atoallahi, Kaspar Althoefer, Pokar Dasgupta, Thishantha Nanayakkara, "A Variable Stiffness Joint by Granular Jamming", IDECT/CIE August 2012.
- John R. Amend, Jr., Eric Brown, Nicholas Rodenberg, Heinrich M. Jaeger, and Hod Lipson, "A Positive Pressure Universal Gripper Based on the Jamming of Granular Material" in IEE Transactions on Robotics, VOL. 28, No 2, April 2012.
- Design and Analysis of a Robust, Low-cost, Highly Articulated manipulator enabled by jamming of granular media. Cheng, Nadia G., et al., et al. 2012, 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 4328- 4333.

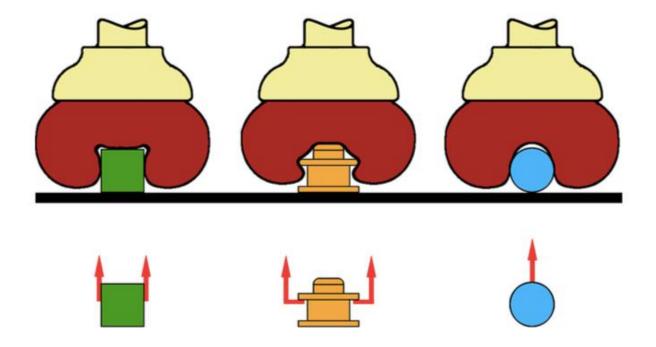


Fig. 2. A universal jamming gripper can achieve three separate gripping modes. (Left) Static friction from surface contact. (Center) Geometric constraints from interlocking. (Right) Vacuum suction from an airtight seal. Normally, it would be unlikely that the interlocking or vacuum modes would be achieved without some additional contribution from friction.

Setup 1	
Dropped	Picked Up
1	
	1
1	
1	
	1
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	1
1	
Success	15.79%

Setup 2	
Dropped	Picked Up
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
Success	100%

Setup 3	
Dropped	Picked Up
	1
	1
	1
	1
	1
	1
	1
	1
·	1
	1
Success	100%

