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Three Self-Stabilization Principles
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implemented

• Bowden cable modeled 
as an assymetrical spring
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decrease timestep 
integration with a loop
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Ludovic Righetti CPG

Part 3

Implementation of the locomotion
control

3.1 Central Pattern Generator defintion and extension
For the control of the Cheetah a Central Pattern Generator, previously designed by Ludovic

Righetti[RI08] has been used. This CPG is able to generate up to four gait found in quadrupedal

(walk, trot, pace and bound), and features sensory feedback, that synchronizes the command with

the state of the foot (stance and swing phases). After a presentation of this CPG, a modification is

proposed to introduce the leg retraction strategy.

3.1.1 A Central Pattern Generator for quadrupedal walking
3.1.1.a General presentation

The CPG proposed by [RI08], is based on a modified Hopf oscillator. There are four neurons

which have a state (xi,yi)

ẋi = α(µ− r2)xi−ωiyi (3.1)

ẏi = β (µ− r2)yi +ωixi + ∑
j �=i

ki jy j (3.2)

ωi =
ωst

1+ eby +
ωsw

1+ e−by (3.3)

According to [RI08], this oscillator exhibit a limit cycle (see figure 3.1) , which is the circle of

radius
√µ in the phase space (x,y). [RI08] shows that the choose of the appropriate coupling matrix

(ki, j) for four oscillators, leads them to phase lock. The resulting difference of phase between the

oscillator depends on symmetries between block of the chosen matrix (see figure 3.2 as an example).

[RI08] also gives 4 matrices for each of the following gait : walk, trot pace and bound.

Figure 3.1 – Representation of the attraction field of one oscillator. from [RI08]

26
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Adding leg retraction strategy to CPG

• Need to have a non-zero horizontal 
velocity at touchdown

• Moves the swing to stance 
transition point.

• Just change the phase output.

• Transformation of the phase in polar 
coordinate.
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unchanged. The following properties for fρ are also required :

fρ(0) = 0 (3.20)
fρ(−π) = ρ −π (3.21)

fρ(π) = ρ +π (3.22)
f �ρ(0) = 1 (3.23)

f �ρ(−π) = f �ρ(π) (3.24)

• Equation (3.20) avoids any displacement of the stance to swing transition point.

• Equations (3.21) and (3.22) move the stance to swing transition point and are a necessary
condition, fρ to be a bijection.

• Equations (3.23) and (3.24) insure a smoothness of the solution

One can found a unique 4th order polynom that satisfies the conditions (3.20-3.24) :

fρ(θ) =−ρ.

�
θ
π

�4
+2.ρ.

�
θ
π

�2
+θ (3.25)

The result of one of these transformations is seen in figure 3.6.

(a) Original trajectories (b) Images of the trajectories (c) Transform of a uniform mesh

Figure 3.6 – Transformation of a few trajectories with the function fρ , for ρ = π
4 .

One should also notice that all the conditions are not met, fρ to be a bijection. However if
ρ ∈

�
0, π

2
�
, this is always the case.
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Here the choice of extending at maximum the leg at each gait cycle has been made. The height of
the CoM can easily be controlled, by adding a new parameter νi, and so not extend the leg as it
maximum (ϕknee

i = 0. Once again, the following equations are introduce, to provide only smooth
changes of the two level parameters :

λ̇i = kλ

�
λi−λ des

i

�
(3.17)

ν̇i = kν
�

νi−νdes
i

�
(3.18)

3.1.2 Addition of the leg retraction principle

The next goal is to implement the leg retraction principle into the CPG. More formally, we
want that at touchdown, the gesture of retraction has already begun, i.e. : that both x < 1 and
ẋ > 0. Ideally we also want to parameterize this amount of retraction, by for example specifying
ẋ(ttouchdown). In [SGH03], this parameter is the constant rotational speed of the leg.

Figure 3.5 – Implementation of the leg retraction principle. The swing to stance transition point should be
moved of an angle ρ ≥ 0.

However, implementing the leg retraction principle this way is rather difficult. In [SGH03]
the angle (to the vertical) of the leg at APEX is precisely controlled, and the rotational speed is
constant. The first predicate is difficult to implement in a robot, and the second one isn’t reachable
within the servo limits. Cheetah is intended to be really fast, at the limit of the servo specification.
So it couldn’t be expected, the servo not to have a delay to reach some specific speed.

Further more, the convergence properties of this CPG are rather complicated, and defining new
limit cycle would be difficult. Then it may be simpler, in a first test, just to transform the output of
the oscillators. Then the new behavior won’t interfere with the properties of the dynamical system.
The trajectories generated by the new output should also be changed, as little as possible, from the
original one. Therefore the limit cycle (unit circle) must not be changed.

In order to fulfill the first requirements, one can have the idea to move along the unit circle the
transition point between the swing and stance phase from an angle ρ ≥ 0 (see figure 3.5). Therefore,
the angular rate of the hip at touch down will not be null anymore, but will be sin(ρ). Finally in
order to fulfill the last requirements, a transformation of the plan, in polar coordinates could be
proposed :

R+× [−π,π]→ R+× [−π,π]
�

r
θ

�
�→

�
r

fρ(θ)

� (3.19)

provided that fρ is a bijection of [−π,π] and that fρ is continuous, the unit circle will be left
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Optimization Definiton
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Name Applies to Boundaries
Hip::duty (d1,d2,d3,d4) [0.05,0.95]

Fore::Hip::amplitude (a1,a2) [0.0,2.0]
Fore::Hip::offset (h1,h2) [−1.3,0.9]

Fore::Hip::refraction (ρ1,ρ2)
�
0.0, π

2
�

Hind::Hip::amplitude (a3,a4) [0.0,2.0]
Hind::Hip::offset (h3,h4) [−1.3,0.9]

Hind::Hip::refraction (ρ3,ρ4)
�
0.0, π

2
�

Fore::Knee::amplitude (λ1,λ2)
�
0.0, π

2
�

Fore::Knee::ThExtension (Θextension
1 ,Θextension

2 )
�π

2 , 3π
2

�

Fore::Knee::ThContraction (Θcontraction
1 ,Θcontraction

2 )
�
−π

2 , π
2
�

Hind::Knee::amplitude (λ3,λ4)
�
0.0, π

2
�

Hind::Knee::ThExtension (Θextension
3 ,Θextension

4 )
�π

2 , 3π
2

�

Hind::Knee::ThContraction (Θcontraction
3 ,Θcontraction

4 )
�
−π

2 , π
2
�

Table 3.1 – Open parameters of the optimization
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Dynamical analysis

• “Breaked gait” : lose all it speed at touchdown
• Forelimb are propulsive, hindlimbs lake foot clearance
• Energetically unefficient : effector are taking energy of the 

system
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Statistical method to find less 
influential parameters

• Using PCA on the set of 
best particles over all 
iteration

• Principal Components 
will tell us if there is or 
not such parameters

• Caution : we may 
extracting the sctochastic 
characteristic of PSO !

• For the gait, the less 
influential is the 
extension threshold
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Insight for further improvement

• Move the CoM from the hind to the front

• Increase stiffness and length of hindlimbs

• Add sensory feedback to ensure “clean” stance phase
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Learning Trot Gait with Sensory

•Added Sensory 
Feedback
•Optimized frequency
•High instability of the 
gait in parameter 
space

Introduction    Self-stabilization Strategy    Model Update    Control Design    Optimization



Alexandre Tuleu Improvement of the Cheetah Locomotion Control  

Dynamical analysis

Introduction    Self-stabilization Strategy    Model Update    Control Design    Optimization



Alexandre Tuleu Improvement of the Cheetah Locomotion Control  

Dynamical analysis

• CoM height is almost constant

Introduction    Self-stabilization Strategy    Model Update    Control Design    Optimization



Alexandre Tuleu Improvement of the Cheetah Locomotion Control  

Dynamical analysis

• CoM height is almost constant
• Forelimb less propulsive, “almost” clean stance phase

Introduction    Self-stabilization Strategy    Model Update    Control Design    Optimization



Alexandre Tuleu Improvement of the Cheetah Locomotion Control  

Dynamical analysis

• CoM height is almost constant
• Forelimb less propulsive, “almost” clean stance phase

Introduction    Self-stabilization Strategy    Model Update    Control Design    Optimization



Alexandre Tuleu Improvement of the Cheetah Locomotion Control  

Dynamical analysis

• CoM height is almost constant
• Forelimb less propulsive, “almost” clean stance phase
• Energetically efficient for forelimb at least.
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Further Work

• Test the gait to be stable for different duty ratio/ 
frequency.

• Mesure efficiency of the leg retraction principle by using 
stability criteria (APEX return map ....)

• Add new actuator, like a spinal coord, scapula joint ...
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Questions ?


