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Chapter 0. Preface

The present manuscript grew out of the student seminar in pure mathematics at EPFL (organized by Dimitri
Wyss as main lecturer, and Sergej Monavari as teaching assistant), which took place in the Fall semester of
2023. The goal was to get familiar with the basics of toric varieties following the book of Cox-Little-Shenck
[CLS]1.
The seminar consisted of 2 hours of lectures and 2 hours of exercises per week for 14 weeks. Lectures, notes
and solutions were given and written by the students participating the seminar course.
In the first chapters, we recall the basics of affine varieties, and all the background material concerning
normality, smoothness and other basic properties of affine varieties. Then we introduce algebraic tori and
affine toric varieties, and the combinatorial language needed to describe them, comprising cones, polyhedra,
lattices and operations among them. In the second part of the course, projective varieties and abstract
varieties are recalled, in order to study projective toric varieties – and their associated fan – and abstract
toric varieties, arising from their combinatorial counterpart, the normal fans. At the end, the language of
toric varieties is applied to present a (part of the) solution of McMullen’s conjecture, following Stanley2.
Again, the necessary background for the singular cohomology and spectral sequences is introduced.
Every chapter ends with a few exercises, whose solutions can be found at the end of the notes.
We finish by taking all responsabilities for possible typos and mistakes that you could find in these notes.

1D. Cox, J. Little, H. Schenck, Toric varieties, Graduate Studies in Mathematics 124. Providence, RI: American
Mathematical Society (AMS) 841 p. (2011).

2R. Stanley, The number of faces of a simplicial convex polytope, Adv. Math. 35, 236-238 (1980).
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Chapter 1. Affine varieties

Chapter written by Prof. Dimitri Wyss

1.1 Reminder on affine varieties

For the duration of the seminar an affine (algebraic) variety V is the zero-set of an ideal I ⊂ S = C[x1, . . . , xn]
for some positive integer n i.e.

V = V(I) = {p ∈ Cn | f(p) = 0 for all f ∈ I}.

To V we may associate its coordinate ring

C[V ] = S/I(V ),

where I(V ) = {f ∈ S | f(p) = 0 for all p ∈ V }. One should think of C[V ] as the ring of functions on V in
the category of algebraic varieties. Next we recall a few facts about these objects:

� (Hilbert’s basis theorem) Any I ⊂ S is finitely generated, thus V is the zero-set of finitely many
polynomial equations.

� (Hilbert’s Nullstellensatz) Since C is algebraically closed

I(V(I)) =
√

(I) = {f ∈ S | fs ∈ I for some s ≥ 1}.

In particular, C[V ] is reduced i.e. does not contain any non-zero nilpotent elements.

� C[V ] is an integral domain ⇐⇒ I(V ) is prime ⇐⇒ V is irreducible.3

� The category of affine algebraic varieties is equivalent to the (opposite) category of finitely generated
reduced C-algebras. In particular V ∼=W if and only if C[W ] ∼= C[V ].

� Affine subvarieties of V correspond to ideals in C[V ]. In particular a point p ∈ V corresponds to the
maximal ideal

mV,p = mp = {f ∈ C[V ] | f(p) = 0}.

Given a finitely generated reduced C-algebras R we use the notation Spec(R) for the corresponding variety.
Usually the spectrum of a ring consists as a set of all prime ideals in R, but in light of the last bullet point,
one should rather think of Spec(R) as the set of all maximal ideals in R in this seminar.

1.1.1 Topologies and open affines

An affine variety V admits two natural topologies. The classical or Euclidean topology by considering V as
a subspace of Cn and the Zarisiki topology, where the closed sets are subvarieties of V . For now we will
work with the Zariski topology.
An important class of open subset of an affine variety V are the affine opens: For any f ∈ C[V ]\{0} consider

Vf = {p ∈ V | f(p) ̸= 0} = V \ {f = 0}.

If we let g ∈ C[x1, . . . , xn] be a lift of f , then we can identify Vf with the affine variety

V(I, gxn+1 − 1) ⊂ Cn+1.

If V is irreducible, C[V ] is an integral domain and can describe the coordinate ring of Vf as a subring of the
field of fractions C(V ):

C[Vf ] = {h/f l ∈ C(V ) | h ∈ C[V ], l ≥ 0}.
In other words C[Vf ] = C[V ]f , where C[V ]f denotes the localization of C[V ] at the multiplicative subset
{1, f, f2, . . . }. The following example will be crucial in this seminar:

3Other authors often require an (affine) algebraic variety to be irreducible
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Example 1.1. If V = Cn and f = x1x2 . . . xn. Then Vf = (C∗)n and

C[Vf ] = C[x±1
1 , . . . , x±1

n ],

the ring of Laurent polynomials.

1.1.2 Normality and smoothness

Normality is a somewhat strange property of a variety, but will have a very nice interpretation for toric
varieties. Recall that an integral domain R with field of fractions K is normal, or integrally closed, if every
element of K which is integral over R (i.e. the root of a monic polynomial with coefficients in R) already
lies in R. For example any UFD is normal.

Definition 1.2. An irreducible affine variety V is normal if C[V ] is.

Example 1.3.

� Cn is normal since C[x1, . . . , xn] is a UFD.

� V = V(x3−y2) ⊂ C2 is not normal. Let x, y the the images of x, y in C[V ]. Then a small computation
shows that y/x ∈ C(V ) \ C[V ] but (y/x)2 = x.

Given an irreducible affine variety V one can always pass to a normal variety V ′ by considering the integral
closure

C[V ]′ = {α ∈ C(V ) | α is integral over C[V ]}.

Then C[V ]′ is a reduced (contained in C(V )), integrally closed and finitely generated (this is non-trivial!)
C-algebra. We define

V ′ = Spec(C[V ]′)

and call it the normalization of V . The inclusion C[V ] ⊂ C[V ]′ corresponds to a morphism V ′ → V called
the normalization map.

Example 1.4. For V = V(x3 − y2) the normalization is given by C[y/x] and the map C→ V , t 7→ (t2, t3)
is the normalization map.

1.2 Exercises

Exercise 1.1. Let V ⊂ Cn be an affine algebraic variety and f ∈ C[V ] \ {0}. Show that there is a natural
bijection between the open Vf ⊂ V and V(I(V ), xn+1g− 1) ⊂ Cn+1, where g ∈ C[x1, . . . , xn] is any lift of f .
If V is irreducible, deduce from this the identification C[Vf ] ∼= C[V ]f , where C[V ]f denotes the localization
of C[V ] with respect to {1, f, . . . }.

Exercise 1.2. Prove that any UFD is normal.

Exercise 1.3. Let V = V(x3−y2) be a cusp. Show that the normalization of V is given by C[y/x] ⊂ C(V ),
where y, x denote the images of x, y in C[V ]. Deduce that the morphism C → V , t 7→ (t2, t3) is the
normalization map.

Exercise 1.4.

(a) Let R be a normal domain with field of fractions K and let S ⊂ R be a multiplicative subset. Prove
that the localization S−1R is normal.

(b) Let Ri, i ∈ I be normal domains with the same field of fractions K. Prove that the intersection
⋂
i∈I Ri

is normal.
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Chapter 2. Smoothness and algebraic tori

Chapter written by Julie Bannwart after the talk of Dimitri Wyss

2.1 Smooth affine varieties

Intuitively, smoothness for a variety carries the same idea as for manifolds: the absence of “corners”,
“wrinkles”, “cusps” etc. In the algebraic setting, there are different characterizations of this notion.

Definition 2.1. Let V be an affine variety and p ∈ V . We denote by mp the maximal associated with p in
C[V ]. The local ring OV,p, or simply Op, of V at p is the localization of C[V ] at mp:

Op = (C[V ] \mp)
−1C[V ],

and we denote its unique maximal ideal by mp.

Note that if V is irreducible, then C[V ] is a domain and Op =
{
f
g ∈ C(V )

∣∣g(p) ̸= 0
}

can be seen as a

subring of the fraction field C(V ) of C[V ].

Smooth varieties should come, like smooth manifolds, with a notion of a tangent space at any point:

Definition 2.2. The Zariski tangent space of V at p is the C-vector space:

Tp(V ) = HomC

(
mp/m2

p
,C
)
=
(
mp/m2

p

)∗
,

where (−)∗ denotes the dual of a C-vector space.

Example 2.3. Let f ∈ C[x, y] non constant, and V := V(f) the associated affine plane curve. Assume
p = (0, 0) ∈ V and let x, y be the images of x and y in Op,V , so that mp = (x, y). Then:

mp/m2
p
= (x, y)

/
(x2, xy, y2).

We have dimC Tp(V ) = dimC

(
mp/m2

p

)
≤ 2 because this C-vector space is generated by the classes of x and

y in the quotient.
Actually this dimension is even equal to 2 unless there is some relation between x and y, due to f , i.e. unless
f contains a linear summand, or equivalently if its derivative does not vanish at the origin.

Lemma 2.4. Let V ⊆ Cn be an affine variety and p ∈ V . Let f1, . . . , fs be generators of I(V ) (which exist
by Noetherianity of C[x1, . . . , xn]), and define for 1 ≤ i ≤ s linear polynomials:

dp(fi) =
∂fi
∂x1

(p) · x1 + · · ·+
∂fi
∂xn

(p) · xn ∈ C[x1, . . . , xn].

Then Tp(V ) is isomorphic to the vector subspace of Cn defined by the linear equations dp(f1) = · · · = dp(fs) =
0. In particular, dimC Tp(V ) ≤ n.

Proof. Omitted.

Continuing our analogy with manifolds, smoothness means that there are as many tangent directions at any
point as the dimension of our object, and we have a local approximation of it by a vector space. Therefore
to define smoothness, we first need a local notion of dimension for varieties:

Definition 2.5. The dimension of V at p for V an affine variety and p ∈ V is the Krull dimension of Op,V :

dimp(V ) = dimKrullOp,V

8



This definition may hide some subtleties when V is not irreducible, the dimension might not be the same in
every point. But if V is irreducible, it is basically the Krull dimension of the coordinate ring of the variety.
Geometrically, dimp(V ) is the maximum of the dimensions of the irreducible components of V containing p.

Example 2.6. Let V := V(xy, yz) ⊆ C3. It decomposes in irreducible components as V(x, z) ∪V(y). We
may represent this variety, and several points together with the dimension of the variety at these points, if
we imagine working over R, as follows:

According to the above discussion about smoothness being characterized by the number of tangent directions,
we now want to define:

Definition 2.7.

� A point p in an affine variety V is called smooth or non singular if dimp(V ) = dimC Tp(V ).

� The point p is singular if it is not smooth.

� The variety V is smooth if all its points are smooth.

Remark 2.8. Any point lying on two or more irreducible components of V is singular, in particular a
smooth and connected variety is irreducible. We leave the proof of this fact as an exercise.

Lemma 2.9. (Jacobi criterion) For V irreducible, and p ∈ V = V(f1, . . . , fs) with f1, . . . , fs ∈ C[x1, . . . , xn],
the point p is smooth if and only if the Jacobian matrix

Jp(f1, . . . , fs) =

(
∂fi
∂xj

(p)

)
i≤s, j≤n

has rank n− dimp(V ) (the dimension doesn’t actually depend on p here).

Example 2.10. Let V = V(xy − zw) ⊆ C4. Then for f = xy − zw, we have Jp(f) = (yp, xp,−wp,−zp) for
any p = (xp, yp, zp, wp) ∈ C4. Therefore by the Jacobi criterion (since f is irreducible), the singular points
of V are exactly the points p such that rank(Jp(f)) ̸= 4 − dim(V ) = 1, i.e. the points such that Jp(f) = 0.
Therefore V has a unique singular point p = (0, 0, 0, 0).

Combining the definitions above, we get that a point p ∈ V is smooth if and only if Op is such that

dimC

(
mp/m2

p

)
= dimKrullOp. We give a special name to this property:

Definition 2.11. A local ring R with unique maximal ideal m and residue field k = R
/
m is called regular

if dimk (m/m2) = dimKrullR.

This property has a basic consequence that we will not prove:

Theorem 2.12. Any regular local ring is a UFD.
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Remark 2.13. For local, finitely generated C-algebras of Krull dimension 1, being regular is equivalent to
being a PID. Indeed, by Theorem 2.12, regularity implies being a UFD, but by standard facts of commutative
algebra, a Noetherian UFD with Krull dimension 1 is a DVR, and for a DVR being a UFD is the same as
being a PID (and finitely generated C-algebras are Noetherian). Conversely any local PID that has Krull

dimension 1 is not a field, and is regular: let p be a generator of the maximal ideal, then p ̸= 0 and (p)
/
(p)2

admits as a basis over C the image of p in the quotient.

Proposition 2.14. Any smooth irreducible affine variety is normal.

Proof. If V is an irreducible variety, then C[V ] is a domain, so by standard commutative algebra, we have:

C[V ] =
⋂

m≤C[V ]
maximal ideal

C[V ]m =
⋂
p∈V
Op,

viewing localizations of C[V ] as subrings of its fraction field C(V ).
If further V is smooth, by Theorem 2.12 above, Op is a UFD for all p ∈ V , so by Exercise 1.1, Op is normal
for all p ∈ V . By Exercise 1.4, C[V ] =

⋂
p∈V Op is then itself normal. By definition, this means that the

variety V is normal.

Normality is one type of “regularity condition” that one can impose on a variety. Smoothness is another
one, and it is stronger, by the proposition we just showed. Actually, smoothness is the strongest regularity
condition for varieties that one usually asks for.

2.2 Product varieties

Given two affine varieties V ⊆ Cn and W ⊆ Cm, their product as a set is naturally again an affine variety.
Indeed, letting I = I(V ) and J = I(W ), we have that V ×W = V((I, J)) ⊆ Cn+m where I is embedded in
C[x1, . . . , xn+m] in variables x1, . . . , xn and J is embedded in the same polynomial ring by considering the
polynomials in J as having variables xn+1, . . . xn+m. As for the ring of regular functions:

Proposition 2.15. In the setting above, C[V ×W ] = C[V ]⊗C C[W ].

Proof. Exercise 2.2.

We could also have defined V ×W as the variety associated with the ring C[V ]⊗C C[W ], if we proved that
the latter was a finitely generated reduced C-algebra, and then check that V ×W defined in this way enjoys
the universal property of the product for V and W as varieties.

Remark 2.16. The Zariski topology on V ×W as an affine variety is in general not the product topology.
For instance, C× C with the product topology has irreducible closed sets:

{∅,C× C} ∪ {{c} × C, {c} × {d},C× {d} | c, d ∈ C},

whereas C2 has more irreducible closed subsets in the Zariski topology, for instance all irreducible plane
curves like the parabola.

2.3 Algebraic tori

Definition 2.17. A torus is an affine algebraic variety T isomorphic to (C∗)n for some n ∈ N (the latter
is a variety, see example 1.1 in notes for week 1). In particular, T is an algebraic group since (C∗)n is. Let
then dimT = n.

We do not define a torus as being the variety (C∗)n itself for some n ∈ N in the same way as we do not
define a finite dimensional vector space over C to be Cn itself for some n ∈ N, the latter corresponding to
fixing a basis in our vector space. We do not want to make such non-canonical choices, which is one of the
reasons why we only ask for something isomorphic to one of the varieties (C∗)n, for n ∈ N.
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2.3.1 Characters of tori

Definition 2.18. A character of a torus T is a homomorphism of (algebraic) groups χ : T → C∗.

Example 2.19. Consider the torus (C∗)n itself for some n ∈ N. Every n-uple of integersm := (a1, . . . , an) ∈
Zn defines a character χm : (C∗)n → C∗ mapping (t1, . . . , tn) 7→ ta11 · · · tann .

Proposition 2.20. All characters of the torus (C∗)n are of the form χm for some m ∈ Zn, as defined in
Example 2.19.

Proof. (Sketch) Let χ be a character on this torus. Then it corresponds to a map between the rings of
regular functions on the varieties C∗ and (C∗)n, i.e. Example 1.1, to a ring homomorphism

φ : C[x, x−1] −→ C[x1, x−1
1 , . . . , xn, x

−1
n ].

Since x is a unit in the first ring, it gets mapped to a unit, and one can show that this implies that
φ(x) = λ · xa11 · · ·xann for some m = (a1, . . . , an) ∈ Zn and λ ∈ C∗. Since χ is a group homomorphism,
χ(1, . . . , 1) = 1, so really identifying the polynomials in the domain and codomain of φ as regular functions
on our varieties, we have: φ(x)(1, . . . , 1) = λ = x(χ(1, . . . , 1)) = 1. Going back from rings to varieties, we
get χ(t1, . . . , tn) = ta11 · · · tann ∀(t1, . . . , tn) ∈ (C∗)n.

Proposition 2.21. Characters on a given torus T form an abelian group (M,+), with (χ+χ′)(t) := χ(t)χ′(t)
for all t ∈ T . This group of characters is isomorphic to Zn, i.e. the characters of T form a lattice of rank
dimT (namely a free abelian group of this rank).

Indeed, note that in Example 2.19 above, the addition of characters we defined, i.e. pointwise multiplication,
correspond to addition of the associated vectors in Zn.

Notation. We write χm : T → C∗ for the character represented by m ∈M .

Proposition 2.22.

� Let φ : T1 → T2 be an (algebraic) group homomorphism of tori. Then the image of φ is a closed
subtorus of T2.

� Let T be a torus and H ≤ T be an irreducible subgroup. Then H is a torus.

Note that this result does not hold for non-irreducible subgroups in general: consider the subgroup V(xn −
1) ⊆ C∗ in a one-dimensional torus (the group of n-th roots of unity in C∗) for n ≥ 2. It is not a torus, but
consists instead of n distinct points (so it is not irreducible).

Proposition 2.23. Let T be a torus acting by linear maps on a finite dimensional C-vector space W , i.e.
there is a group homomorphism S : T → GLC(W ). Then there exists a basis of W , such that the induced
map T → GLn(C) factors through the diagonal torus (C∗)n ⊆ GLn(C) (corresponding to diagonal matrices).

Namely we can simultaneously diagonalize all matrices in the image of S. This is a generalization of the
fact that if two diagonalizable matrices commute, then there exists a basis in which they are both diagonal.
Here all matrices in the image of S commute, because T is abelian as a group.

In representation theory, characters can be used to decompose representations. Characters on tori can be
used with the same purpose, and provide an analog of Proposition 2.23 without having to choose a basis:

Proposition 2.24. In the setting of Proposition 2.23, define for any character m ∈M the subspace:

Wm = {w ∈W | S(t)(w) = χm(t)w ∀t ∈ T}.

Then W decomposes as a direct sum: W =
⊕
m∈M

Wm.

The spaces Wm correspond to some kind of common eigenspaces for all transformations in the image of S.
In particular, if Wm ̸= {0}, it means that the character χm “detects eigenvalues”: for any t ∈ T , χm(t) is
an eigenvalue of S(t).

11



2.3.2 One-parameter subgroups of tori

Definition 2.25. A one-parameter subgroup of a torus T is a homomorphism of algebraic groups λ : C∗ → T .

Example 2.26. Similarly to Example 2.19, any n-tuple of integers corresponds to a one-parameter subgroup
of (C∗)n: indeed to u := (b1, . . . , bn) ∈ Zn, we can associate the one-parameter subgroup λu such that
λu(t) = (tb1 , . . . , tbn) for all t ∈ C∗.

Proposition 2.27. All one parameters subgroups of (C∗)n are of the form λu for some u ∈ Zn, as defined
in Example 2.26. In general one-parameter subgroups of a torus T form a lattice N of rank dimT .

Notation. We write λu : C∗ → T for the one-parameter subgroup represented by u ∈ N .

2.3.3 Duality between characters and one-parameter subgroups

Proposition 2.28. One-parameter subgroups on a torus T are dual to characters on T , in the sense that
there exists a bilinear, perfect (i.e. non-degenerate) pairing:

⟨•, •⟩ :M ×N −→ Z,

associating to (m,u) ∈M ×N the unique integer ℓ ∈ Z such that the composition χm ◦ λu : C∗ → C∗ sends
any t ∈ C∗ to tℓ.

The integer ℓ exists because χm◦λu becomes a character on the torus C∗, and we have seen that all characters
on such a torus are of the form t 7→ tℓ for some ℓ ∈ Z.
Let us make this pairing more explicit if we choose an isomorphism of our torus T with (C∗)n. Such an
isomorphism induces identifications M ∼= Zn and N ∼= Zn where n-tuples of integers correspond to
characters and one-parameters subgroups as in Examples 2.19 and 2.26. Let m = (a1, . . . , an) ∈ Zn ∼= M
and u = (b1, . . . , bn) ∈ Zn ∼= N . Then ⟨m,u⟩ =

∑n
i=1 aibi, which corresponds to the standard dot product,

and this proves in particular that the pairing is perfect. This formula comes from the fact that for
t ∈ T ∼= (C∗)n, χm(λu(t)) = χm((tb1 , . . . , tb

n

)) = (tb1)a1 · · · (tbn)an = ta1b1+···+anbn .

By non-degeneracy of the pairing, we get isomorphisms of abelian groups:

N ∼= HomZ(M,Z) M ∼= HomZ(N,Z)
u 7→ ⟨•, u⟩ m 7→ ⟨m, •⟩.

Proposition 2.29. Let T be a torus. There is an isomorphism of groups:

N ⊗Z C∗ ∼−→ T

u⊗ t 7−→ λu(t).

Hence for a lattice N we can consider the torus associated with N , defined as TN = N ⊗Z C∗.

2.4 Exercises

Exercise 2.1. Show that a point lying in the intersection of at least two irreducible components of an affine
variety cannot be smooth. In particular, a connected, smooth variety is irreducible. (Hint: You may use
that any regular local ring is a domain).

Exercise 2.2. Let V and W be affine varieties and let S ⊂ V be a subset.

(a) Show that C[V ×W ] = C[V ]⊗ C[W ].

(b) Prove that S ×W = S ×W , where (·) denotes the Zariski closure.

(c) Assume that V and W are irreducible. Prove that V ×W is irreducible.

12



Exercise 2.3. Let I ⊂ C[x0, . . . , xd] be the ideal generated by xixj+1 − xi+1xj for 0 ≤ i < j ≤ d − 1 and

Ĉd the surface parametrized by

Φ(s, t) = (sd, sd−1t, . . . , std−1, td) ∈ Cd+1.

(a) Prove that Ĉd = V(I).

(b) Prove that Ĉd is irreducible.

Hint: Write Ĉd as the Zariski-closure of a torus.

In the next chapter we will see that Ĉd is an example of an affine toric variety.
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Chapter 3. Affine toric varieties

Chapter written by Matthias Schuller after the talk of Joel Hakavuori and Isak Sundelius

3.1 The definition of affine toric varieties

Definition 3.1. An affine toric variety is an irreducible affine variety V that contains a torus T as a Zariski
open subset, and such that the action of T on itself extends to V , meaning an action T × V → V given by
a morphism.

Example 3.2. Obvious examples are (C∗)n and Cn. For the latter the action is component-wise
multiplication and clearly extends.
Another example is the curve C = V(x3 − y2). Its torus is C\{0} which is isomorphic to C∗ via

C∗ → C\{0}
t 7→ (t2, t3).

The action extends as follows :

C∗ × C → C

(t, (s2, s3)) 7→ ((ts)2, (ts)3)

where we use C = {(s2, s3)|s ∈ C}.

3.2 Toric varieties from lattices

Given a torus TN with character lattice M and a set A = {m1, ...,ms} ⊂M , consider the map

ΦA : TN → Cs

defined by
ΦA(t) = (χm1(t), ..., χms(t)) .

We then define YA ⊂ Cs to be the Zariski closure of the image of ΦA.

Proposition 3.3. The above constructed YA is an affine toric variety with ZA as character lattice, where
ZA ⊂M is the sublattice generated by A.

Proof. The map ΦA can be regarded as a map of tori TN → (C∗)s. Because it is defined from characters, it
is indeed a group homomorphism. Then by Proposition 2.22, T := ΦA(TN ) is a torus that is closed in (C∗)s.
Since YA is the Zariski closure of T , it follows that YA ∩ (C∗)s = T , and then that T is open in YA, because
(C∗)s is open in Cs. As a torus, T is irreducible, hence so is its Zariski closure YA.
To finish proving that YA is an affine toric variety with torus T , let’s consider the action of T . For t ∈ T ⊂
(C∗)s we have an action on Cs inherited by (C∗)s which takes varieties to varieties. Then we have

T = t · T ⊂ t · YA.

Any variety in Cs containing T contains its closure YA, so YA ⊂ t · YA. Repeating that for t−1 gives
YA = t · YA. The action of T extends on YA, therefore YA is an affine toric variety.
It remains to compute the character lattice of YA. Let’s denote it by M ′. We have the following
commutative diagram :

TN (C∗)s

T.

ΦA
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A map of tori induces a map on character lattice via pre-composition. Hence the above diagram induces a
commutative diagram of character lattices

M Zs

M ′

Φ̂A

where Φ̂A : Zs → M is the map induced by ΦA. This map takes the standard basis e1, ..., es to m1, ...,ms,
thus its image is the sublattice ZA generated by A = {m1, ...,ms}. From the diagram we then obtain

M ′ ∼= Φ̂A(Zs) = ZA, which concludes the proof.

3.3 Toric ideals

Let YA be defined as before, and define

L := ker(Φ̂A) =
{
(l1, ..., ls) ∈ Zs

∣∣∣∑s

i=1
limi = 0

}
.

Given l = (l1, ..., ls) ∈ Zs, set l+ =
∑
li>0 liei and l− = −

∑
li<0 liei, then l = l+ − li.

We define
IL = ⟨xl+ − xl− | l ∈ L⟩ ⊂ C[x1, ..., xs]

where xl =
∏
xlii .

Proposition 3.4. The ideal of the affine toric variety YA is

I(YA) = IL = ⟨xα − xβ | α, β ∈ Ns, α− β ∈ L⟩.

Proof. The second equality of the statement corresponds to Exercise 3.1 and we will use it here as a
description of IL.
Let’s start by showing the inclusion IL ⊂ I(YA). Take α, β ∈ Ns such that α− β ∈ L. Then we have

s∑
i=1

(αi − βi)mi = 0 =⇒
s∑
i=1

αimi =

s∑
i=1

βimi.

Let f = xα − xβ . Then for p = (χm1(t), ..., χms(t)) ∈ imΦA, we see that

f(p) = χ
∑
αimi(t)− χ

∑
βimi(t) = 0,

so xα − xβ ∈ I(imΦA). Now, since YA is the Zariski closure of imΦA, we must have I(YA) = I(imΦA),
otherwise V(I(imΦA)) would be a closed subset containing imΦA and strictly smaller than YA. Hence
xα − xβ is in I(YA).
Next we show the inclusion I(YA) ⊂ IL. Fix a monomial order on C[x1, ..., xn]. Also, for simplicity, fix an
isomorphism TN ∼= (C∗)n so that we may assume M = Zn and χmi(t) = tmi .
Suppose I(YA) ̸⊂ IL. Pick f ∈ I(YA)\IL with minimal leading term, denote it by xα. Since f(tm1 , ..., tms)
is zero as a polynomial in t1, ..., ts, there must be some cancellation happening involving the terms coming
from xα. That is, there is some monomial xβ in f such that∏

(tmi)αi =
∏

(tmi)βi

which implies ∑
αimi =

∑
βimi.

This gives α− β ∈ L. But then xα − xβ ∈ IL ⊂ I(YA) so f − xα + xβ ∈ I(YA)\IL and the latter has strictly
smaller leading term that f , which is a contradiction. Therefore I(YA) = IL.

Definition 3.5. Let L ⊂ Zs be a sublattice.
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� The ideal IL = ⟨xα − xβ | α, β ∈ Ns, α− β ∈ L⟩ is called a lattice ideal.

� A toric ideal is a prime lattice ideal.

Proposition 3.6. The ideal I ⊂ C[x1, ..., xs] is toric if and only if it is prime and generated by binomials.

Proof. If I is toric then by definition it is prime and generated by binomials.
Suppose I is a prime ideal generated by binomials of the form xα−xβ . Then T := V(I)∩ (C∗)s is nonempty
since it contains (1, ..., 1). Furthermore, if t, t′ are in T it is easy to see that t · t′ and t−1 also are in T , hence
T is a subgroup of (C∗)s. Since I is prime, V(I) ⊂ Cs is irreducible, so T = V(I) ∩ (C∗)s is an irreducible
subvariety of (C∗)s that is also a subgroup. Proposition 2.22 then tells us that T is a torus.
Projecting of the i-th coordinate gives a character of T , which we write as χmi : T → C∗ for mi in M , the
character lattice of T . Let A = {m1, ...,ms}. For t ∈ T we have

ΦA(t) = (χm1(t), ..., χms(t)) = t,

so ImΦA = T . Since T = V(I) ∩ (C∗)s is dense in V(I), we get YA = V (I). Because I is prime, we have
I = I(YA) by the Nullstellensatz. Therefore, by Proposition 3.4, I is toric.

3.4 Affine semigroups

Definition 3.7. A semigroup is a set S with an associative binary operation and identity. An affine
semigroup is a semigroup S satisfying :

� The binary operation is commutative, we will write it +.

� S is finitely generated. In other words, there is a fine setA ⊂ S such that S = NA = {
∑
m∈A amm|am ∈

N}.

� S can be embedded in a lattice M .

Example 3.8. Nn ⊂ Zn is an affine semigroup. It is generated by A = {e1, ..., en}.

Definition 3.9. Given an affine semigroup S, the semigroup algebra C[S] is the C-vector space with S as
basis and with multiplication induced by the semigroup structure of S. To make this more explicit, we think
of the lattice M in which S is embedded as the character lattice of some torus TN . Then if A = {m1, ...,ms}
is a generating set of S we define C[S] = C[χm1 , ..., χms ].

Example 3.10.

� If S = Nn ⊂ Zn, then C[S] ∼= C[x1, ..., xn].

� If S = Zn = NA for A = {±e1, ...,±en}, then C[S] ∼= C[t±1
1 , ..., t±1

n ] ∼= C[TN ].

Proposition 3.11. Let S ⊂M be an affine semigroup. Then

(a) C[S] is a domain and is finitely generated as a C-algebra.

(b) Spec(C[S]) is an affine toric variety whose torus has character lattice ZS, and if S = NA for a finite set
A ⊂M , then Spec(C[S]) = YA.

Proof. (a) Since we have C[S] = C[χm1 , ..., χms ], it is indeed finitely generated. The embedding S ⊂ M
implies C[S] ⊂ C[M ]. By the previous example, we know that the latter is a domain, thus so is C[S].
(b) Suppose S = NA with A = {m1, ...,ms} ⊂ S ⊂M . We define the morphism

π : C[x1, ..., xs]→ C[M ]

by xi 7→ χmi . It corresponds to the morphism

ΦA : Tn → Cs,
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that is, we have π = (ΦA)
∗. Exercise 3.2 gives that kerπ is the toric ideal I(YA). The image of π is

C[χm1 , ..., χms ] = C[S]. Computing the coordinate ring of YA ⊂ Cs yields the following :

C[YA] = C[x1, ..., xs]/I(YA)
= C[x1, ..., xs]/ kerπ
∼= Imπ = C[S].

This implies Spec(C[S]) = YA, so Spec(C[S]) is an affine toric variety. From Proposition 3.3, its character
lattice is ZA. Since NA = S, we have ZS = ZA. This concludes the proof.

3.5 Equivalence of constructions

First, we will study the action of TN on C[M ]. The action of TN on itself induces an action on C[M ] as
follows : for t ∈ TN and f ∈ C[M ], define t · f ∈ C[M ] by p 7→ f(t−1p) for p ∈ TN .

Lemma 3.12. Let A ⊂ C[M ] be a subspace stable under the action of TN . Then

A =
⊕
χm∈A

C · χm.

Proof. Let A′ =
⊕

χm∈A C · χm. The inclusion A′ ⊂ A is immediate.
For the other inclusion, pick f ∈ A\{0} ⊂ C[M ]. We can write

f =
∑
m∈B

cmχ
m

where B ⊂M is finite and cm ̸= 0 for all m ∈ B. Define

B = SpanC(χ
m |m ∈ B) ⊂ C[M ].

Let’s evaluate t · χm. It is given by p 7→ χm(t−1 · p) = χm(t−1)χm(p), so we can write t · χm = χm(t−1)χm.
It follows that B is stable under the action of TN . Since A is stable under the action of TN , we get that
B ∩ A is as well. It is also a finite dimensional vector space, and the above results show that TN acts on it
linearly. Then a previous proposition implies that B ∩A decomposes as the direct sum

B ∩A =
⊕
m∈M

Bm

with
Bm = {b ∈ B ∩A | t · b = χm(t)b ∀t ∈ TN}.

Take m ∈ M and b =
∑
l∈B clχ

l ∈ B ∩ A. Suppose b is nonzero and b ∈ Bm. This means that for every
t ∈ TN : ∑

l∈B

clχ
m(t)χl = χm(t)b

= t · b

= t ·

(∑
l∈B

clχ
l

)
=
∑
l∈B

clχ
l(t−1)χl.

This implies that for each component χl, for every t ∈ TN we have

clχ
m(t) = clχ

l(t−1) = clχ
−l(t).

So either cl = 0 or m = −l. Since b is nonzero, cl ̸= 0 for some (unique) l, then m = −l and b = clχ
l.

Thus the Bm contain either only 0 or a character and its multiples. This means that B ∩ A is spanned by
characters. Then the expression for f ∈ B ∩A implies χm ∈ A for every m ∈ B. Therefore f is in A′, which
proves A = A′.
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3.6 Exercises

Exercise 3.1. Let L ⊆ Zs be a sublattice. Prove that

⟨xℓ+ − xℓ− | ℓ ∈ L⟩ = ⟨xα − xβ | α, β ∈ Ns, α− β ∈ L⟩.

Note that when ℓ ∈ L, the vectors ℓ+, ℓ− ∈ Ns have disjoint support (i.e., no coordinate is positive in both),
while this may fail for arbitrary α, β ∈ Ns with α− β ∈ L.

Exercise 3.2. Fix an affine variety V . Then elements f1, . . . , fs ∈ C[V ] give a polynomial map Φ : V → Cs,
which on coordinate rings is given by

Φ∗ : C[x1, . . . , xs] −→ C[V ], xi 7−→ fi.

Let Y ⊆ C be the Zariski closure of the image of Φ.

(i) Prove that I(Y ) = Ker(Φ∗).

(ii) Explain how this applies to the proof of proposition which tells us that semigroup algebras give rise to
affine toric varieties.

Exercise 3.3. Prove that I = ⟨x2 − 1, xy − 1, yz − 1⟩ is the lattice ideal for the lattice

L = {(a, b, c) ∈ Z3 | a+ b+ c ≡ 0 mod 2} ⊆ Z3.

Exercise 3.4. Suppose that φ :M →M is a group isomorphism. Fix a finite set A ⊆M and let B = φ(A).
Prove that the toric varieties YA and YB are equivariantly isomorphic, meaning that the isomorphism respects
the torus action.
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Chapter 4. Convex polyhedral cones

Chapter written by Zichen Gao after the talk of Juan Felipe Celis Rojas and Emma Marie Billet

Theorem 4.1. Let V be an affine variety. The following are equivalent:

(a) V is toric.

(b) V = YA for some A ⊆M finite.

(c) V is defined by a toric ideal.

(d) V = Spec(C[S]) for S an affine semigroup.

Proof. (b)⇒ (a) and (c)⇔ (b)⇔ (d) was already proved in Chapter 3. It remains to show that a⇒ (d):
Let V be a toric variety with torus TN , and letM be the character lattice of TN . Then the inclusion TN ⊂ V
induces a homomorphism φ : C[V ]→ C[TN ] = C[M ]. This map is injective, since TN is dense in V . Recall
from Chapter 3 that we already know

C[V ] = ⊕χm∈C[V ]Cχm.

Set S = {m ∈ M |χm ∈ C[V ]}, then we have C[V ] = C[S], and hence V = Spec(C[V ]) = Spec(C[S]). To
show that S is an affine semigroup, what is left is to show that it has a finite generating set. As C[V ] is
finitely generated, C[V ] = C[f1, . . . , fs] for finitely many fi’s. For each fi we write a factorization of it
under χm’s. The set of all χm that appear is a finite generating set of S. Therefore, S is indeed an affine
semigroup.

Example 4.2. Let V = V(xy − zw). It is the closure of the image of the map

(C∗)3 → V

(t1, t2, t3) 7→ (t1, t2, t3, t1t2t
−1
3 )

The lattice points used in this map can be represented as the column of the matrix1 0 0 1
0 1 0 1
0 0 1 −1

 .

4.1 Convex Polyhedral Cones

Fix a pair of dual vector spaces MR and NR.

Definition 4.3. A convex polyhedral cone in NR is a set of the form

σ = Cone(S) = {
∑
u∈S

λuu|λu ≥ 0} ⊆ NR,

where S ⊆ NR is finite.

Definition 4.4. A polytope in NR is a set of the form

P = Conv(S) = {
∑
u∈S
|λu ≥ 0,

∑
u∈S

λu = 1} ⊆ NR,

where S ⊆ NR is finite.

Example 4.5. Let S = {e1, e2, e1+ e3, e2+ e3}. The following figure shows the convex polyhedral cone and
the polytope determined by S.
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Figure 1: Cone and polytope corresponding to e1, e2, e1 + e3, e2 + e3

4.2 Dual Cones and Faces

Definition 4.6. Let σ ∈ NR be a cone. We define its dual by

σ∨ = {m ∈MR|⟨m,u⟩ ≥ 0 ∀u ∈ σ}.

Remark 4.7. (σ∨)∨ = σ.

Example 4.8. Let MR = NR = R3, and suppose their pairing is given by the inner product
⟨(m1,m2,m3), (n1, n2, n3)⟩ = m1n1 +m2n2 +m3n3. Let σ ∈ NR be defined by σ = Cone(e1, e2) ⊆ R3, then
for any m = (x, y, z) ∈ MR, m ∈ σ∨ if and only if ⟨(x, y, z), (1, 0, 0)⟩ ≥ 0 and ⟨(x, y, z), (0, 1, 0)⟩ ≥ 0, if and
only if x ≥ 0 and y ≥ 0. Therefore, σ∨ = {(x, y, z) ∈ R3|x ≥ 0, y ≥ 0}.

Remark 4.9. σ∨ is a convex polyhedral cone.

Definition 4.10. Let m ∈ MR, m ̸= 0. The hyperplane defined by m is defined to be Hm = {u ∈
NR|⟨m,u⟩ = 0}. And the closed half-space is defined to be

H+
m = {u ∈ NR|⟨m,u⟩ ≥ 0} ⊆ NR.

Hm is a supporting hyperplane of a polyhedral cone σ ⊆ NR if σ ⊆ H+
m, and H+

m is a supporting half-space.
Note that Hm is a supporting hyperplane of σ if and only if m ∈ σ∨ \ {0}.

Definition 4.11. A face of the polyhedral cone σ is τ = Hm ∩ σ for some m ∈ σ∨ \ {0}. We denote this by
τ ⪯ σ. A facet is a face of codimension 1. An edge of a cone is a face of dimension 1.

Remark 4.12. From now on, the dimension of a set will mean the dimension of the vector space generated
by this set. And the codimension here means the difference between the dimensions of the subspace and the
total space.

This relation has the following basic properties:

Lemma 4.13.

(1) If τ ⪯ σ, then τ is a cone.

(2) If τ1, τ2 ⪯ σ, then τ1 ∩ τ2 ⪯ σ.

(3) If ρ ⪯ τ ⪯ σ, then ρ ⪯ σ.

Definition 4.14 (Dual face). Given τ ≤ σ, where σ ⊆ NR is a polyhedral cone. We define

τ⊥ = {m ∈MR|⟨m,u⟩ = 0 ∀u ∈ τ}
τ∗ = {m ∈ σ∨|⟨m,u⟩ = 0 ∀u ∈ τ} = σ∨ ∩ τ⊥.

We call τ∗ the dual face of τ .

Example 4.15. The Figure 2 shows σ = Cone(e1, e2) and its dual σ∨ ⊆ R3.
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Figure 2: A 2-dimensional cone σ ⊆ R3 and its dual σ∨ ⊆ R3

Definition 4.16. The relative interior Relint(σ) of a cone σ ⊆ NR is the interior of σ in W , where W is
the span of σ. It can be charaterized by the dual space:

u ∈ Relint(σ)⇔ ⟨m,u⟩ > 0 ∀m ∈ σ∨ \ σ⊥.

Definition 4.17. A cone σ ∈ NR is strongly convex if {0} is a face of σ.

Example 4.18. In Example 4.15, the cone σ = Cone(e1, e2) is strongly convex, but its dual cone σ∨ is not.

Lemma 4.19 (Separation Lemma). Let σ1, σ2 be polyhedral cones in NR that meet along a common face
τ = σ1 ∩ σ2.Then

τ = Hm ∩ σ1 = Hm ∩ σ2
for any m ∈ Relint(σ∨

1 ∩ (−σ2)∨). In particular such an m does exist.

Definition 4.20. A cone σ ⊂ NR is rational if σ = Cone(S) for S ⊆ N finite. Recall that NR = N ⊗Z R
and N is a lattice.

Remark 4.21. Faces and dual of a rational cone are rational.

A strongly convex rational polyhedral cone σ has a canonical generating set, constructed as follows. Let ρ
be an edge of σ. Since σ is strongly convex, ρ is a ray, i.e. a half-line, and since ρ is rational, the semigroup
ρ∩N is generated by a unique element u of the intersection. We call u the ray generator of ρ. The following
Figure 3 shows the ray generator of a rational ray ρ in the plane. The points are the lattice N = Z2 and the
white ones are ρ ∩N .

Figure 3: A rational ray ρ ⊆ R2 and its unique ray generator

Lemma 4.22. A strongly convex rational polyhedral cone is generated by the ray generators of its edges.
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4.3 Semigroup Algebras and Affine Toric Varieties

Given a rational polyhedral cone σ ⊆ NR, the lattice points

Sσ = σ∨ ∩M ⊆M

form a semigroup. In fact, it is finitely generated.

Lemma 4.23 (Gordan’s Lemma). Sσ = σ∨ ∩M is finitely generated and hence is an affine semigroup.

Proof. Firstly, the dual cone of σ can be written as σ∨ = Cone(T ) for a finite T ⊆ M , T = {m1, . . . ,mr}.
Let K = {

∑r
i=1 δimi|δi ∈ [0, 1]} ⊆MR. So K is a bounded region. Since M is discrete, we have that K ∩M

is finite. We claim that T ∪ (K ∩M) ⊆ Sσ generate Sσ. In fact, for any element w ∈ Sσ,

w =

r∑
i=1

λimi

=

r∑
i=1

⌊λi⌋mi +

r∑
i=1

{λi}mi

where the latter term lies in K ∩M .

Theorem 4.24. Let σ ⊆ NR ≃ Rn be a rational cone with an affine semigroup Sσ. Then

(1) Uσ = Spec(C[Sσ]) is an affine toric variety.

(2) dimUσ = n⇔ the torus of Uσ is TN = N ⊗Z C∗ ⇔ σ is strongly convex.

Proof. (1) This is just a corollary of some previous result.
(2) Uσ is an affine variety whose torus has character lattice ZSσ = Sσ − Sσ = {m1 − m2|m1,m2 ∈ Sσ}
First we prove that M/ZSσ is torsion-free. Let m ∈ M be such that km ∈ ZSσ, and k > 1, we need to
show that m ∈ ZSσ. Write km = m1 − m2 where m1,m2 ∈ Sσ, then m + m2 = m1

k + k−1
k m2 ∈ Sσ, so

m = (m+m2)−m2 ∈ ZSσ. Therefore,

The torus of Uσ is TN ⇔ ZSσ =M ⇔ rank ZSσ = n.

The first equivalence follows from the fact that the torus of Uσ has character lattice ZSσ (Proposition
1.1.14(b) of [CLS]). Since ZSσ ⊆M , and M is the character lattice of TN , the torus of Uσ is TN if and only
their character lattices are the same, i.e. ZSσ = M . Moreover, note that M is a finitely generated abelian
group, and ZSσ ⊆ M is a subgroup. Since we have just proved that M/ZSσ is torsion-free, we know that
ZSσ = M if and only if their ranks are equal. So the second equivalence holds. Proposition 1.2.12 of [CLS]
tells us that σ is strongly convex if and only dimσ∨ = n , so

dimUσ = n⇔ rankZSσ = n⇔ dimσ∨ = n⇔ σ is strongly convex.

The first equivalence comes from the fact that the dimension of an affine toric variety is the dimension of its
torus, which is the rank of its character lattice. The second equivalence is from Exercise 1.2.6 of [CLS].

Example 4.25. Take the cone σ = Cone(e1, e2, e1+e3, e2+e3) ⊆ NR = R3 with N = Z3. Then its dual cone
is σ∨ = Cone(e1, e2, e3, e1 + e2 − e3) ⊆ R3, and the lattice points in this cone are generated by the matrix
corresponding to the affine toric variety V(xy − zw). Therefore Uσ = V(xy − zw), which has dimension 3.
And it’s clear that in this case σ is strongly convex. See Figure 4.

Definition 4.26. Let σ ⊂ NR be a strongly convex rational polyhedral cone. σ is smooth if its ray generators
form a part of a Z-basis of N .

For example, if σ = Cone(e1, . . . , er) ⊆ Rr, then

σ∨ = Cone(e1, . . . , er,±er+1, . . . ,±en),

and Uσ = Spec(C[x1, . . . , xr, x±r+1, . . . , x
±
n ]) ≃ Cr × (C∗)n−r. This cone σ is smooth. And as we will see in

future lectures, if σ ⊆ NR ≃ Rn is a smooth cone of dimension r, then Uσ ≃ Cr × (C∗)n−r.
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Figure 4: A strongly convex cone σ ⊆ R3 with dim Uσ = 3

4.4 Exercises

Exercise 4.1. Let σ ⊂ NR ∼= Rn be a polyhedral cone. Then:

σ is strongly convex ⇐⇒ {0} is a face of σ

⇐⇒ σ contains no positive-dimensional subspace of NR

⇐⇒ σ ∩ (−σ) = {0}
⇐⇒ dimσ∨ = n.

Exercise 4.2. Let σ ⊆ NR be strongly convex of maximal dimension and let Sσ = σ∨ ∩M . Then H =
{m ∈ Sσ| m is irreducible} has the following properties:

(a) H is finite and generates Sσ.

(b) H contains the ray generators of the edges of σ∨.

(c) H is the minimal generating set of Sσ with respect to inclusion.

Hints:

(a) Using Exercise 4.1 we see that it exists u ∈ σ ∩ N\0 such that ⟨m,u⟩ ∈ N for all m ∈ Sσ and
⟨m,u⟩ = 0 ⇐⇒ m = 0.

(b) Show that the ray generators of the edges of σ∨ are irreducible in Sσ. Given an edge ρ of σ∨, it will
help to pick u ∈ σ ∩N\{0} such that ρ = Hu ∩ σ∨.

Exercise 4.3. Consider the cone σ = Cone(3e1 − 2e2, e1) ⊆ R2.

(a) Describe σ∨ and find generators of σ∨ ∩ Z2. Draw a picture of the dual cone.

(b) Compute the toric ideal of the affine variety Uσ.

Exercise 4.4. Consider the cone σ = Cone(e1, e2, e1 + e2 + 2e3) ⊆ R3.

(a) Describe σ∨ and find generators of σ∨ ∩ Z3. Draw a picture of the dual cone.

(b) Compute the toric ideal of the affine variety Uσ.
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Chapter 5. Smooth and normal affine toric varieties

Chapter written by Joel Hakavuori after the talk of Clotilde Freydt and Julia Morin

5.1 Points of Affine Toric Varieties

Proposition 5.1. Let V = Spec(C[S]) be the affine toric variety corresponding to an affine semigroup S.
Then there is a bijective correspondence between

(i) Points p ∈ V

(ii) Maximal ideals in m ⊂ C[V ]

(iii) Semigroup homomorphisms S → C, where C is considered as a semigroup under multiplication.

Proof. The correspondence between (i) and (ii) is the standard correspondence following from Hilbert’s
Nullstellensatz. For (iii), given a point p ∈ V we define the corresponding semigroup homomorphism as
m 7→ χm(p) ∈ C. Conversely, let γ : S → C be a semigroup homomorphism. By Proposition 3.11, the
characters {χm}m∈S for a basis for the algebra C[S]. The map γ induces a C-algebra homomorphism
γ̄ : C[S]→ C mapping χm 7→ γ(m). Note that γ̄(1) = 1 as γ(0) = 1, so by C−linearity we see that this map
is surjective, and hence C[S]/ ker(γ̄) ∼= C. Recall that an ideal I ⊂ R is maximal if and only R/I is a field,
so we see that ker(γ̄) is a maximal ideal of C[S] = C[V ], and thus corresponds to a point p ∈ V . Concretely,
p can be expressed as p = (γ(m1), . . . , γ(ms)) ∈ Cs, where {m1, . . . ,ms} is a generating set of S.

This result allows us to describe the torus action on V intrinsically. Earlier we saw that the action of the
torus TN of an affine toric variety YA ⊆ Cs is induced by the usual action of (C∗)s on Cs. However, this
action requires an embedding into Cs. To describe the action intrinsically, you will show in exercise 1 of week
5 that the point t · p for t ∈ TN and p ∈ V corresponds to the semigroup homomorphism m 7→ χm(t)γ(t),
where γ is the homomorphism corresponding to p ∈ V described by Proposition 5.1.

Definition 5.2. An affine semigroup S is pointed if S ∩ (−S) = {0}, i.e., if 0 is the only invertible element
of S.

Proposition 5.3. Let V be an affine toric variety and S an affine semigroup.

(i) If V = Spec(C[S]), then the torus action has a fixed point if and only if S is pointed. In this case, the
unique fixed point is given by the semigroup homomorphism defined by

m 7→

{
1, m = 0

0, m ̸= 0.
(1)

(ii) If V = YA for some A ⊆ S \{0}, then the torus action has a fixed point if and only if 0 ∈ YA, in which
case the unique fixed point is 0.

Proof. For part i), let γ : S → C be the semigroup homomorphism corresponding to p ∈ V . Then p is fixed
by the torus action if and only if χm(t)γ(m) = γ(m) for all t ∈ T and m ∈ S. As χ0(t) = 1 and γ(0) = 1,
m = 0 satisfies the equation for all t. If m ̸= 0, there always exists some t for which χm(t) ̸= 0, so we require
that γ(m) = 0. Thus, if a fix point exists, it is unique and given by (1). From the correspondence between
points and semigroup homomorphisms we get that a fixed point exists if and only if S is pointed, as only
then the map (1) is a semigroup homomorphism.
For part ii), assume that YA ⊆ Cs has a fixed point, so S = NA is pointed and the unique fixed point
p is given by (1). From the concrete description of p corresponding to the map (1) given in the proof of
Proposition 5.1, and the fact that 0 ̸∈ A, we see that p is the origin in Cs, and hence 0 ∈ YA. Conversely,
0 ∈ YA is fixed by (C∗)s, and hence by T = YA ∩ (C∗)s ⊆ (C∗)s.

Here is useful corollary, whose proof is left as an exercise.
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Corollary 5.4. Let Uσ be the affine toric variety of a strongly convex rational polyhedral come σ ⊆ NR.
Then the torus action has a fixed point if and only if dimσ = dimNR, in which case the fixed point is given
by the maximal ideal

⟨χm| m ∈ Sσ \ {0}⟩ ⊆ C[Sσ].

5.2 Normality and saturation

Recall that an affine variety V is normal if and only if its coordinate ring C[V ] is normal, i.e., C[V ] is
integrally closed in its field of fractions. In this section we study the conditions for an affine toric variety to
be normal.

Definition 5.5. An affine semigroup S ⊆M is saturated if for all k ∈ N \ {0} and m ∈M , km ∈ S implies
m ∈ S.

Theorem 5.6. Let V be an affine toric variety with torus T . Then the following are equivalent:

(i) V is normal.

(ii) V = Spec(C[S]), where S ⊆M is a saturated affine semigroup.

(iii) V = Spec(C[Sσ]) = Uσ, where Sσ = σ∨ ∩M and σ ⊆ NR is a strongly convex rational polyhedral cone.

Proof. (i) ⇒ (ii): Assume V is normal, so C[S] = C[V ] is integrally closed in its field of fractions. Suppose
km ∈ S for some k ∈ N \ {0} and m ∈ M . We want to show that m ∈ S, i.e., that S is saturated. The
character χm can be considered as a rational function on V , and as km ∈ S, we also have χkm ∈ C[S].
We observe that χm is a root of the monic polynomial xk − χkm, which has coefficients in C[S]. As C[S] is
normal, we get that χm ∈ C[S], and hence m ∈ S.
(ii) ⇒ (iii): Let A ⊆ S be a finite generating set of S, so Cone(A) ⊆ MR and rank(ZA) = n. Then dim
Cone(A) = n, as the dimension of the cone of A is equal to the dimension of the span of S when A generates
S. Hence σ = (Cone(A))∨ ⊆ NR is a strongly convex rational polyhedral cone, so S ⊆ σ∨ ∩M . The other
inclusion is proved in Exercise 5.4, from which we get S = Sσ.
(iii) ⇒ (i): Suppose σ ⊆ NR is a strongly convex rational polyhedral cone. Let ρ1, . . . , ρr be the rays of σ,
so σ∨ = ∩ri=1ρ

∨
i . Intersecting σ∨ gives Sσ = σ∨ ∩M = ∩ri=1Sρi , which in turn implies C[Sσ] = ∩ri=1C[Sρi ].

By exercise 4b) of week 1, C[Sσ] is normal if each C[Sρi ] is normal, so it suffices to show that C[Sρ] is
normal for a rational ray ρ ⊂ NR. Let uρ be the ray generator of ρ. As uρ is primitive, 1

kuρ ̸∈ NR for all
k > 1. Then there exists a basis {e1, . . . , en} of N with e1 = uρ, so we may assume that ρ = Cone(e1). The
C[Sρ] = C[x1, x±1

2 , . . . , x±1
n ]. This is the localization C[x1, . . . , xn]x2...xn

, which is normal by Exercise 1.4, as
C[x1, . . . , xn] is normal.

Example 5.7. Consider again the rational normal cone Ĉd ⊆ Cd+1. As we have seen earlier, this is the
affine toric variety of a strongly convex rational polyhedral cone, and hence normal. Looking at the d = 2
case, we have ΦA(s, t) = (s2, st, d2) for A = {(2, 0), (1, 1), (0, 2)} and σ∨ = Cone(e1, e2). In Figure 5 (a) the
semigroup generated by A does not seem to be saturated: for example 2 · (1, 1) ∈ NA but (1, 1) ̸∈ NA while
(1, 1) ∈ σ∨. However, recall that we have to use the lattice ZA, plotted in white in Figure 5 (b), from which
we see that A is saturated in this lattice, which is what we expected as Ĉ2 is normal.

5.3 Normalization of affine toric varieties

Let V = Spec(C[S]) for an affine semigroup S with character lattice M = ZS. By Theorem 5.6, V will not
be normal when S is not saturated, in which case we may want to normalize V . For affine toric varieties,
normalization has a particularly simple description. Let Cone(S) denote the cone of a finite generating set
of S, and set σ = Cone(S)∨ ⊆ NR. Then we have that

Proposition 5.8. The cone σ = Cone(S)∨ is a strongly convex rational polyhedral cone in NR, and the
inclusion C[S] ↪→ C[σ∨ ∩M ] induces a morphism Uσ → V that is the normalization map of V .
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(a) (b)

Figure 5

Example 5.9. Let A = {(4, 0), (3, 1), (1, 3), (0, 4)} ⊆ Z2. Then ΦA(s, t) = (s4, s3t, st3, t4) is a
parametrization of the surface YA ⊆ C. Observe that 2 · (2, 2) = (4, 0) + (0, 4) ∈ NA but (2, 2) ̸∈ NA.
However (3, 1) − (1, 3) + (0, 4) = (2, 2) ∈ ZA, so NA is not saturated, and hence YA is not normal.
However, using the above proposition, we can normalize by taking the cone of S = NA, which gives the
same cone as considering A′ = {(4, 0), (3, 1), (2, 2), (1, 3), (0, 4)}, corresponding to the rational normal cone
Ĉ4. Hence, Ĉ4 is the normalization of YA, with the normalization map being the projection C5 → C4.

5.4 Smooth affine toric varieties

Next, we study when affine toric varieties are smooth. Recall that smoothness implies normality, so it suffices
to consider toric varieties Uσ coming from strongly convex rational polyhedral cones

Definition 5.10. The set H = {m ∈ Sσ | m is irreducible} is the Hilbert basis of the cone σ.

When σ ⊆ NR is strongly convex and of maximal dimension, the Hilbert basis H of Sσ is finite, minimally
generates Sσ and contains the ray generators of σ∨.
Now, let σ ⊆ NR be a strongly convex rational polyhedral cone of maximal dimenstion and Uσ = Spec(C[Sσ])
the corresponding affine toric variety. By 5.4 the torus action has a unique fixed point pσ ∈ Uσ. In this case
we can relate the dimension of the Zariski tangent space of Uσ at pσ as follows.

Lemma 5.11. Let σ, Uσ and pσ as above, and let H be the Hilbert basis of Sσ. Then dimTpσ (Uσ) = |H|.

Proof. By 5.4, the maximal ideal corresponding to pσ is given by m = ⟨χm | m ∈ Sσ \ {0}⟩. As these
characters form a basis of C[Sσ], we have

m =
⊕
m ̸=0

Cχm =
( ⊕
m irreducible

Cχm
)
⊕
( ⊕
m reducible

Cχm
)
= (

⊕
m∈H

Cχm)⊕m2.

Quotienting out by m2 we see that dimm/m2 = |H|. Mapping to the local ring OUσ,pσ with maximal ideal
mUσ,pσ gives an isomorphism

m/m2 ∼−→ mUσ,pσ/m
2
Uσ,pσ .

As dimTpσ (Uσ) is the dual of the OUσ,pσ/mUσ,pσ -vector space mUσ,pσ/m
2
Uσ,pσ

, we see that dimTpσ (Uσ) =
|H|.

Remark 5.12. The Hilbert basis H gives an embedding of Uσ as YH ⊆ Cs, where s = |H|. If Uσ ↪→ Cl is
an embedding, we always have dimTp(Uσ) ≤ l for all points p ∈ Uσ, so the cardinality of the Hilbert basis
gives a lower bound on the dimension of the affine space we are embedding our variety in. The above lemma
shows that we get the most efficient embedding in terms of dimension using the Hilbert basis of Sσ when σ
is a strongly convex rational polyhedral cone of maximal dimension.
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Recall that a rational polyhedral cone is smooth if it has a generating set which is a subset of a basis of the
lattice.

Theorem 5.13. A strongly convex rational polyhedral cone σ ⊆ NR is smooth if and only if Uσ is smooth.
Furthermore, all smooth affine toric varieties are of this form.

Proof. As we saw in the previous lecture, if σ is smooth, then Uσ ≃ Cr×(C∗)n−r, which shows one direction.
For the converse, we first consider the case when σ has dimension n. Recall that dimTpσ (Uσ) = |H| for the
Hilbert basis H of Sσ. We have n = |H| ≥ |{edges ρ ⊆ σ∨}| ≥ n, where the first inequality follows from the
fact that each edge ρ ⊆ σ∨ contains an element of H (σ is strongly convex and of maximal dimension, so
H contains the ray generators of σ∨), and the second inequality holds as dimσ∨ = n. Hence σ has n edges,
and as M = ZSσ, the ray generators of σ∨ generate M , and hence form a basis. Thus σ∨ is smooth, so
(σ∨)∨ = σ is smooth.
Next, we prove the case where n > dimσ = r by reducing to the above case. Let N1 ⊆ N be the smallest
saturated sublattice containing the generators of σ. Then N/N1 is torsion free, which implies that there
exists a sublattice N2 such that N = N1

⊕
N2. This induces a decomposition of M = M1

⊕
M2 and

semigroups Sσ,N1
⊆M1 and Sσ,N ⊆M respectively, which in turn implies that Sσ,N = Sσ,N1

⊕
M2. For the

corresponding semigroup algebras we get

C[Sσ,N ] ≃ C[Sσ,N1 ]
⊗

C
C[M2].

The right-hand side is the coordinate ring of Uσ,N1 × TN2 , so Uσ,N ≃ Uσ,N1 × TN2 and hence Uσ,N ≃
Uσ,N1

× (C∗)n−r ⊆ Uσ,N1
× Cn−r. By assumption Uσ,N is smooth, so Uσ,N1

× Cn−r is smooth at any point
(p, q) ∈ Uσ,N1

×(C∗)n−r. The variety Uσ,N1
will be smooth at any p where (p, q) is smooth in Uσ,N1

×(C∗)n−r,
and choosing p = pσ ∈ Uσ,N1

gives, by the previous case, that σ is smooth in N1, as dimσ = dim(N1)R = r.
Hence σ is also smooth in N1

⊕
N2 = N , as a subset of a basis of N1 is a subset of a basis of N .

5.5 Exercises

Exercise 5.1. Consider the affine toric variety YA = Spec(C[S]) where A = {m1, ...,ms} and S = NA. Let
γ : S → C be a semigroup homomorphism. In class we mentioned that p = (γ(m1), ..., γ(ms)) lies in YA.

(i) Prove that the maximal ideal {f ∈ C[S] : f(p) = 0} is the kernel of the C-algebra homomorphism
C[S]→ C induced by γ.

(ii) The torus TN of YA has character lattice M = ZA and fix t ∈ TN . Prove that the semigroup
homomorphism m 7→ χm(t)γ(m) corresponds to the point

(χm1(t), ..., χms(t)) · ((γ(m1), ..., γ(ms)))

coming from the action of t ∈ TN ⊆ (C∗)s on p ∈ YA ⊆ Cs.

Exercise 5.2. Let σ ⊆ NR be a strongly convex polyhedral cone. Then the torus action on Uσ has a fixed
point if and only if dimσ = dimNR, in which case the fixed point is unique and is given by the maximal
ideal

⟨χm | m ∈ Sσ\{0}⟩ ⊆ C [Sσ] ,

where as usual Sσ = σ∨ ∩M .

Exercise 5.3. In an example, we saw that the rational normal cone Ĉd ⊆ Cd+1 is the toric variety associated
to σ = cone(de1 − e2, e2) ⊆ R2.
Compute the Hilbert basis of the semigroup Sσ.
What is the smallest affine space in which we can embed Ĉd? (Use Lemma 1.0.6 from [CLS])

Exercise 5.4. Let A ⊆M be a finite set.

(i) Prove that the semigroup NA is saturated in M if and only if NA = Cone(A) ∩M .
Hint: Apply eq. (1.2.2), page 29 [CLS], to Cone(A) ⊆MR.
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Chapter 6. Toric morphisms and projective varieties

Chapter written by Emma Billet after the talk of Coppin and Schuller

6.1 Toric maps

Definition 6.1. Let V1 = Spec(C[S1]), V2 = Spec(C[S2]) for S1, S2 affine semigroups. A morphism φ :
V1 → V2 is called toric if the corresponding φ∗ : C[S2] → C[S1] is induced by a semigroup homomorphism
φ̂ : S2 → S1. In other words, this means that φ∗(χm) = χφ̂(m) for all m ∈ S2.

Example 6.2. The map φ : C → C, t 7→ t2 is a toric morphism as φ∗ : C[X] → C[X], X 7→ X2 is induced
by φ̂ : N→ N : 1 7→ 2 which is a well defined semi-group homomorphism. We also have as a counter-example
φ : C→ C : t 7→ t+ 1, we may see it is in fact not toric using the following proposition.

Proposition 6.3. Let TN1
, TN2

be the tori of the affine toric varieties V1, V2 respectively.
(a) A morphism φ : V1 → V2 is toric if and only if φ(TN1

) ⊆ TN2
and φ∣∣TN1

: TN1
→ TN2

is a group

homomorphism.
(b) φ : V1 → V2 is toric =⇒ ∀t ∈ TN1

, p ∈ V1 : φ(t · p) = φ(t) ·φ(p). Such a morphism is called equivariant.

Proof: We can write V1 = Spec(C[S1]), V2 = Spec(C[S2]) for some affine semigroups S1, S2

(a)” =⇒ ” Suppose φ : V1 → V2 comes from φ̂ : S2 → S1, it thus can be extended to φ̂ : M2 → M1, where
Mi = ZSi is the character lattice of TNi for i = 1, 2 and this gives the following diagram

C[S2] C[S1]

C[M2] C[M1]

φ∗

From which, applying Spec we obtain the following one:

V2 V1

TN2 TN1

φ

This proves φ(TN1
) ⊆ TN2

and we are left to prove the group homomorphism statement. In order to do
this we assume M2 = Zn and TN2

is embedded in Cn then φ̂ : M2 → M1 is determined by φ̂(ei) = mi

∀i = 1, ..., n =⇒ φ∗ : C[M2] → C[M1] : χ
ei 7→ χmi =⇒ φ∣∣TN1

: t 7→ (χm1(t), ..., χmn(t)) is a group

homomorphism as desired.

”⇐= ” Suppose φ(TN1
) ⊆ TN2

and φ∣∣TN1

is a group homomorphism. Then we have the same diagram:

V2 V1

TN2
TN1

φ

which induces

C[S2] C[S1]

C[M2] C[M1]

φ∗
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where the bottom map is φ∗ : C[M2] → C[M1], χ
m 7→ χm ◦ φ. So φ∗ sends characters to characters =⇒

it comes from a group homomorphism φ̂ : M2 → M1. Using this together with the fact that φ∗(C[S2]) ⊆
C[S1] =⇒ φ̂(S2) ⊆ S1. This finishes part (a).
(b) Denote by φ1 : TN1

× V1 → V1 the action of TN1
on V1, similarly for φ2 on V2. Then we define

TN1
× V1 V1 V2

TN1 × V1 TN2 × V2 V2

φ1

φ×φ φ2

φ

It suffices to prove that these compositions of morphisms are equal in order to prove that φ is equivariant.
But using that φ∣∣TN1

is a group homomorphism, these are equal on TN1
× TN1

which is a Zariski dense

subset of TN1 × V1 so they agree everywhere and we proved the equivariance.

Note that on lattices N1, N2, φ̄ : N1 → N2 gives a group morphism φ : TN1
→ TN2

by tensoring, since
TNi
∼= Ni ⊗Z C∗ i = 1, 2, we could also tensor with R to obtain φ̄R : (N1)R → (N2)R.

Proposition 6.4. Let σ1, σ2 be strongly convex rational polyhedral cones and φ̄ : N1 → N2. Then φ : TN1
→

TN2
extends to a morphism of affine toric varieties φ : Uσ1

→ Uσ2
if and only if φ̄R(σ1) ⊆ σ2.

Proof: Exercise 6.1.

6.2 Faces of cones and affine open subsets

Consider as usual, σ ⊆ NR a strongly convex rational polyhedral cone in some vector space, and τ ≼ σ a
face of this cone, then recall that by definition of a face τ = Hm ∩ σ where σ ⊆ H+

m, for some m ∈ σ∨ ∩M .
This allow us to relate semigroup algebras of σ and τ as follows.
Recall that a face of a cone being itself a cone, it allows us to talk about Sτ = τ∨ ∩M

Proposition 6.5. The semigroup algebra C[Sτ ] is the localization of C[Sσ] at χm ∈ C[Sσ].

Proof:
τ ⊆ σ =⇒ Sσ ⊆ Sτ , but for the m defined above we have ⟨m,u⟩ = 0.
∀u ∈ τ =⇒ ±m ∈ τ∨ =⇒ Sσ+Zm ⊆ Sτ , if we prove the reverse inclusion we have C[Sτ ] = C[Sσ, χ−m] =
C[Sσ]χm . The proof of the other inclusion is left to the reader (see also page 43 of [CLS]).

Example 6.6.

� Consider σ = Cone(e1, e2) ⊆ NR = R2 and τ = Cone(e2) a face of σ. Then τ∨ = Cone(±e1, e2) and
we have the following Sσ = N2 =⇒ C[Sσ] = C[X,Y ] and Uσ = C2. On another hand using the
previous proposition Sτ = N{±e1, e2} =⇒ C[Sτ ] = C[X±1, Y ] = C[X,Y ]X and Uτ = C2\V (X).

� Uτ = Spec(C[Sτ ]) = Spec(C[Sσ]χm) = Spec(C[Sσ])χm = (Uσ)χm ⊇ Uσ.

� Using the last point, for two cones σ, σ′, that meet along a common face τ that is σ ∩ σ′ = τ =⇒
Uσ ⊆ Uτ ⊇ Uσ′ .

6.3 Projective varieties

6.3.1 Background notions

Definition 6.7. The n-dimensional projective space is Pn = (Cn+1\{0})/C∗ and a point in Pn is denoted
as [z0 : ... : zn].

Definition 6.8. V ⊆ Pn is a projective variety if

V = Vp(f1, ..., fr) = {[x0 : ... : xn] ∈ Pn | fi(x0, ..., xn) = 0 ∀i ∈ {1, ..., r}}

where f1, ..., fr are some homogeneous polynomials in C[X0, ..., Xn].
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Definition 6.9. The homogeneous coordinate ring of V is C[V ] = C[X0, ..., Xn]/I(V ) where I(V ) is the
ideal generated by

{f ∈ C[X0, ..., Xn] | f homogeneous, f(v) = 0 ∀v ∈ V }

Remark 6.10. C[V ]d = C[X0, ..., Xn]d/I(V )d, that is to say the coordinate ring inherits a grading from the
grading on C[X0, ..., Xn] where C[X0, ..., Xn]d is the vector space of homogeneous polynomials of degree d.

Definition 6.11. For a projective variety V ⊆ Pn, we can define its corresponding affine cone
V̂ := Va(I(V )) ⊆ Cn+1 which has the following properties: V = (V̂ \{0})/C∗ (equality as sets for now); and
C[V̂ ] = C[V ].

Example 6.12.

� Consider the ideal I = ({XiXj+1 − Xi+1Xj |0 ≤ i < j ≤ d − 1}) ⊆ C[X0, ..., Xd]. I being an
homogeneous ideal, it defines a projective variety Cd = Vp(I) ⊆ Pd which is the image of the following
map Φ : P1 → Pd, [s : t] 7→ [sd : sd−1t : ... : std−1 : td].

Also the corresponding affine cone is Va(I) = Ĉd that we discussed several times. Moreover Cd is a
curve (via Φ) called the rational normal curve.

� V̂ := Va(XY − ZW ) ⊆ C4 is the affine cone of the projective variety V = Vp(XY − ZW ) ⊆ P3. In
addition V ∼= P1 × P1.

Remark 6.13. Note that we’re still working with the Zariski topology, that is for V a projective variety
the closed sets of V are subvarieties (i.e. projective varieties of Pn contained in V ).

Consider f, g ∈ C[X0, ..., Xn] homogeneous, g ̸= 0, such that deg(g)=deg(f)= m. We motivate the next
definition with the following formula which proves that we could have a well-defined notion of ”functions”
on Pn (under some conditions).

λ ∈ C∗ :
f(λx)

g(λx)
=
λmf(x)

λmg(x)

Definition 6.14. Let f, g ∈ C[X0, ..., Xn] homogeneous of the same degree such that g ̸= 0. Then f
g :

Pn\V(g)→ C is well defined and called a rational function on Pn. More generally consider V an irreducible
projective variety, f, g ∈ C[V ] homogeneous of same degree such that g ̸= 0, and recall a proprety of affine
cones that C[V̂ ] = C[V ]. Then f, g define functions on the affine cone V̂ and therefore an element fg ∈ C(V̂ ).
Then we can define

C(V ) = {f
g
∈ C(V̂ )|f, g ∈ C[V ] homogeneous of same degree, g ̸= 0},

this set is also denoted as (C(V̂ ))0 = (C(V ))0 because it corresponds to degree 0 elements of C(V̂ ). In
addition it induces f

g : V 99K C, where the dashed arrow means that it is define on some open of V .

Proposition 6.15. We define Ui := Pn\Vp(Xi) to be the affine charts of Pn. Then {Ui}i≥1 is an open
cover of Pn. Furthermore Ui ∼= Cn.

Proof:
The affine variety isomorphism is given by

φ : Ui → Cn, [a0 : ... : an] 7→ (
a1
ai
, ...,

ai−1

ai
,
ai+1

ai
, ...,

an
ai

)

and
φ−1 : Cn → Ui, (a1, ..., an) 7→ [a1 : ...ai−1 : 1 : ai+1 : ... : an].

Let V ⊆ Pn be a projective variety, {V ∩ Ui}i≥1 covers V and it maps via the previous map to the affine
variety in Cn defined by the equation f(z1, ..., 1, ..., zn) = 0 for all f homogeneous polynomials in I(V ).

30



Lemma 6.16. C[V ∩ Ui] ∼= (C[V ]X̄i
)0.

Proof:
C[V ]X̄i

∼= C[X0,...,Xn]Xi

I(V )Xi
since localization is exact. Taking elements of degree 0 we have

(C[V ]X̄i)0
∼= (C[X0,...,Xn]Xi

)0
(I(V )Xi

)0
.

Also (C[X0, ..., Xn]Xi)0 = C[X0

Xi
, ..., Xi−1

Xi
, Xi+1

Xi
, ..., Xn

Xi
]. Let f ∈ I(V ) homogeneous of degree k

=⇒ f
Xk

i

= f(X0

Xi
, ..., Xi−1

Xi
, 1, Xi+1

Xi
, ..., Xn

Xi
) ∈ (I(V )Xi

)0. But using the equation defining V ∩ Ui we see that

(I(V )Xi
)0 maps to I(V ∩ Ui). Finally we prove this map is surjective, so consider an element

g(X0

Xi
, ..., Xi−1

Xi
, 1, Xi+1

Xi
, ..., Xn

Xi
) ∈ I(V ∩ Ui). It exists k >> 0 clearing the denominators such that

Xk
i g = h(X0, ..., Xn) is homogeneous of degree k. Then looking at Xih we note that it vanishes on V ∩ Ui

because of g and it vanishes on the complementary of Ui because of
Xi =⇒ Xih ∈ I(V ) =⇒ Xih

Xk+1
i

∈ (I(V )Xi
)0 and this maps to g.

6.3.2 Product of projective spaces

Definition 6.17. A polynomial f ∈ C[X0, ..., Xn, Y0, ..., Ym] is called homogeneous of bidegree (a, b) if it is
homogeneous of degree a in (C[Y0, ..., Ym])[X0, .., Xn] and vice versa.

Definition 6.18. A variety V ⊆ Pn×Pm is the vanishing locus of finitely many bihomogeneous polynomials.

Definition 6.19.
σn,m : Pn × Pm → Pnm+n+m

([ai]
n
i=0, [bj ]

m
j=0) 7→ [aibj ]1≤i≤n;1≤j≤m

is called the Segree embedding and is in fact an embedding.
σn,m(Pn × Pm) = V(I) where I = ({zijzkl − zilzkj |0 ≤ i, k ≤ n, 0 ≤ j, l ≤ m}]).

Remark 6.20. These two definitions give a priori two different notions of the product of two projective
varieties. The following proposition shows that they in fact agree.

Proposition 6.21. For V ⊆ Pn,W ⊆ Pm subvarieties, V × W ⊂ Pn × Pm is a projective variety i.e.
σn,m(V ×W ) is a projective subvariety of Pnm+n+m.

Proof: Exercise 6.4.

6.4 Exercises

Exercise 6.1. Suppose we have strongly convex rational polyhedral cones σ1 ⊂ (N1)R and σ2 ⊂ (N2)R,
and a homomorphism φ : N1 → N2. Recall that by tensoring with C∗ this gives a group homomorphism
φ : TN1

→ TN2
of tori and by tensoring with R it gives a map φR : (N1)R → (N2)R. Prove that φ : TN1

→ TN2

extends to a map of affine toric varieties φ : Uσ1 → Uσ2 if and only if φR(σ1) ⊂ σ2. Also argue that in that
case, the extended φ is a toric morphism.

Exercise 6.2. (Maps to projective space) Let V ⊆ Pn a projective variety and f0, . . . , fm be polynomials
of degree d such that V ∩V(f1, . . . , fm) = ∅. Show that the map

(a0, . . . , an) 7→ (f1(a0, . . . , an), . . . , fm(a0, . . . , an))

induces a well-defined map V → Pm.

Exercise 6.3. Show that the Segre embedding σn,m : Pn × Pm → Pnm+n+m defined by ([ai], [bj ]) 7→ [aibj]
is indeed an embedding. Furthermore, show that σn,m(Pn × Pm) = V(I) where I is the ideal generated by

{zijzkl − zilzkj | 0 ≤ i, k ≤ n ; 0 ≤ j, l ≤ m}.

Exercise 6.4. Let V ⊆ Pn × Pm defined by fl(x, y) = 0 where fl is bihomogeneous of bidegree (al, bl) for
l = 0, . . . , s. The goal of this exercise is to show that V can be viewed as a projective variety of Pnm+n+m

via the Segre embedding.
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(i) For each l, consider dl ≥ max(al, bl) and gl = fl(x, y)
∏
i,j x

dl−al
i ydl−blj . Show that V is the vanishing

locus of the gl’s.

(ii) Deduce from (a) that σn,m(V ) is a projective subvariety of Pnm+n+m.
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Chapter 7. Projective toric varieties

Chapter written by Julia Morin after the talk of Julie Bannwart and Louis Gognia

Definition 7.1. A projective irreducible variety X over C is called toric if :

� there exists T ⊆ X with T ≃ (C∗)n

� T is open in X

� the action of T on itself extends to X

Proposition 7.2. Pn is toric with torus TPn := Pn \Vp(x0...xn).

Proof. TPn := Pn \Vp(x0...xn) = {[a0 : ... : an] ∈ Pn | ai ̸= 0} = {[1 : ã1 : ... : ãn] ∈ Pn | ãi ̸= 0} ≃ (C∗)n.
TPn is Zariski open in Pn and its action on itself clearly extends to an action on Pn.

Remark 7.3. There is a short exact sequence of tori

1
ι−→ C∗ −→ (C∗)

n+1 π−→ TPn −→ 1

which induces a s.e.s of character lattices (Exercise 7.1) :

0←− Z −◦ι←−− Zn+1 ←−Mn ←− 0

As this sequence is exact Mn is the kernel of the map (a0, ..., an) 7→
∑
ai thus Mn = {(a0, ..., an) ∈ Zn+1 |∑

ai = 0}. If we dualize again we get

0 −→ Z ι◦−−−→ Zn+1 −→ Nn −→ 0

and the lattice of one-parameter subgroups Nn is the quotient

Nn = Zn+1/Z(1, . . . , 1).

Question 1. How can we construct new projective varieties ?

7.1 Lattice points and projective toric varieties

Let TN be a torus with lattices M and N as usual. Let A = {m1, ...,ms} ⊆M , and with

ΦA : TN → Cs

t 7→ (χm1(t), ..., χms(t))

we have YA := clCs(imΦA ). Let us consider the composition:

π ◦ ΦA : TN → Cs π−→ Ps−1

t 7→ [χm1(t) : ... : χms(t)].

Now we define XA := clPs−1(im(π ◦ ΦA ))

Proposition 7.4. XA is toric, with torus TXA = XA ∩ TPs−1 .

Proof. The image im(π ◦ΦA ) of the group homomorphism π ◦ΦA is a torus that is closed in TPs−1 , let call
it TXA . It follows that TXA is Zariski open in XA , and the action of TXA extends to XA (arguments are
the same as in the affine case, see Proposition 3.4). The inclusion TXA ⊆ XA ∩ TPs−1 is trivial. Now

XA ∩ TPs−1 = clPs−1(TXA ) ∩ TPs−1 = clTPs−1 (TXA ) = TXA

.
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Remark 7.5. In the following examples, since M = Zn and A = {m1, ...,ms} ⊆ M , we will see A as an
n× s matrix A so that mi = coli(A).

Example 7.6. Let M = Z2, TN = (C∗)2 and

A =

(
d d− 1 · · · 1 0
0 1 · · · d− 1 d

)
Recall that the rational normal curve Cd is the image of the map Φ : P1 → Ps, [s : t] 7→ [sd : sd−1t : ... :
std−1 : td]. This map corresponds to the map π ◦ ΦA . It means that Cd is a projective toric variety.

Let us now understand the link between the affines and projective toric varieties YA and XA .

7.2 Affine cones and projective toric varieties

Recall the short exact sequence of character lattices :

0→ L→ Zs Φ̂A−−→M (2)

where Φ̂A (ei) = mi is the map induced on character lattices by ΦA , with A = {m1, ...,ms}. L = kerΦA

and we proved that the toric ideal Ia(YA ) = IL = ⟨xα−xβ | α, β ∈ Ns and α−β ∈ L⟩ (see Proposition 3.6).
Then we have the following result:

Proposition 7.7. Given YA , XA and IL as above, the following are equivalent:

(i) X̂A = YA

(ii) IL = Ip (XA ).

(iii) IL is homogeneous.

(iv) There is u ∈ N and k > 0 in N such that ⟨mi, u⟩ = k for i = 1, . . . , s (i.e A lies in an affine hyperplane
of MQ not containing 0).

Proof.

� 1. ⇒ 2.

Ip(XA ) = Ia(X̂A ) = Ia(ŶA ) = IL

� 2. ⇒ 3. by definition

� 3. ⇒ 4.

Assume that IL is homogeneous and take xα − xβ ∈ IL. If xα and xβ had different degrees, then xα

and xβ would lie in IL = Ia (YA ) i.e would vanish on YA but this is impossible since (1, . . . , 1) ∈ YA .
Hence xα and xβ have same degree.

Given ℓ = (ℓ1, . . . , ℓs) ∈ L, set

ℓ+ =
∑
ℓi>0

ℓiei and ℓ− = −
∑
ℓi<0

ℓiei.

Note that ℓ = ℓ+ − ℓ− and that ℓ+, ℓ− ∈ Ns. xℓ+ − xℓ− ∈ IL therefore
∑
ℓi>0 ℓi =

∑
ℓi<0 ℓi which

implies ℓ · (1, ..., 1) = 0, ∀ℓ ∈ L.

Now we tensor (1) above with Q and take HomQ(−,Q) to obtain an exact sequence

NQ
α−→ Qs β−→ HomQ(L⊗Q,Q) −→ 0

where α(ũ) = (⟨mi, ũ⟩)i and β(r1, ..., rs) = ((ℓ⊗ s) 7→ s
∑
ℓiri) (Exercise 7.1).

Therefore, (1, ..., 1) ∈ Qs is sent to 0 and ∃ũ ∈ NQ such that ⟨mi, ũ⟩ = 1 for all 1 ≤ i ≤ s.
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� 4. ⇒ 1. We already have that YA ⊆ X̂A and since X̂A is irreducible, if we show X̂A ∩ (C∗)s ⊆ YA it

will follow that X̂A ⊆ YA . So we just need to show this first inclusion, let p ∈ X̂A ∩ (C∗)
s
.

Then π(p) ∈ XA ∩ TPs−1 = TXA . Therefore ∃µ ∈ C∗ and t ∈ TN such that p = µ · (χm1(t), ..., χms(t)).
Let u ∈ N be as in the hypothesis 4. This gives a oneparameter subgroup of TN , which we write as
τ 7→ λu(τ) for τ ∈ C∗. Then

ΦA (λu(τ)t) = (χm1(λu(τ)t), ..., χms(λu(τ)t))

= (τ ⟨m1,u⟩χm1(t), ..., τ ⟨ms,u⟩χms(t)) = τk · (χm1(t), ..., χms(t))

Using k > 0, we can choose τ so that p = ΦA (λu(τ)t) ∈ YA and then we have p ∈ imΦA ⊆ YA .

7.3 The affine cone of XA

Example 7.8. In Example 7.6 we worked with

A =

(
d d− 1 · · · 1 0
0 1 · · · d− 1 d

)
and found XA = Cd. Let us check the conditions of Proposition 1.8. IL = ⟨xixj+1 − xi+1xj | 0 ≤ i ≤
j ≤ d − 1⟩. We saw that IL = Ip (XA ) and IL is homogeneous. Concerning point 4., notice that the affine
hyperplane of Z2 containing A consists of all points (a, b) such that a+ b = d. Therefore, taking u = (1, 1)

and k = d we have that ⟨mi, u⟩ = d, ∀i. Therefore YA = Ĉd.

Example 7.9. Let M = Z and
B =

(
0 1 · · · d− 1 d

)
For all t in C, we have π ◦ ΦB(t) = [1 : t : ... : td] = [sd : sd−1st : ... : s0(st)d] = π ◦ ΦA (s, t̃) with t̃ = st.

Therefore XB = XA = Cd. However X̂B ̸= YB because I(YB) ∈ C[x0, ..., xn] is not homogeneous. For
example x2 − x21 ∈ I(YB) (because it vanishes at (1, t, ..., td−1, td) for all t ∈ C∗) but x2 /∈ I(YB) because
(1, ..., 1) ∈ YB.

Question 2. We can ask ourselves how to change A so that X̂A stays the same, but the conditions of
Proposition 7.7 are met. This means we want to construct A ′ from A such that X̂A = X̂A ′ and X̂A ′ = YA ′

We claim that we can use A ′ = A × {1}. Indeed, ∀t ∈ TN , µ ∈ C∗, we then have :

π ◦ ΦA ×{1}(t, µ) = [χm1(t)µ : ... : χms(t)µ] = [χm1(t) : ... : χms(t)] = π ◦ ΦA (t)

=⇒ XA = XA ×{1}

Since XA ×{1} lies in an affine hyperplane not containing the origin, X̂A = X̂A ×{1} = YA ×{1} by Proposition
7.7!

7.4 Torus and character lattice of XA

Let TN be a torus with character lattice M as usual, and again set A = {m1, ...,ms} ⊆M .

Definition 7.10. Z′A = {
∑s
i=1 aimi ∈ ZA | ai ∈ Z ∀i,

∑s
i=1 ai = 0}

Proposition 7.11. (i) Z′A is the character lattice of the torus of XA , in particular dimXA = rankZ′A .

(ii) The dimension of XA is the dimension of the smallest affine subspace of MR containing A and

rankZ′A =

{
rankZA − 1 if ∃u ∈ N, k ∈ N∗ s.t ⟨mi, u⟩ = k ∀i ≤ s,
rankZA else.
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Proof. Use Exercise 7.2 to show 2.
Now for part 1., letM ′ denote the character lattice of TXA , and consider the following commutative diagram:

TN TPs−1 Ps−1

TXA

π◦ΦA

Dualizing, we obtain (Exercise 7.1):

M Ms−1

M ′

θ

ψ

where Ms−1 = {(a1, ..., as) ∈ Zs |
∑s
i=1 ai = 0}. θ is induced by Φ̂A : Zs → M , ei 7→ mi. Then

M ′ = imψ ≃ im θ = {
∑s
i=1 aimi ∈ ZA |

∑s
i=1 ai = 0}.

Example 7.12. Let A = {e1, e2, e1 + 2e2, 2e1 + e2} ⊆ Z2. Since Z2 = Ze1 +Ze2 ⊆ ZA we have ZA = Z2.

Z′A =
{
(a, b) ∈ Z2 | a+ b ≡ 0 mod 2

}
. Thus [ZA : Z′A ] = 2. This means that YA ̸= X̂A and that the

map of tori
TYA −→ TXA

is two-to-one, i.e its kernel has order 2.

7.5 Affine pieces and semi-groups

We know that Ps−1 =
⋃
i Ui, where the affine open set Ui = Ps−1\V (xi). Moreover XA =

⋃
iXA ∩Ui. We

have the following result:

Proposition 7.13. XA ∩ Ui is an affine toric variety.

Proof.
TXA = XA ∩ TPs−1 ⊆ TPs−1 ⊆ Ui

Since XA = clPs−1(TXA ), it follows that XA ∩Ui = clUi
(TXA ). Therefore, XA ∩Ui is an affine toric variety.

Given A = {m1, . . . ,ms} ⊆MR, let us determine the affine semigroup associated to XA ∩ Ui.
Using that the isomorphism Ui ≃ Cs−1 is given by

(a1, . . . , as) 7−→ (a1/ai, . . . , ai−1/ai, ai+1/ai, . . . , as/ai) .

we can see that XA ∩ Ui is the Zariski closure of the image of the map

TN −→ TXA −→ Ui ≃ Cs−1

t 7−→
(
χm1−mi(t), . . . , χmi−1−mi(t), χmi+1−mi(t), . . . , χms−mi(t)

)
.

If we set Ai = A −mi = {mj −mi | j ̸= i}, it follows that

XA ∩ Ui ≃ YAi = Spec (C [NAi]) .

Remark 7.14. Later on in the course, we will be interested to determine what is XA ∩Ui∩Uj , when i ̸= j.
For now, let us notice that Ui ∩ Uj consists of points of XA ∩ Ui where xj/xi ̸= 0. Thus

XA ∩ Ui ∩ Uj = YAi \Va(χ
mj−mi) = Spec (C [NAi])χmj−mi

= Spec
(
C [NAi]χmj−mi

)
.

36



Remark 7.15. The set of vertices of a polytope is its minimal generating set. This means that if A =
{m1, . . . ,ms} ⊆M , P = Conv(A ) ⊆MR, and V is the set of vertices of P , then P = Conv(V ) and V ⊆ A
is minimal with this property.

Proposition 7.16. Let A = {m1, . . . ,ms} ⊆ M , P = Conv(A ) ⊆ MR and J = {1 ≤ j ≤ s | mj is a
vertex of P}. Then

XA =
⋃
j∈J

XA ∩ Uj.

Proof. We will prove that if i ∈ {1, . . . , s}, then XA ∩ Ui ⊆ XA ∩ Uj for some j ∈ J .
Remark 1.15 above implies that ∀ 1 ≤ i ≤ s, there are λj ∈ Q+ such that

mi =
∑
j∈J

λjmj with
∑
j∈J

λj = 1 (3)

Now for all j ∈ J , write λj = pj
qj

with pj ∈ N, qj ∈ N∗. Multiplying (2) by
∏
j∈J qj we have :∑

j∈J
kjmj = kmi

with all kj and k being integers, and
∑
j∈J kj = k. Thus we can rewrite this as:∑

j∈J
kj(mj −mi) = 0

Now fix j ∈ J , we have:

mi −mj =
∑

l∈J,l ̸=j

kl(ml −mi) + (kj − 1)(mj −mi)

which shows that mi −mj ∈ NAi. Therefore χmj−mi ∈ C [NAi] is invertible, so C [NAi]χmj−mi = C [NAi].

We then have XA ∩ Ui ∩ Uj = Spec (C[NAi]) = XA ∩ Ui, showing that XA ∩ Ui ⊆ XA ∩ Uj .

7.6 Exercises

Let TN be a torus with character lattice M , and consider a finite subset

A = {m1, . . . ,ms} ⊆M.

Exercise 7.1.

(i) Let 0 −→ T −→ T ′ −→ T ′′ −→ 0 be an exact sequence of tori and algebraic group homomorphisms.
Show that it induces an exact sequence of their character lattices, by showing in particular that an
injection, respectively a surjection, of tori induces a surjection, respectively an injection, of their
character lattices.

Hint: Show that, given the following diagram of algebraic group homomorphisms, with α injective, χ
extends to (C∗)m:

C∗

(C∗)n (C∗)m

χ

α

To do this, you can represent the map α by a matrix.
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(ii) Prove the claim used during the lecture that the exact sequence

0 −→ L −→ Zs −→M

ei 7−→ mi

induces, by tensoring with Q and taking duals, an exact sequence:

NQ −→ Qs −→ HomQ(LQ,Q) −→ 0

Exercise 7.2. Prove the claims we used during the course about

Z′A :=

{
s∑
i=1

aimi

∣∣∣∣∣ ai ∈ Z ∀i ≤ s,
s∑
i=1

ai = 0

}
:

(i) Z′A is a lattice.

(ii) Its rank is the dimension of the smallest affine subspace of MR containing A .

(iii) rank Z′A =

{
rank ZA − 1 if ∃u ∈ N, k ∈ N∗, ⟨mi, u⟩ = k ∀i ≤ s,
rank ZA else.

Exercise 7.3. Given m ∈M , let A +m = {m′ +m | m′ ∈ A }.

(i) Prove that A and A +m give rise to the same projective toric variety: XA = XA +m.

(ii) Show by an example that they do not necessarily give rise to the same affine toric variety in general:
YA ̸= YA +m.

Exercise 7.4. Let M = Z3×3 be the lattice of 3× 3 integer matrices and let P3 be the set of the six 3× 3
permutation matrices, i.e.

P3 = {(δj=σ(i))i,j | σ ∈ S3} ⊆ Z3×3.

Also let P5 have homogeneous coordinates xijk indexed by triples such that
(
1 2 3
i j k

)
is a permutation in

S3.

(i) Prove that three of the permutation matrices sum to the other three and use this to explain why
x123x231x312 − x132x321x213 ∈ I(XP3

).

(ii) Show that dimXP3
= 4 by computing Z′P3.

(iii) Conclude that I(XP3) = ⟨x123x231x312 − x132x321x213⟩.
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Chapter 8. Polytopes

Chapter written by Louis Gogniat after the talk of Matthew Dupraz and Zichen Gao

8.1 Definitions and basic properties of polytopes

Let us recall that a polytope P ⊆ MR is the convex hull of a finite set S ⊆ MR, that is, P = Conv(S) =
{
∑
m∈S λmm | λm ≥ 0,

∑
m∈S λm = 1}. Following this, we provide some elementary definitions regarding

polytopes.

Definition 8.1. The dimension of a polytope P ⊆ MR is the dimension of the smallest affine subspace of
MR containing P . It is then said that P has full dimension if dimP = dimRMR.

Definition 8.2. Let u ∈ NR\0, and a ∈ R. We denoteHu,a as the affine hyperplane defined byHu,a := {m ∈
MR | ⟨m,u⟩ = a}. Similarly, H+

u,a represents the closed half-space defined by H+
u,a := {m ∈MR | ⟨m,u⟩ ≥ a}.

Definition 8.3. Let P be a polytope. We say that Q ⊆ P is a face of P , denoted as Q ⪯ P , if there exists
an affine hyperplane Hu,a such that Q = P ∩Hu,a and Q ⊆ H+

u,a. In this case, Hu,a is called a supporting
affine hyperplane.

By convention, P is considered as its own face, i.e., P ⪯ P , even if it may not necessarily satisfy the
condition of Definition 8.3.

It is not difficult to observe that any face of a polytope is still a polytope. In fact, if P = Conv(S) and
Q ⪯ P with a supporting affine hyperplane H, then Q = Conv(S ∩H). In particular, each face Q possesses
a dimension as defined in Definition 8.1. If P is a polytope of dimension n, we refer to vertices, edges, and
facets to denote a face Q ⪯ P of dimension 0, 1, and n− 1 respectively.

Below is an example provided for illustration.

Figure 6: A polytope P ⊆ R2 with its four supporting hyperplanes. The points A,B,C, and D are the
four vertices of P , while the segments AB,BC,CD, and DA are the edges, which are also facets of P (in
dimension 2).

We now state without proof some useful results about polytopes that will be helpful for what follows.

Proposition 8.4. Let P = Conv(S) ⊆MR be a polytope. Then:

(i) P = Conv({v ∈ P | v is a vertex}), which means that P is the convex hull of its vertices.

(ii) Every vertex of P belongs to S.

(iii) The relation ⪯ among the faces of P is transitive.
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(iv) If Q ≺ P is a proper face of P , then Q =
⋂
F∈FQ

F , where FQ is the set of all facets of P containing
Q.

It is worth noting, moreover, that any polytope P can be obtained as the finite intersection of closed half-
spaces. Furthermore, when P is full-dimensional, each facet F ⪯ P is contained in a unique hyperplane
HF = HuF ,−aF with (uF ,−aF ) ∈ NR × R, unique up to multiplication by a positive real number (see
Exercise 8.1). In this case, we can represent P as follows:

P =
⋂
F∈F

H+
uF ,−aF , (4)

where F denotes the the set of all facets of P .

Remark 8.5. Note that conversely, if P ⊆ MR is bounded with P =
⋂l
i=1H

+
i for some closed half-sapces

H+
i , then P is a polytope. In other words, any bounded finite intersection of closed half-spaces is a polytope.

We now introduce various types of specific polytopes.

Definition 8.6. Let P ⊆MR be a polytope of dimension d.

(i) P is called a (d-)simplex if it has exactly d+ 1 vertices.

(ii) In Rn, the standard n-simplex is the polytope ∆n = Conv(0, e1, . . . , en), where the ei’s denote the
canonical vectors basis of Rn.

(iii) P is said to be simplicial if each of its facets is a simplex.

(iv) P is called simple if each vertex of P lies in exactly d facets of P .

Figure 7: From left to right: The standard 3-simplex in R3, an octahedron (simplicial), and a cube (simple).

Definition 8.7. Two polytopes P,Q ⊆MR are said to be combinatorially equivalent if there exists a bijection
between the set of faces of P and that of Q that preserves intersections, the inclusion relations ⪯, and the
dimensions of the faces.

It is not difficult to see that every simplex of dimension d is combinatorially equivalent to the standard
d-simplex. Similarly, every convex polygon with n ≥ 3 vertices are combinatorially equivalent to the
regular convex n-gone.

We now introduce some ”algebraic” operations on polytopes.

Definition 8.8. For A1, A2 ⊆ MR two finite subsets, the Minkowski sum of A1 and A2 is defined to be
A1 +A2 := {a1 + a2 | a1 ∈ A1, a2 ∈ A2}.

Definition 8.9. Let P1 = Conv(A1), P2 = Conv(A2) be two polytopes, and r ∈ R≥0. We then define new
polytopes:
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(i) r · P1 := Conv(r ·A1),

(ii) P1 + P2 := Conv(A1 +A2).

For r, s ∈ R≥0 and P ⊆MR a polytope, note that the operations defined above satisfy rP + sP = (r + s)P .

Definition 8.10. For A ⊆MR, we define the dual of A, denoted by A◦, as

A◦ = {u ∈ NR | ⟨m,u⟩ ≥ −1, ∀m ∈ A} =
⋂
m∈A

H+
m,−1.

From this definition, we observe that for any A ⊆MR, we have A
◦ = Conv(A)◦. In particular, for a polytope

P = Conv(S) where S ⊆MR is finite, we have

P ◦ = Conv(S)◦ = S◦ =
⋂
m∈S

H+
m,−1.

Thus, the dual of a polytope is a finite intersection of closed half-spaces, and according to Remark 8.5, we
conclude that P ◦ is a polytope if and only if

⋂
m∈S H

+
m,−1 is bounded. It is not difficult to see that this last

condition is satisfied if and only if 0 is an interior point of P . Therefore, for any (full-dimensional) polytope
P containing 0 as an interior point, we conclude that the dual of P is also a polytope.

The dual of a polytope P has the following additional properties.

Proposition 8.11. A full-dimensional polytope P ⊆MR containing the origin as an interior point satisfies:

(i) P ◦ = Conv( 1
aF
uF | F ∈ is a facet), if P =

⋂
F∈H

+
uF ,aF ,

(ii) (P ◦)◦ = P ,

(iii) if P is simplicial, then P ◦ is simple and vice versa.

Proof. See Exercise 8.2.

Below is an example of a polytope in R2 and its dual.

Figure 8: The polytope P = Conv(2e1 + 2e2, 2e1 − 2e2,−2e1 + 2e2,−2e1 − 2e2) in blue and its dual P ◦ in
green represented in the same space MR = NR = R2.

8.2 Lattice, normal and very ample polytopes

Now, consider M and N as two dual lattices with associated vector spaces MR and NR.

Definition 8.12. A lattice polytope is a polytope P = Conv(S), where S ⊆M is a set of lattice points.
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Figure 9: The lattice polytope P = Conv(0, e1, e2, e1 + e2 + 3e3) ⊆ R3.

For example, the standard simplices as well as the square illustrated in Figure 8 are lattice polytopes.

When P ⊆ MR is full-dimensional, let us recall that by (4), we have a decomposition P =
⋂
F∈F H

+
uF ,−aF

where F is the set of facets of P , and where the pairs (uF ,−aF ) are unique up to multiplication by positive
real number. When P is moreover a lattice polytope, each uF defines a rational ray, and we may choose in
the above decomposition uF to be the ray generator of this ray. The decomposition (4) then becomes
unique, and in that case the coefficients aF are integers since for any vertices v of the facet F ⪯ P , we have
−aF = ⟨v, uF ⟩ ∈ Z.

A new example of a lattice polytope is provided to illustrate this decomposition.

Example 8.13. The 3-simplex P = Conv(0, e1, e2, e1 + e2 + 3e3) ⊆ R3 is a lattice polytope (see Figure 9).
The decomposition of P as an intersection of closed half-spaces, given by the above comment, is then

P = H+
e3,0
∩H+

3e1−e3,0 ∩H
+
3e2−e3,0 ∩H

+
−3e1−3e2+e3,−3.

However, notice that 1
3P has a similar decomposition with integer coefficients but is not a lattice polytope.

Indeed, we have
1

3
P = H+

e3,0
∩H+

3e1−e3,0 ∩H
+
3e2−e3,0 ∩H

+
−3e1−3e2+e3,−1,

but it is not a lattice polytope since 1
3P = Conv

(
0, 13e1,

1
3e2,

1
3e1 +

1
3e2 + e3

)
.

Later on, we will see how to construct toric varieties XP∩M from a polytope P . We will observe that this
construction works quite well when the polytope in question has ”sufficiently” many lattice points. In the
following, we introduce two types of polytopes that fulfill this role, namely, normal and very ample polytopes.

Definition 8.14. A lattice polytope P ⊆MR is said to be normal if for any k, l ∈ N we have

(kP ∩M) + (lP ∩M) = (k + l)P ∩M.

Note that equivalently, P is normal if

P ∩M + · · ·+ P ∩M︸ ︷︷ ︸
k times

= kP ∩M for all k ∈ N.

We remark additionally, that in both cases, the left-to-right inclusion is always satisfied.
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Example 8.15. The standard n-simplex ∆n = Conv(0, e1, . . . , en) ⊆ Rn is normal. Indeed, for any k ∈ N,
note that

k∆n = {λ0 · 0 +
n∑
i=1

λiei |
n∑
i=0

λi = k, λi ≥ 0}.

Thus, if x ∈ k∆n ∩ Zn, we get

x = λ0 · 0 +
n∑
i=1

λiei, where λi ∈ N,
n∑
i=0

λi = k.

We can then rewrite x as follows:

x = 0 + · · ·+ 0︸ ︷︷ ︸
λ0 times

+ · · ·+ en + · · ·+ en︸ ︷︷ ︸
λn times

∈ ∆n ∩ Zn + · · ·+∆n ∩ Zn︸ ︷︷ ︸
k times

.

Example 8.16. The 3-simplex P = Conv(0, e1, e2, e1 + e2 + 3e3) from Example 8.13 is a non-normal
lattice polytope. Indeed, it is not difficult to observe that its only lattice points are its vertices, i.e., P ∩Z3 =
{0, e1, e2, e1+e2+3e3}. Thus, e1+e2+e3 does not belong to P ∩Z3+P ∩Z3. However, e1+e2+e3 ∈ 2P ∩Z3

since

e1 + e2 + e3 =
1

6
· 0 + 1

3
· 2e1 +

1

3
· 2e2 +

1

6
· (2e1 + 2e2 + 6e3).

Below is presented a theorem on normality.

Theorem 8.17. Let P ⊆MR be a full-dimensional lattice polytope of dimensions n ≥ 2. Then kP is normal
for all k ≥ n− 1.

Proof. We will prove this theorem in four parts.

Step 1: Let us assume initially that P satisfies

(k + 1)P ∩M ⊆ kP ∩M + P ∩M ∀k ≥ n− 1. (⋆)

Then, for any integer l ≥ 2, we have

lkP ∩M ⊆ (lk − 1)P ∩M + P ∩M ⊆ · · · ⊆ kP ∩M + P ∩M + · · ·+ P ∩M︸ ︷︷ ︸
(l−1)k times

,

where we have successively used the inclusion given by (⋆). Since clearly we have P ∩M + · · ·+ P ∩M︸ ︷︷ ︸
k times

⊆

kP ∩M , we then find that

lkP ∩M ⊆ kP ∩M + kP ∩M + · · ·+ kP ∩M︸ ︷︷ ︸
(l−1) times

= kP ∩M + · · ·+ kP ∩M︸ ︷︷ ︸
l times

.

Therefore, in this case, we conclude that kP is normal for all k ≥ n − 1. Thus, to prove the theorem, it is
sufficient to verify that P satisfies the condition (⋆).

Step 2: Let us now assume that P decomposes into a union of polytopes P =
⋃n
i=1 Pi such that each

polytope Pi satisfies (⋆). For any k ≥ n− 1, we then have

(k + 1)P ∩M = ((k + 1)

n⋃
i=1

Pi) ∩M =

n⋃
i=1

((k + 1)Pi ∩M)

⊆
n⋃
i=1

(kPi ∩M + Pi ∩M) ⊆ kP ∩M + P ∩M,

where the first inclusion follows from the assumption that (⋆) holds for each Pi. Consequently, we observe
in this case that P also satisfies the condition (⋆). Thus, to prove the theorem, it suffices to find a
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decomposition of P into a union of polytopes for which (⋆) is verified.

Step 3: We now demonstrate that every lattice polytope of dimension n decomposes into a finite union of
n-dimensional lattice simplices without interior lattice points. To accomplish this, let us recall the following
theorem4:

Theorem 8.18 (Carathéodory). For a finite set A ⊆MR, the convex hull of A can be decomposed as

Conv(A) =
⋃l
i=1 Conv(Bi), where Bi ⊆ A are subsets of A such that Card(Bi) = dimConv(A)+1 and

dimConv(Bi) = dimConv(A).

For P = Conv(S), full-dimensional of dimension n, Carathéodory’s Theorem implies that

P =
⋃l
i=1 Conv(Bi), where Conv(Bi) is an n-simplex for all i. Furthermore, note that any n-simplex Q

with interior lattice point can be decomposed into a union of n-simplices without interior lattice points.
Specifically, if Q = Conv(w0, . . . , wn) with an interior lattice point v, then Q =

⋃n
i=0Qi, where

Qi = Conv(w0, . . . , ŵi, . . . , wn, v). Each Qi is then an n-simplex with fewer lattice points, and as Q is
bounded, we can repeat the same argument until obtaining the desired decomposition (see Figure 10). By
combining Carathéodory’s Theorem with the above argument, we conclude that every polytope P can be
decomposed into a finite union of n-simplices without interior points.

Figure 10: Decomposition of the 2-simplex P = Conv(0, 4e1, 3e1+2e2) (containing the interior lattice points
u and v) into smaller 2-simplices that do not contain any interior lattice points.

Step 4: By combining the results from Step 2 and Step 3, we note that it suffices to demonstrate that (⋆)
holds for simplices without interior lattice points.
So let us consider P = Conv(m0, . . . ,mn), where mi ∈ M and P has no interior lattice points. Let
m ∈ (k + 1)P ∩M . Then,

m =

n∑
i=0

µi(k + 1)mi,

where each µi ≥ 0 and
∑n
i=0 µi = 1. Setting λi = (k + 1)µi, we have

m =

n∑
i=0

λimi, with λi ≥ 0, and

n∑
i=0

λi = k + 1.

We distinguish two cases:

(i) If there exists a λi ≥ 1, we easily observe that m −mi ∈ kP ∩M . Therefore, m = (m −mi) +mi ∈
kP ∩M + P ∩M .

4For a proof of this theorem, see, for example, Prop. 1.1.15 in ”Lectures On Polytopes” by Ziegler, Günter M.
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(ii) If, on the other hand, λi < 1 for all indices i, then
∑n
i=0 < n+ 1. Since by hypothesis k ≥ n− 1, we

obtain in that case that

k + 1 =

n∑
i=0

λi < n+ 1 ≤ k + 2,

and therefore n = k + 1. We then define m̃ = m0 + · · ·+mn −m, and observe that

m̃ =

n∑
i=0

mi −
n∑
i=0

λimi =

n∑
i=0

(1− λi)mi.

Since
∑n
i=0(1−λi) = (n+1)−n = 1 and m0+ ·+mn−m ∈M , we find that m̃ ∈ P ∩M . Furthermore,

noting that 1 > 1−λi > 0 for all i, we see that m̃ is an interior lattice point of P . Since, by assumption,
P does not have any interior lattice points, we conclude that this second case cannot occur.

We conclude that only the first case is possible, and consequently, that P satisfies the condition (⋆). This
completes the proof.

For a lattice polytope P , its cone is defined as C(P ) = Cone(P × {1}) ⊆ MR × R. Explicitly, we have
C(P ) = {(rx, r) | r ≥ 0, x ∈ P}, and we will think of the parameter r ≥ 0 as a height.

Figure 11: The cone C(P ) of the polytope P sliced at heights 1 and 2.

The following lemma allows us to interpret the normality of a polytope in terms of its cone.

Lemma 8.19. Let P ⊆MR be a lattice polytope. Then, P is normal if and only if (P ∩M)×{1} generates
the semigroup C(P ) ∩ (M × Z).

Proof. Exercise 8.3.

The lemma above allows for another proof of the fact that the polytope P = Conv(0, e1, e2, e1 + e2 + 3e3)
from Example 8.13 cannot be normal. Indeed, it can be shown that the Hilbert basis of C(P ) ∩ (M × Z)
contains elements of height 2 (see Exercise 8.4), and thus, by Lemma 8.19, we conclude that P is not normal.

Definition 8.20. A lattice polytope P ⊆MR is called very ample if for every vertex m ∈ P , the semigroup
SP,m = N(P ∩M −m) is saturated in M .

Proposition 8.21. A normal polytope P is very ample.

Proof. Let m0 be a vertex of P and m ∈M such that km ∈ SP,m0 for some integer k ≥ 1. Then we have

km =
∑

m′∈P∩M
am′(m′ −m0) =

∑
m′∈P∩M

am′m′ −
∑

m′∈P∩M
am′m0, a′m ∈ N.
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Take d ∈ N such that kd ≥
∑
m′∈P∩M am′ , then

km+ kdm0 =
∑

m′∈P∩M
am′m′ + (kd−

∑
m′∈P∩M

am′)m0 ∈ kdP.

Dividing the above equation by k gives

m+ dm0 =
∑

m′∈P∩M

1

k
am′m′ +

(
d− 1

k

∑
m′∈P∩M

am′

)
m0 ∈ dP.

Due to the normality of P , we therefore have m+ dm0 =
∑d
i=1mi, for some mi ∈ P ∩M . Consequently,

m =

(
d∑
i=1

mi

)
− dm0 =

d∑
i=1

(mi −m0) ∈ SP,m0
,

as desired.

By combining Theorem 8.17 with Proposition 8.21, we obtain the following corollary.

Corollary 8.22. Let P ⊆ MR ∼= Rn be a full-dimensional lattice polytope. Then, kP is very ample for all
k ≥ n− 1.

Note that a very ample polytope need not to be normal, so the converse of the previous corollary does not
necessarily hold.

8.3 Exercises

Exercise 8.1. Let P be a polytope. Show that each facet of P has a unique supporting affine hyperplane
if and only if P is of maximal dimension.

Exercise 8.2. Let P ⊆MR be a polytope of maximal dimension d with the origin as an interior point.

(i) Write P = {m ∈ MR | ⟨m,uF ⟩ ≥ −aF for all facets F}. Prove that aF > 0 for all F and that
P ◦ = Conv((1/aF )uF | F is a facet).5 Deduce that (P ◦)◦ = P .

(ii) Show there is a bijective, inclusion reversing correspondence between the faces of P and the faces of
P ◦, through which the faces of dimension n correspond to faces of dimension d− n− 1. Deduce that
the dual of a simplicial polytope is simple and vice versa.

(iii) Show that (rP )◦ = (1/r)P ◦ for all r > 0. Use this to construct an example of a lattice polytope whose
dual is not a lattice polytope.

Exercise 8.3. Let P ⊆ MR be a lattice polytope. Prove that P is normal if and only if (P ∩M) × {1}
generates the semigroup C(P ) ∩ (M × Z).

Exercise 8.4. Let P = Conv(0, e1, e2, e1 + e2 + 3e3) ⊆ R3 be the simplex mentioned in the lecture.

(a) Show that the only lattice points of P are its vertices.

(b) Show that the toric variety XP∩Z3 is P3.

(c) Show that the Hilbert basis of C(P ) ∩ (M × Z) is

(0, 1), (e1, 1), (e2, 1), (e1 + e2 + 3e3, 1), (e1 + e2 + e3, 2), (e1 + e2 + 2e3, 2).

Combining with the previous exercise, show that P is not normal.

5You may use that if C ⊂ MR is a convex subset, p ̸∈ C a point, then p and C are separable by a hyperplane. In other
words, there exists some u ∈ NR and a ∈ R, such that ⟨u, p⟩ ≤ a and for all m ∈ C, ⟨u,m⟩ ≥ a.
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Chapter 9. Normal fans

Juan Felipe Celis after the talk of Clotilde Freydt and Julia Morin

Our goal is to define a projective toric variety from a lattice polytope.

9.1 Very ample polytopes

Consider the following setting. Let P ⊆MR be a full dimensional very ample lattice polytope with dimP = n,
P ∩M = {m1, . . . ,ms}. Recall that the toric variety XP∩M is the Zariski closure of the map

TN → Ps−1, t 7→ [χm1(t) : · · · : χms(t)].

Now fix homogeneous coordinates x1, . . . , xs for Ps−1. Then we have Ui = Ps−1\V(xi). We examine the
variety XP∩M . Remember that

Si = N(P ∩M −mi)

and that

XP∩M ∩ Ui ≃ Spec(C[Si]),
XP∩M = ∪si=1XP∩M ∩ Ui,

since (Ui)
s
i=1 form an affine open cover of Ps−1.

Theorem 9.1. Let P ⊆MR be a full dimensional very ample lattice polytope with dimP = n. Then

(i) For all mi ∈ P ∩M we have

XP∩M ∩ Ui = Uσi
= Spec(C[σi]∨ ∩M)

where σi ⊆ NR is the strongly convex rational dual cone of Cone(P ∩M −mi), and dimσi = n.

(ii) The torus of XP∩M is TN .

Proof. (i) Let Ci = Cone(P ∩M −mi) and observe that σi = C∨
i . Take Hu,a a supporting hyperplane of

mi such that P ⊆ H+
u,a and P ∩Hu,a = {mi}. Now we use Exercise 9.1 which says the that Hu,0 is a

supporting hyperplane of 0 ∈ Ci and dimCi = dimP .

This already proves that dimσi = n. Observe we have the inclusion

Si ⊆ Ci ∩M = σ∨
i ∩M

where both Si and σ
∨
i ∩M are generated by P ∩M −mi. As P is very ample Si is saturated so this

inclusion is in fact an equality. See Exercise 1.3.4 in [CLS]. This concludes the proof as

XP∩M ∩ Ui = Uσi = Spec(C[Si]) = Spec(C[σi]∨ ∩M).

(ii) Notice that for all i ∈ {1, . . . , s} we have

TN ⊆ Uσi
= XP∩M ∩ Ui ⊆ XP∩M .

Then TN is the torus of XP∩M as it is an open subset, thus dense, of XP∩M .
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9.2 Normal fans

For P ⊆MR we denote facets by F , faces by Q and vertices by v. Recall from previous sections that

P = {m ∈MR | ⟨m,uF ⟩ ≥ −aF ∀F ⪯ P facet}

and from a vertex v ∈ P we can define cones

Cv = Cone(P ∩M − v) ⊆MR

and
σv = C∨

v ⊆ NR.

We can see there is a bijective correspondence between faces of P containing v and faces of Cv. More
explicitly,

{v ∈ Q ⪯ P} ↔ {R ⪯ Cv}
Q 7→ Qv = Cone(Q ∩M − v)

(R+ v) ∩ P ← [ R.

To have some intuition on this bijection we can rely on fig. 12 as a small example.

Figure 12: Bijective correspondence of faces

Notice that
Cv = {m ∈MR | ⟨m,uF ⟩ ≥ 0 ∀F ⪰ v}

and by duality

σv = Cone(uF |F ⪰ v)
σQ = Cone(uF |F ⪰ Q).

Observe that σP = {0} because there are no facets containing P .

Theorem 9.2. Let P ⊆MR be a full dimensional lattice polytope and set

ΣP = {σQ |Q ⪯ P}.

Then:

(i) For all σQ ∈ ΣP , each face of σQ is also in ΣP .

(ii) For any two faces Q,Q′ ⪯ P , the intersection σQ ∩ σQ′ in ΣP is a face of each.

Definition 9.3 (Fan). A collection of strongly convex rational polyhedral cones satisfying (i) and (ii) is
called a fan. Moreover if this collection comes from a polytope P as in the theorem we say that it is the
normal fan of P .
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To prove this theorem we will first state and prove some useful lemmas and propositions. Then the theorem
will follow as a consequence of these.

Lemma 9.4. Let Q ⪯ P and let Hu,b be a supporting hyperplane of P . Then u ∈ σQ iff Q ⊆ Hu,b ∩ P .

Proof. Left as an exercise to the reader. To see the full proof see Lemma 2.3.3 in [CLS], page 77.

Corollary 9.5. If Q ⪯ P and F ⪯ P is a facet. Then uF ∈ σQ iff Q ⪯ F .

Proof. Assume Q ⪯ F then by definition of σQ it is clear that uF ∈ σQ.
Now suppose that uF ∈ σQ. Then by our lemma HuF ,−aF is a supporting hyperplane of F such that its
intersection with P contains Q. Moreover

Q ⊆ HuF ,−aF ∩ P = F,

which finishes the proof.

Proposition 9.6. Let Q,Q′ be faces of a full dimensional polytope P ⊆MR. Then:

(i) Q ⊆ Q′ iff σQ′ ⊆ σQ.

(ii) If Q ⊆ Q′ then σQ′ is a face of σQ and all faces of σQ are of this form.

(iii) We have σQ ∩ σQ′ = σQ′′ where Q′′ is the smallest face of P containing both Q and Q′.

Proof. (i) First suppose that Q ⊆ Q′. Then by definition of σQ and σQ′ we get σQ′ ⊆ σQ because all
facets containing Q′ also contain Q.

Now suppose σQ′ ⊆ σQ. Then for all F ⪰ Q′ we have uF ∈ σQ′ ⊆ σQ using the previous corollary. So
F ⪰ Q. We can conclude

Q′ =
⋂
F⪰Q′

F ⊇ Q.

(ii) Let v ∈ P be a vertex such that v ∈ Q. Then recall that Q∗
v := σv ∩Q⊥

v is a face of C∨
v = σv. And

Q∗
v = C∨

v ∩Q⊥
v

= σv ∩Q⊥
v

= {m ∈ σv | ⟨m,u⟩ = 0∀u ∈ Qv}
= Cone(uF |F ∋ v,Qv ⊆ HuF ,0)

So for v ∈ Q, Qv ⊆ HuF ,0 iff Q ⊆ HuF ,−aF iff Q ⊆ F . Then

Q∗
v = Cone(uF |F ∋ v,Q ⊆ F ) = σQ

Thus σQ is a face of σv. Moreover if Q ⊆ Q′, σQ′ ⊆ σQ we have σQ′ ⪯ σv.
Now if τ ⪯ σQ′ ⪯ σQ then τ = σQ′′ for Q′′ ⪯ P .

(iii) Let Q′′ be the smallest face of P containing Q and Q′. Then by part (i) we have σQ′′ ⊆ σQ and
σQ′′ ⊆ σQ′ . Thus σQ′′ ⊆ σQ ∩ σQ′ .

Now we consider two cases. If σQ∩σQ′ = {0} = σP then Q′′ = P . Otherwise there is u ∈ (σQ∩σQ′)\{0}
and define

b = min{⟨v, u⟩ | v ∈ P vertex}.

Then P ⊆ H+
u,b so Hu,b is a supporting hyperplane of P . Moreover Q ⊆ Hu,b ∩ P and Q′ ⊆ Hu,b ∩ P

thus Hu,b ∩ P is a face containing Q, and Q′. Then Q′′ ⊆ Hu,b ∩ P and it follows that u ∈ σQ′′ . This
concludes the proof.

Remark 9.7. This proposition proves the theorem. Indeed parts (i) and (ii) from this proposition imply
(i) from the theorem, and part (iii) of the proposition implies part (ii) of the theorem.
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Figure 13: Cone Cv for a vertex v ∈ P

Example 9.8. In fig. 13 we can see a polytope P with a vertex v and its cone Cv.

Proposition 9.9. Let P ⊆MR be a full dimensional lattice polytope of dimension n. Then:

(i) For all faces Q of P , σQ ∈ ΣP and
dimσQ + dimQ = n.

(ii) Moreover

NR =
⋃
v∈P

σv =
⋃

σQ∈ΣP

σQ

Proof. (i) For v ∈ Q we have
dimQ+ dimσQ = dimQv + dimQ∗

v = n.

(ii) Let u ∈ NR be non-zero. Take
b = min{⟨v, u⟩ | v ∈ P vertex}.

Then Hu,b is a supporting hyperplane of P . There is at least one v ∈ P such that v ∈ Hu,b. Thus
u ∈ σv.

Proposition 9.10. Let P ⊆ MR be a full dimensional lattice polytope. For all lattice points m ∈ M , and
any integer k ≥ 1, m+ P and kP have the same normal fan as P .

Proof. Exercise 9.2.

Example 9.11 (Normal fan). In fig. 14 we see a lattice hexagon with its normal fan.

Example 9.12. In fig. 15 we can see a cube P and its dual an octahedron. Here want to understand the
relation between the dual polytope P ◦ and the normal fan ΣP . Notice that the cone of a face of P ◦ is an
element of ΣP . For more details in this correspondence see Exercise 9.3.
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Figure 14: Lattice hexagon P with its normal fan

9.3 Toric variety of a polytope

Now consider
XP∩M ∩ Uv ∩ Uw

and let P ∩ M = {m1, . . . ,ms}. If v ∈ P ∩ M , there is some i ∈ {1, . . . , s} such that v = mi and
Uv = XP∩M ∩ Ui ≃ Spec(C[Si]).

Proposition 9.13. Let P ⊆ MR be a full dimensional very ample lattice polytope. Let v, w ∈ P be two
distinct vertices, and Q ⪯ P be the smallest face containing v and w. Then

XP∩M ∩ Uv ∩ Uw = UσQ
= Spec(C[σ∨

Q ∩M ]).

Proof. We have

XP∩M ∩ Uv ∩ Uw = Spec(C[σ∨
v ∩M ])\Vp(χw−v)

= (Uσv
)χw−v

and similarly
XP∩M ∩ Uv ∩ Uw = (Uσw

)χv−w .

So it is enough to show that
(Uσv

)χw−v = UσQ
.

Now observe that w − v ∈ Cv = σ∨
v thus τ = Hw−v ∩ σv ⪯ σv. We get

(Uσv )χw−v = Uτ

so to prove the proposition it suffices to show τ = σQ. Equivalently we need to show thatHw−v∩σv = σv∩σw,
because theorem 9.6(iii) yields σQ = σv ∩ σw.
Let u ∈ Hw−v ∩ σv. If u ̸= 0 then there is a supporting hyperplane Hu,b of P . Thus by lemma 9.4 v ∈ Hu,b

and as u ∈ Hw−v we deduce that w ∈ Hu,b and u ∈ σw. Then Hw−v ∩ σv ⊆ σv ∩ σw.
Now let u ∈ σv ∩ σw, u ̸= 0. Then there is a supporting hyperplane Hu,b of P containing v and w. Again by
lemma 9.4 we conclude that u ∈ Hw−v. Whence Hw−v ∩ σv = σv ∩ σw and the proposition follows.

Remark 9.14. This proposition alongside the theorem about normal fans prove that the normal fan ΣP
completely determines XP∩M .
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Figure 15: A cube and its dual octahedron

Now we can define a toric variety from a polytope.

Definition 9.15 (Toric variety associated to a polytope). Let P ⊆MR be a full dimensional lattice polytope.
Then we define the toric variety of P to be

XP = X(kP )∩M

where k is any positive integer such that kP is very ample.

9.4 Exercises

Exercise 9.1. Let P ⊆MR, be a full dimensional very ample polytope.

(i) Let Hu,a be a supporting hyperplane of a vertex m ∈ P . Prove that Hu,0 is a supporting hyperplane
of 0 ∈ C = Cone (P ∩M −m).

(ii) Prove that dimC = dimP .

Exercise 9.2. Let P ⊆ MR be a full dimensional lattice polytope. Then for any lattice point m ∈ M and
any integer k ≥ 1, the polytopes m+ P and kP have the same normal fan as P .

Exercise 9.3. Let P ⊆ MR ≃ Rn be an n-dimensional lattice polytope containing 0 as an interior point,
and let P ◦ ⊆ NR be its dual polytope. Prove that the normal fan ΣP consists of the cones over the faces of
P ◦. Hint: Use Exercise 2.2.1 of [CLS].

Exercise 9.4. (i) Let e1, . . . , en be the standard basis of Rn. Prove that the normal fan of the standard n-
simplex consists of the cones Cone(S) for all proper subsets S ⊆ {e0, e1, . . . , en}, where e0 = −

∑n
i−1 ei.

Draw pictures of the normal fan for n = 1, 2, 3.

(ii) For an integer k ≥ 1, show that the variety Xk∆n ⊆ Psk−1 is given by the map νk : Pn −→ Psk−1

defined using all monomials of total degree k in C [x0, . . . , xn].
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Chapter 10. Smooth projective toric varieties and

abstract varieties

Isak Sundelius after the talk of Coppin and Schuller.

10.1 Projective toric varieties

Recall: Let P ⊆MR denote a full-dimensional and very ample lattice polytope. Denote by s = |P ∩M | the
number of lattice points. We then have the projective toric variety XP∩M , given as a subvariety of Ps−1. It
decomposes as the union

XP∩M =
⋃

v vertex

XP∩M ∩ Uv

with
XP∩M ∩ Uv = Uσv

= Spec(C[σ∨
v ∩M ]).

Let v ̸= w be vertices and Q the smallest edge containing them. Then

XP∩M ∩ Uv ∩ Uw = UσQ
.

Furthermore,
Uσv ⊇ XP∩M ∩ Uv ∩ Uw ⊆ Uσw

and in particular
Uσv ⊇ (Uσv )χw−v = UσQ

= (Uσw)χv−w ⊆ Uσw

by which we conclude that the normal fan ΣP determines XP∩M .

10.1.1 The toric variety of a polytope

Definition 10.1. Let P ⊆ MR be a full-dimensional lattice polytope. The toric variety of P denoted by
XP is defined as X(kP )∩M , where k ≥ 1 is chosen such that kP is very ample.

Remark 10.2.

� Such a k as in definition 10.1 exists and satisfies k ≥ n− 1.

� If k and ℓ are two such integers, kP and ℓP have the same normal fan.

Example 10.3. Let ∆ ⊆ Rn be the standard n-simplex given by Cone(0, e1, . . . , en). If k ≥ 1 we denote
by sk =

(
n+k
k

)
the number of lattice points in k∆n, which are given by monomials in C[t1, . . . , tn] of total

degree ≤ k. Then there is an embedding
X∆n ⊆ Psk−1

In the case of k = 1 we clearly only have the lattice points

∆n ∩ Zn = {0, e1, . . . , en}.

Then X∆n
= Pn.

For general k ≥ 1 we get the embedding
Vk : Pn → Psk−1

with image defined by using the monomials in C[x0, . . . , xn] of degree k. Setting n = 1 and k = 2 we get
that this is the Veronese embedding

V2 : P1 → P2

[x0 : x1] 7→ [x20 : x0x1 : x21].
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10.1.2 Normality

Definition 10.4. A projective variety embedded in Pn is projectively normal if its affine cone is normal.

Remark 10.5. We will later see that a variety X is defined to be normal if it is irreducible and the local
rings OX,p are normal for all p ∈ X.

Recall:

� If σ is a strongly convex rational polyhedral cone then the affine toric variety Uσ = Spec(C[Sσ]) is
normal.

� The affine toric variety Spec(C[S]) is normal if and only if S is saturated.

Theorem 10.6. Let P ⊆MR be a full-dimensional lattice polytope. We then have the following:

(a) XP is normal;

(b) XP is projectively normal under the embedding given by kP if and only if kP is normal.

Proof. (a) XP is toric, hence irreducible. The affine pieces are given by Uσv
, and since these are normal

XP is normal.

(b) Note that
X(kP )∩M = X((kP )∩M)×{1}.

The right hand side may be viewed as the closure of the image of

Φ((kP )∩M)×{1}(t, µ) = [χm1(t)µ : · · · : χms(t)µ] = [χm1(t) : · · · : χms(t)].

The affine cone of X(kP )∩M is YA, with A = ((kP ) ∩M)× {1}. In particular,

YA = Spec(C[S])

where S = NA. The affine cone YA is normal if and only if S is saturated. We see that A generates the
cone C(kP ) := Cone((kP ) × {1}). We then have that S is saturated if and only if C(kP ) ∩ (M × Z)
is generated by A, which in turn is the case if and only if kP is normal.

10.1.3 Smoothness

Definition 10.7. Let P ⊆ MR be a lattice polytope and let v be a vertex of P . Let E be an edge of P
containing v and denote by wE the first lattice point encountered when moving along E beginning at v, not
equal to v. Then we define P to be smooth if for every vertex v ∈ P the set

{wE − v | v ∈ E ⊆ P edge and wE the lattice point given by v and E}

forms a subset of a Z-basis of M .

Recall: A cone is smooth if its ray generators form a subset of a Z-basis of M .

Theorem 10.8. Let P ⊆MR be a full-dimensional lattice polytope. The following are equivalent:

(a) XP is a smooth projective variety;

(b) ΣP is a smooth fan, i.e., every σ ∈ ΣP is smooth;

(c) P is a smooth polytope.

Proof. (a) ⇐⇒ (b) Smoothness is a local condition, so XP is smooth if and only if all of its affine pieces are
smooth. Since the affine pieces are given by Uσv , and these are smooth if and only if σv are smooth cones,
we have that this is satisfied if and only if ΣP is smooth.
(b) ⇐⇒ (c) For a vertex v the cone σv is smooth if and only if σ∨

v = Cv := Cone(P ∩M − v) is. The ray
generators of the cone Cv are wE − v. With this we conclude that σv is smooth for every vertex v ∈ P if
and only if P is smooth.
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Proposition 10.9. Every smooth full-dimensional lattice polytope is very ample.

Proof. As usual, we let P denote a lattice polytope such as in the statement of the proposition and let v ∈ P
denote a vertex, fixed throughout the proof. We want to show that Sv = N(P ∩M − v) is saturated.
Since P is smooth we have, by definition, that the wE − v, for varying E ∋ v, constitute a subset of a basis
for M . Due to P being full-dimensional we have that the wE − v, for varying E ∋ v, in fact constitute a
basis for M .
This furthermore gives us that {wE − v | E ∋ v} generates Sv, since this is a subset of Sv generating M .
Let us now take km ∈ Sv for k ≥ 1 and a lattice point m. Since the wE − v constitute a basis we can write
m uniquely as

m =
∑
E edge

λE(wE − v)

where λE ∈ Z for all E. In a similar way we may write

km =
∑
E edge

µE(wE − v)

for unique µE ∈ N, since km is assumed to belong to Sv. Then, since the µE and λE are unique, we have
equality µE/k = λE for every edge E containing v and so since k ∈ N, by assumption, we get that λE ∈ N.
This means that

m =
∑
E edge

λE(wE − v) ∈ Sv

since Sv = N(P ∩M − v), so we are done.

Remark 10.10. A natural question to ask is whether every smooth polytope is normal. However, this is
still an open problem.

Example 10.11.

� The standard n-simplex ∆n = Cone(0, e1, . . . , en) is smooth, since {e1 − 0, . . . , en − 0} constitutes a
basis for M ∼= Zn.

� Let P = Conv(0, 2e1, e2). Then XP = XP∩Z2 is given by the image of the morphism

(C∗)2 → P3

(s, t) 7→ [1 : s : s2 : t]

so XP = V(y0y2− y21) ⊆ P2. Then the intersection with the affine chart XP ∩U3 = V(y0y2− y21) ⊆ C3,
but the point (0, 0, 0) corresponds to the point [0 : 0 : 0 : 1] ∈ P3, which is singular.

We also see that the cone spanned by the basis {e1,−2e2 − e1} is not smooth.

Left: The polytope P ; Right: The normal fan ΣP of P with its three cones, the bottom one, the span
of {e1,−2e2 − e1}, being nonsmooth/singular.

10.2 Abstract varieties

We want to study varieties, regardless of if they are affine or projective.
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10.2.1 What is a sheaf

Let X be a topological space.

Definition 10.12. A presheaf F of abelian groups (or rings or C-algebras etc.) on X consists of the data

(i) for every open subset U ⊆ X an abelian group F(U);

(ii) for every inclusion of open subsets V ⊆ U ⊆ X a group homomorphism

ρU,V : F(U)→ F(V )

subject to

(iii) for every open subset U ⊆ X, ρU,U = IdF(U);

(iv) for every triple of inclusions of open subsets W ⊆ V ⊆ U ⊆ X,

ρU,W = ρV,W ◦ ρU,V .

Remark 10.13. A presheaf constitutes a functor

F : Open(X)op → AbGrp.

For s ∈ F(U) with V ⊆ U ⊆ X open subsets, we denote by s |V := ρU,V (s) the restriction of s to V .

Definition 10.14. A presheaf F is said to be a sheaf if it satisfies

(i) for U ⊆ X an open subset with open cover {Uα}α, and s ∈ F(U), then s |α= 0 for all α implies that
s = 0;

(ii) for U ⊆ X an open subset with open cover {Uα}α and given sections sα ∈ F(Uα) for every α satisfying
sα |Uα∩Uβ

= sβ |Uα∩Uβ
for all pairs α, β there exists a section (unique, by (i)) t ∈ F(U) such that

t |Uα
= sα for all α.

Definition 10.15. Let F be a presheaf of abelian groups on X. The stalk Fx of F at x ∈ X is defined as
the direct limit

Fx := lim−→
U∋x
F(U) = {(U, s) | x ∈ U open subset of X, s ∈ F(U)}/ ∼,

where (U, s) ∼ (V, t) if there exists an open neighbourhood W of x such that W ⊆ U ∩ V and

s |W= t |W .

Example 10.16. An example of a sheaf is the sheaf of holomorphic functions on C,

OholC (U) = {f | f holomorphic on U}.

10.2.2 Sheaf of regular functions

Let V = Spec(R) be an affine variety.

Proposition 10.17. (i) For every f ∈ R, Vf := V \ V(f) = Spec(Rf );

(ii) For every open subset U ⊆ V , U =
⋃
f∈S Vf for a finite subset S ⊆ R.

Definition 10.18. Let U ⊆ V be open. A map φ : U → C is said to be regular on U if for every point
p ∈ U , there exists an fp ∈ R, p ∈ Vfp ⊆ U an open neighbourhood, such that φ |Vfp

∈ Rfp . We set

OV (U) = {φ : U → C | φ regular on U}.
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Proposition 10.19. (i) OV (V ) = R;

(ii) For all f ∈ R we have that OV (Vf ) = Rf .

Theorem 10.20. The sheaf OV : U 7→ OV (U) is a sheaf of C-algebras on V . It is called the structure sheaf
on V :
If V is irreducible, the stalk (OV )p is actually isomorphic to OV,p.

Definition 10.21. Let V1, V2 be affine varieties and Ui ⊆ Vi open subsets for i = 1, 2. A map Φ : U1 → U2

is a morphism of varieties if
Φ# : OV2

(U2)→ OV1
(U1)

f 7→ f ◦ Φ

is a homomorphism of C-algebras.

Remark 10.22. There is a 1:1-correspondence{
U1→U2

morphism

}
↔

{
OV2

(U2)→OV1
(U1)

C-algebra homomorphism

}

where U1 and U2 are affine varieties. We say that a morphism Φ is an isomorphism if it is bijective and its
inverse Φ−1 : U2 → U1 is also a morphism.

10.2.3 Abstract varieties

Definition 10.23. Let {Vα}α be a finite collection of affine varieties such that for every α, β, there exist
open subsets Vαβ ⊆ Vα and Vβα ⊆ Vβ and an isomorphism gαβ : Vαβ → Vβα that verify

(i) gβα = (gαβ)
−1;

(ii) gαβ(Vαβ ∩ Vβα) = Vβα ∩ Vαβ ;

(iii) gαγ = gβγ ◦ gαβ for every α, β, γ.

We define
Y =

⊔
α

Vα/ ∼

where a ∼ b if there exist α, β such that a ∈ Vα, b ∈ Vβ and gαβ(a) = b. We introduce

hα : Vα → Uα := {[a] | a ∈ Vα}.

This procedure can be illustrated by the following:
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The topology on Y is induced by that of the open cover {Uα}α. And abstract variety is determined by the
above data.

Remark 10.24. To show that a topological space X is an abstract variety we need to be able to construct
an open cover X =

⋃
α Uα with Uα ∼= Vα affine varieties for all α. We also require that the intersections are

not dependent on inside which subset they appear, up to isomorphism, i.e.,

(U1 ∩ U2)U1
∼= (U1 ∩ U2)U2 ,

where the subscripts denote the intersection as viewed in U1 and U2 respectively.

Example 10.25.

(i) An affine variety V is an abstract variety.

(ii) Projective n-space Pn constitutes an abstract variety;

Pn =
⋃
i

Ui =
⋃
i

Pn \ V(xi)

where Ui := Pn \ V(xi) ∼= Cn. Now for i, j,

(Ui) xj
xi

= (Uj) xi
xj

= Ui ∩ Uj .

We define
gij : (Ui) xj

xi

∼=→ (Uj) xi
xj
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g#ij : C
[
x1
xj
, . . . ,

xn
xj

]
xi
xj

→ C
[
x1
xi
, . . . ,

xn
xi

]
xj
xi

xk
xj
7→ xk

xi
/
xj
xi
,

(
xi
xj

)−1

7→ xj
xi
.

(iii) Projective varieties are abstract varieties: We have a canonical decomposition V =
⋃
i V ∩ Ui where

V ∩ Ui is affine for all i.

(iv) We have that Pn × Cm is an abstract variety:

Pick the open cover {Ui × Cm}i, i.e., so that Ui × Cm ∼= Cn+m.

Note that this variety is neither affine nor projective.

Definition 10.26. Let X be an abstract variety:

(i) A closed subset of X is called a subvariety ;

(ii) We say that X is irreducible if it cannot be written as the union of two proper subvarieties.

Remark 10.27. One can show that an abstract variety X admits a decomposition X =
⋃

finite Yi where Yi
are irreducible subvarieties of X, called irreducible components of X.

10.3 Exercises

Exercise 10.1. Consider the polytope P = (n+ 1)∆n − (1, ..., 1).

(i) Determine the facet presentation of P , show that P is smooth and show that P ◦ = Conv(e0, e1, ..., en)
where e0 = −e1 − ...− en.

(ii) Determine the facet presentation of P ◦ and show that σe0 = Cone(v1, ..., vn) where vi = e0+(n+1)ei.
Hint: you know the vertices of P .

(iii) Show that P ◦ is not smooth for n ≥ 2.

Exercise 10.2. Let V = Spec(R) be an affine variety.

(i) Show that every ideal I ⊂ R can be written in the form I = ⟨f1, ..., fs⟩, where fi ∈ R. (This is the
Hilbert Basis Theorem in R.)

(ii) Let W ⊂ V be a subvariety. Show that the complement of W in V can be written as a union of a finite
collection of open affine sets of the form Vf .

(iii) Deduce that every open cover of V (in the Zariski topology) has a finite subcover. (This says hat affine
varieties are quasicompact in the Zariski topology.)

Exercise 10.3. Let X be an irreducible abstract variety.

(i) Let f, g be rational functions on X. Show that f ∼ g if f |U = g|U for some nonempty open set U ⊂ X
is an equivalence relation.

(ii) Show that the set of equivalence classes of the relation in part (a) is a field.

(iii) Show that if U ⊂ X is a nonempty open subset of X, then C(U) ∼= C(X).

Exercise 10.4. In this exercise, we will study the blowup of Cn at the origin. Write the homogeneous
coordinates on Pn−1 as x0, . . . , xn1

and the affine coordinates on Cn as y1, . . . , yn. Consider

W = Bl0(Cn) = V (xi−1yj − xj−1yi | 1 ≤ i < j ≤ n) ⊆ Pn−1 × Cn.

Let Ui, i = 1, . . . , n be the standard affine opens in Pn−1 :

Ui−1 = Pn−1 \ V (xi−1).

So the {Ui−1 × Cn}i is an open cover of Pn−1 × Cn.
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(i) Show that for each i, Wi−1 =W ∩ (Ui−1 × Cn) is isomorphic to

Spec

(
C
[
x0
xi−1

, . . . ,
xn
xi−1

, yi

])
.

(ii) Give the gluing data for identifying the subset Wi−1 \ V (xj−1) and Wj−1 \ V (xi−1).
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Chapter 11. Toric varieties from abstract fans

Matthew Dupraz after the talk of Julie Bannwart and Louis Gogniat

Recall that an abstract variety is the data of

� a finite collection of affine varieties {Vα}

� Zariski open subsets Vβα ⊆ Vα for all α, β

� isomorphisms gβα : Vβα → Vαβ such that:

– gαβ = g−1
βα for all α, β

– the cocycle condition is satisfied, i.e.

gβα(Vβα ∩ Vγα) = Vαβ ∩ Vγβ

and
gγα = gγβ ◦ gβα

on Vβα ∩ Vγα for all α, β, γ.

The underlying subspace is the gluing of these affine pieces via the maps gαβ , more precisely,

X =
⊔
α

Vα/ ∼

where the equivalence relation ∼ is induced by

a ∼ gβα(a) for all α, β and a ∈ Vα

The topology on this space is the quotient topolgy induced from the Zariski topology on the affine pieces.
Recall that in this course we consider only affine varieties of finite type over C, so they may be embedded in
some Cn, which leads us to the following definition

Definition 11.1. Let X be an abstract variety as above. The classical topology on X is the quotient
topology obtained by considering the Vα ⊂ Cn with the Euclidean topology.

Example 11.2. Consider C2 = Spec(C[x, y]) and P1 with homogeneous coordinates [x0 : x1]. The blowup
of C2 at the origin is the variety

V = V(x0y − x1x) ⊆ C2 × P1.

We can cover C2 × P1 with the affine pieces

C2 × U0 = Spec(C[x, y, x1/x0])

and
C2 × U1 = Spec(C[x, y, x0/x1]).

If we denote s = x1/x0 and t = x0/x1, we have that V can be written as the gluing of the two affine pieces

V ∩ C2 × U0 = V(y − sx) ⊆ Spec(C[x, y, s])

and
V ∩ C2 × U1 = V(ty − x) ⊆ Spec(C[x, y, t]).
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11.1 Morphisms

Definition 11.3. Let X =
⋃
α Uα and Y =

⋃
β Vβ be abstract varieties. A map φ : X → Y is a morphism

if it is Zariski continuous and for all α, β,

φ|Uα∩φ−1(Vβ) : Uα ∩ φ
−1(Vβ)→ Vβ

is a morphism. If Y = C, φ is called a regular function.

Definition 11.4. Let X be an abstract variety. The structure sheaf OX of X is the sheaf given by the data

OX(U) = {f : U → C | f is regular}

along with the usual restriction maps.

Definition 11.5. The local ring at p ∈ X is

OX,p = {f : U → C | U an open neighbourhood of p}/ ∼,

where the equivalence relation ∼ is given by (f : U → C) ∼ (g : V → C) if and only if there exists
p ∈W ⊆ U ∩ V such that f |W = g|W

Definition 11.6. Let X be an irreducible variety. We define the function field to be

C(X) = {f : U → C|f is regular, U ̸= ∅}/ ∼

where the equivalence relation ∼ is given by (f : U → C) ∼ (g : V → C) if and only if f |U∩V = g|U∩V . The
elements of C(X) are called rational functions.

11.2 Normality and smoothness

Definition 11.7. Let X be an irreducible variety. X is called normal if for all p ∈ X, OX,p is integrally
closed.

Proposition 11.8. X is normal if and only if for all α, Vα is normal.

Proof. For all p ∈ X, there is some α such that p ∈ Vα. We have that OX,p ∼= OVα,p as for any [f : U →
C] ∈ OX,p, we have that

[f : U → C] = [f |U∩Vα : U ∩ Vα → C],

which follows from Definition 11.5, and so this shows that the natural inclusion OVα,p ↪→ OX,p is actually
an isomorphism. Exercise 1.4 implies that Vα is normal if and only if OVα,p is normal for all p ∈ Vα and so
the statement follows

Definition 11.9. Let X a variety, then p ∈ X is a smooth point if dimTp(X) = dimpX. Here Tp(X) =
Tp(Vα) for some α such that p ∈ Vα and dimpX = dimp Vα. The variety X is smooth if every p ∈ X is a
smooth point. The fact that this is well-defined is shown in Exercise 11.1.

11.3 Products

Definition 11.10. Let X =
⋃
α Uα, Y =

⋃
β Vβ . Define the product X × Y as the abstract variety with

affine pieces given by {Uα × Vβ}α,β , where

(X × Y )(α,β)(α′,β′) = Uαα′ × Vββ′

and the glueing maps are given by
g(α,β)(α′,β′) = gαα′ × gββ′

for all α, α′, β, β′.

62



Proposition 11.11. The product of two varieties satisfies the universal property of the product, that is for

all X1
φ1←−W φ2−→ X2, there exists a unique morphism φ :W → X1 ×X2, such that the diagram

W

X1 X1 ×X2 X2

φ1 φ2φ

π1 π2

commutes.

Example 11.12. As we have seen in Example 11.2, the product C2×P1 can be covered by the affine pieces
Û0 = C2 × U0 and Û1 = C2 × U1, where we have

Û10 = Spec(C[x, y, s]s)

Û01 = Spec(C[x, y, t]t)

and the isomorphism g10 : Û10 → Û01 is induced by

x 7→ x, y 7→ y t 7→ s−1. (5)

11.4 Separatedness

Recall that when X is a topological space, X is Hausdorff if and only if the image of the diagonal map

∆ : X → X ×X
x 7→ (x, x)

is closed in X ×X endowed with the product topology.
Separatedness is a property of abstract varieties analogous to that of being Hausdorff for topological spaces.

Definition 11.13. A variety X is separated if the image of the diagonal map ∆ : X → X × X is Zariski
closed in X ×X.

In fact the analogy is not vacuous as we have the following theorem.

Theorem 11.14. A variety is separated if and only if it is Hausdorff when endowed with the classical
topology.

Separatedness is a desirable condition as we have for example the following proposition.

Proposition 11.15. Suppose X is a separated variety.

(i) If f, g : Y → X are two morphisms, then the set

{y ∈ Y | f(y) = g(y)}

is Zariski closed in V .

(ii) If U, V ⊂ X are open affine subsets, then U ∩ V is affine too.

Example 11.16. Any affine variety V ⊆ Cn is separated. Indeed, ∆V ⊆ V × V is closed because ∆V =
(V × V ) ∩∆Cn , V × V is closed in Cn × Cn and we have that

∆Cn = V(x1 − y1, . . . , xn − yn),

so being the intersection of two closed subspaces, ∆V is closed.

We will now give an example of a variety that is not separated.
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Example 11.17. Let U = Spec(C[x]) ∼= C and V = Spec(C[y]) ∼= C glued along Ux ⊆ U and Vy ⊆ V with
the map Ux → Vy induced by

C[y]y → C[x]x
y 7→ x

Let X be the resulting variety, X is called the line with two origins. We will denote the two origins 0U and
0V to distinguish them. This is a standard example for a topological space which is not Hausdorff. To see
that X is not separated without using the Theorem 11.14, notice that X ×X is covered by the affine pieces
U × U , U × V , V × U and V × V . The space X ×X may be seen as the plane with doubled axes and four
origins. In order for ∆X to be closed in X ×X, it has to be closed in all of those affine pieces, but we have
that

∆X ∩ (U × V ) = V(x− y) \ {(0U , 0V )},

and this is not a Zariski closed subspace of U × V ∼= C2.

11.5 Fans

Definition 11.18. A fan Σ is a collection of strongly convex rational polyhedral cones σ ⊆ NR such that

� For all σ ∈ Σ, if τ ⪯ σ then τ ∈ Σ.

� For all σ1, σ2 ∈ Σ, σ1 ∩ σ2 ⪯ σi for i = 1, 2.

Recall that if σ ⊆ NR is a strongly convex rational cone, then Uσ = Spec(C[Sσ]), where Sσ = σ∨ ∩M . If
τ ⪯ σ is a face, then there is some m ∈ σ∨ ∩M such that τ = σ ∩Hm and σ ⊆ H+

m. In this case we get that
Sτ = Sσ + Zm and Uτ = (Uσ)χm as in ([CLS]], Proposition 1.3.16).

Proposition 11.19 (Separation Lemma). Let σ1, σ2 ∈ Σ and τ = σ1 ∩ σ2, then

Sτ = Sσ1
+ Sσ2

Proof. We have that τ∨ = (σ1 ∩ σ2)∨ = σ∨
1 + σ∨

2 and hence this implies the inclusion Sτ ⊇ Sσ1
+ Sσ2

. By
(Cox, Lemma 1.2.13) we know that there exists some m ∈ σ∨

1 ∩ (−σ2)∨ ∩M such that

σ1 ∩Hm = σ2 ∩Hm = τ.

Then from the decomposition Sτ = Sσ1 + Zm we get that for any p ∈ Sτ , there is some l ∈ Z such that
p = q + lm, but then clearly p ∈ Sσ1

+ Sσ2
.

Given a fan Σ in NR, we may associate to each σ ∈ Σ its corresponding affine toric variety Uσ. We can glue
these varieties on their intersections as follows. Given σ1, σ2 ∈ Σ, and τ = σ1 ∩σ2, we know from above that

Uσ1
⊇ (Uσ1

)χm = Uτ = (Uσ2
)χ−m ⊆ Uσ2

So we just take
gσ2σ1

: (Uσ1
)χm

∼−→ (Uσ2
)χ−m

the idenitity on Uτ . This yields an abstract variety XΣ.

Theorem 11.20. For a fan Σ, the associated variety XΣ is toric, normal and separated.

Proof. XΣ is toric For all σ ∈ Σ, we have that {0} is a face of σ and hence U{0} ⊆ Uσ. We have that

TN := U{0} = Spec(C[M ]) ∼= (C×)n

which is a torus. These tori are all identified in XΣ, so we may see TN as a torus in XΣ, which is independent
of the chosen σ. To show TN is dense in XΣ, if C is the closure of TN in XΣ, then for all σ ∈ Σ, Uσ ∩ C is
closed in Uσ. But since TN is also the torus of the toric variety Uσ, it is dense in Uσ and so C ⊃ Uσ. Since
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σ was arbitrary, C = XΣ and hence TN is dense in XΣ. This implies that XΣ is irreducible, as it contains
an irreducible torus as a dense subset.
For all σ, TN acts on Uσ and these actions coincide on intersections, since the glueing map is the identity.
So this action extends to all of XΣ. This action is algebraic since it is so on every affine piece.

XΣ is normal Since every cone σ ∈ Σ is strongly convex, the affine piece Uσ is normal and so Proposition
11.2 implies that XΣ is normal.

XΣ is separated We want to show that ∆ : XΣ → XΣ×XΣ has Zariski closed image, so it suffices to show

that for every σ1, σ2 ∈ Σ, and τ = σ1 ∩ σ2,

∆|Uτ : Uτ → Uσ1 × Uσ2

has Zariski closed image. This is because im∆ is closed in the product only if it’s closed in every affine piece
covering the product and as we have seen these are exactly the Uσ1 × Uσ2 . Furthermore, by noticing that
Uτ = ∆−1(Uσ1 × Uσ2), we get that im∆ ∩ Uσ1 × Uσ2 = im∆|Uτ . The map ∆|Uτ comes from the C-algebra
homomorphism

∆∗ : C[Sσ1 ]⊗C C[Sσ2 ]→ C[Sτ ]
χm ⊗ χn 7→ χm+n

Now, the separation lemma implies that the map is surjective and so ∆∗ induces the isomorphism

C[Sτ ] ∼= C[Sσ1 ]⊗C C[Sσ2 ]/ ker∆
∗,

which implies that U = V(ker∆∗) ⊆ Uσ1 × Uσ2 , which is closed in Uσ1 × Uσ2

Remark 11.21. We have seen that for every normal affine toric variety X, there exists a strongly convex
rational polyhedral cone σ ⊂ NR, such that X ∼= Uσ. If we write ⟨σ⟩ to be the smallest fan containing σ (so
the fan containg precisely σ and all its faces), then in fact XΣ

∼= X.

We also have the following result.

Proposition 11.22. If P ⊆MR is a full-dimensional lattice polytope, then we have that XP
∼= XΣP

, where
ΣP is the normal fan of P .

One may also show that the converse of Theorem 11.20 holds.

Theorem 11.23. If X is separated normal and toric with torus TN , then X ∼= XΣ for some fan Σ in NR.

Example 11.24. Let X be a 1-dimensional separated normal toric variety, then X is isomorphic to either
C×, C or P1.
Indeed, in this case TN = C×, N = Z and NR = R. Then τ = {0}, σ1 = [0,+∞) and σ2 = (−∞, 0] are the
only strongly convex polyhedral cones. Then the only possibilities up to exchanging σ1 with σ2 are

� Σ = {τ}, in which case XΣ = Uτ = Spec(C[Z]) ∼= C×.

� Σ = {τ, σ1}, then XΣ = Uσ1 = Spec(C[N]) ∼= Spec(C[x])) ∼= C.

� Σ = {τ, σ1, σ2}, in which case we may take 1 ∈ σ∨
1 ∩ (−σ2)∨ ∩ Z = N, and so we get that the affine

pieces Uσ1
∼= C and Uσ2

∼= C glue along the map induced by

g∗σ1σ2
: C[x]x → C[x−1]x−1

x 7→ x

We see then that XΣ
∼= P1 via the identification x 7→ x0/x1, where [x0 : x1] are the coordinates in P1.

Proposition 11.25. Let Σ1 be a fan in (N1)R and Σ2 a fan in (N2)R, then Σ1 ×Σ2 = {σ1 × σ2|σi ∈ Σi} is
a fan in (N1 ×N2)R and we have

XΣ1×Σ2
∼= XΣ1

×XΣ2
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Figure 16: Fan Σ in R2 corresponding to P1 × C×

Example 11.26. Consider the fan Σ1 = {τ, σ1, σ2} from Example 11.24 and the fan Σ2 = {τ}. Then the fan
Σ = Σ1×Σ2 is a fan in R2 made of the cones τ × τ = {0}, σ1× τ = Cone((1, 0)) and σ2× τ = Cone((−1, 0)).
The toric variety corresponding to Σ is P1 × C×.

Example 11.27. Consider the cones σ1 = Cone(e1, e1+e2) and σ2 = Cone(e2, e1+e2). Let Σ = ⟨σ1, σ2⟩ be
the smallest fan in R2 containing the two cones. Then XΣ is isomorphic to the blowup of C2 at the origin.
Indeed, we have

Sσ1 = N(e1 − e2) + Ne2 and Sσ2 = N(e2 − e1) + Ne1
and so we have that

Uσ1
= Spec(C[xy−1, y]) and Uσ2

= Spec(C[yx−1, x]).

The glueing map is given by the identity on Uσ1∩σ2
, so it’s induced from the map

C[xy−1, y]xy−1 → C[yx−1, x]yx−1

xy−1 7→ (yx−1)−1

y 7→ (yx−1)x.

It should be clear now that this coincides with the description of the blowup in Example 11.2.

11.6 Exercises

Exercise 11.1. Prove the following claims about local rings and smoothness:

(i) If p ∈ X lies in the intersection of two affine open sets Uα, Uβ , then TUα,p and TUβ ,p are isomorphic as
C-vector spaces.

(ii) The local dimension dimpX is a well-defined integer.

(iii) Smoothness is well-defined for abstract varieties.

Exercise 11.2. Prove the following properties of separated varieties (proposition 3.0.18): let X be a
separated abstract variety, then:

(i) If f, g : Y → X are morphisms, then {y ∈ Y | f(y) = g(y)} is Zariski closed in Y .

(ii) If U and V are affine open subsets of X, then U ∩ V is affine. Hint6.

(iii) Without proving all details, give counterexamples to the two above statements whenX is not separated.
Hint7.

6Show first that U ∩ V can be identified with ∆(X) ∩ (U × V ) ⊆ X ×X.
7Recall the example of non separated variety discussed in class.
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Figure 17: Fan Σ in R2 corresponding to the blowup of C2 at the origin

Exercise 11.3. In NR = R2, consider the fan Σ with cones {0}, Cone(e1) and Cone(−e1). Show that
XΣ ≃ P1 × C∗.

Exercise 11.4. Suppose we have fans Σ1 in (N1)R and Σ2 in (N2)R. Prove that

Σ1 × Σ2 = {σ1 × σ2 | σi ∈ Σi}

is a fan in (N1)R × (N2)R = (N1 ×N2)R and

XΣ1×Σ2
≃ XΣ1

×XΣ2
.

67



Chapter 12. The orbit-cone correspondance

Maxence Coppin after the talk of Emma Billet and Juan Rojas
In this section, we will study the orbits of the action of TN on a the toric variety XΣ.
Recall that a 1-parameter subgroup is the data of a homomorphism

λu : C∗ −→ TN
t 7−→ (tb1 , . . . , tbn)

where u = (b1, . . . , bn) ∈ Zn = N .

Example 12.1. Take X∆2
∼= P2. Its torus is TN = {[1 : x : y] | x, y ̸= 0} and we have

TN ∼= (C∗)2 ↪→ P2.

Let u = (a, b) ∈ Z2, then λu(t) = [1, ta, tb] for t ∈ C∗. Now, let’s study its limit when t goes to zero in two
cases :

� If u = (a, b) ∈ Z2
>0, we have

lim
t→0

λu(t) = lim
t→0

[1 : ta : tb] = [1 : 0 : 0].

� If u = (a, a) ∈ Z2
<0, we have

lim
t→0

λu(t) = lim
t→0

[1 : ta : ta] = lim
t→0

[t−a : 1 : 1] = [0 : 1 : 1].

What are the Orbits of the action TN ↷ P2. The action is given on U1 by

((s, t), [1 : x : y]) 7−→ [1 : sx : ty].

We have that

� For p = [1 : 0 : 0], Op = {[1 : 0 : 0]}.

� For q = [0 : 0 : 1], Oq = {[0 : x1 : x2] | x1, x2 ̸= 0} ∋ q.

Doing this for all orbits and finding all possible limits of λu, we have a correspondence between cones σ and
orbits O by

σ corresponds to O ⇔ lim
t→0

λu(t) ∈ O, ∀u ∈ Relint(σ)

Using the affine toric variety structure of Uσ for a given cone σ, recall that we have 1-1 correspondence
between

(i) Maximal ideals of C[Sσ].

(ii) Points p ∈ Uσ.

(iii) Semi-group homomorphism γ : Sσ → C.

Where 2→ 3 is given by p 7→ γp(m) = λm(p).

Definition 12.2. Consider γ : Sσ → C defined by γ(m) = 1 if m ∈ σ⊥ ∩M and γ(m) = 0 otherwise. It
corresponds to a point γσ ∈ Uσ called the distinguished point of σ.
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12.1 Limits of 1-parameter subgroup

Proposition 12.3. Let σ ⊆ NR be a strongly convex rational polyhedral cone and u ∈ N . Then

(i) u ∈ σ if and only if limt→0 λ
u(t) exists and lies in Uσ.

(ii) If u ∈ Relint(σ), then limt→0 λ
u(t) = γσ.

Proof. (i) We have the follwong equivalences :

limt→0 λ
u(t) exists and is in Uσ ⇐⇒ limt→0 χ

m(λu(t)) exists in C, ∀m ∈ Sσ
⇐⇒ t⟨m,u⟩ exists in C, ∀m ∈ Sσ
⇐⇒ ⟨m,u⟩ ≥ 0, ∀m ∈ σ∨ ∩M
⇐⇒ u ∈ (σ∨)∨

where the first equivalence is proved in the exercise 12.2.

(ii) Suppose that u ∈ Relint(σ). Then ⟨m,u⟩ > 0 for all m ∈ Sσ \ σ⊥ and ⟨m,u⟩ = 0 for all m ∈ Sσ ∩ σ⊥

by definition of the relative interior. Now, for m ∈ Sσ we have

γu(m) = χm(limt→0 λ
u(t))

= limt→0 χ
m(λu(t))

= limt→0 t
⟨m,u⟩

=

{
1 if m ∈ σ⊥ ∩M
0 ortherwise

12.2 Torus Orbits

Lemma 12.4. Let σ ⊆ NR be a strongly convex rational polyhedral cone. Consider Nσ = ⟨σ ∩N⟩ ≤ N and
N(σ) = N/Nσ. Then there exists a perfect pairing

⟨·, ·⟩ : (σ⊥ ∩M)×N(σ)→ Z

Induced by the usual pairing M ×N → Z. Furthermore, it induces isomorphisms

HomZ(σ
⊥ ∩M,C∗) ∼= TN(σ)

∼= N(σ)⊗Z C∗

Proof. Omitted.

Definition 12.5. Any cone σ ∈ Σ corresponds to a distinguished point γσ ∈ Uσ ⊆ XΣ. Consider the set

O(σ) := TN · γσ ⊆ XΣ.

We know that a point p ∈ Uσ corresponds to a semi-group homomorphism γ : Sσ → C. Now, for t ∈ TN ,
the point t · p given by the action TN ↷ Uσ corresponds to the semi-group homomorphism γt defined by
m 7→ χm(t) · γ(t).

Lemma 12.6. Let σ ⊆ NR be a strongly convex rational polyhedral cone. Then

O(σ) (1)
= {γ : Sσ → C | γ(m) ̸= 0 ⇔ m ∈ σ⊥ ∩M}

(2)∼= HomZ(σ
⊥ ∩M,C∗) ∼= TN(σ)

Proof. Denote by O′ the set {γ : Sσ → C | γ(m) ̸= 0 ⇔ m ∈ σ⊥ ∩M}.
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(2) The subspace σ⊥ of MR is the largest contained in σ∨, hence σ⊥ ∩M ≤ Sσ. Let γ ∈ O′, then γ|σ⊥∩M
induces γ̃ : σ⊥ ∩M → C∗. In the other way, let γ̃ ∈ HomZ(σ

⊥ ∩M,C∗), then we can extend it to
γ : Sσ → C taking γ(m) = γ̃(m) if m ∈ σ⊥∩M and γ(m) = 0 otherwise. These two maps are obviously
inverse, thus O′ ∼= HomZ(σ

⊥ ∩M,C∗).

(1) We have a short exact sequence

0 Nσ N N(σ) 0

By tensoring with C∗, we get a surjection

N ⊗Z C∗ = TN → TN(σ) = N(σ)⊗Z C∗ ∼= HomZ(σ
⊥ ∩M,C∗) ∼= O′.

The bijections TN(σ)
∼= HomZ(σ

⊥ ∩M,C∗) ∼= O′ are compatibles with the TN -action, hence TN acts
transitively on O′. That is, γσ ∈ O′ implies that O′ = TN · γσ = O(σ) by definition of O(σ).

Example 12.7. Take the affine toric variety V(xy − zw) ⊆ C4. We know that V = Spec(C[Sσ]) where σ∨

is Cone(e1, e2, e3, e1 + e2 − e3). We have that TN ∼= (C∗)3 ↪→ V defined by (t1, t2, t3) 7→ (t1, t2, t3, t1t2t
−1
3 ).

Let u = (a, b, c) ∈ N = Z3, then λu(t) = (ta, tb, tc) is mapped to (ta, tb, tc, ta+b−c) in V . Suppose that
a, b, c ≥ 0 and a+ b ≥ c, then for σ = Cone(e1, e2, e1 + e3, e2 + e3), we have γσ = (0, 0, 0, 0).

12.3 The Orbit-Cone Correspondence Theorem

Here comes the most important theorem of this section.

Theorem 12.8. Let Σ be a fan with associated toric variety XΣ. Then

(i) We have the 1-1 correspondance :

{σ ∈ Σ} ←→ {TN − orbits in XΣ}
σ ←→ O(σ)

(ii) let n = dimNR. We have dimO(σ) = n− dimσ.

(iii) For σ ∈ Σ, the affine variety Uσ is the union of orbits

Uσ =
⋃
τ≼σ

O(τ).

(iv) For τ ∈ Σ, we have

τ ≼ σ ⇐⇒ O(σ) ⊆ O(τ) =
⋃
σ′≽τ

O(σ′)

where O(τ) denotes the closure in both classical topology and Zariski topology.

Proof. (i) Consider the open affine cover {Uσ}σ∈Σ of XΣ which are all TN -invariants. Furthermore we
know that Uσ1

∩ Uσ2
= Uσ1∩σ2

. Thus for O ⊆ XΣ a TN -orbit, there is a unique σ ∈ Σ minimal such
that O ⊆ Uσ.
We claim that O = O(σ). Let γ ∈ O and consider the set {m ∈ Sσ | γ(m) ̸= 0 which is contained in
σ∨ ∩ τ⊥ ∩M for τ ≼ σ (see Exercise 12.3). Then, γ ∈ Uτ and using the minimality of σ we get τ = 0.
Therefore γ ∈ O(σ) and we get the equality by transitivity of the action.

(ii) Immediate from Lemma 12.6, indeed we have that O(σ) ∼= TN(σ) and the latter have dimension
n− dim(σ) as N(σ) = N/Nσ.
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(iii) The affine variety Uσ is TN -invariant, so it is a union of orbits. Suppose that τ ≼ σ, then O(τ) ⊆ Uτ ⊆
Uσ. Hence τ must be a face of σ, it yields that each orbit composing Uσ corresponds to an O(τ) for
τ ≼ σ.

(iv) First, we are doing it with the classicle topology.

From Exercise 12.3, we know that O(τ) is TN -invariant. Suppose that O(σ) ⊆ O(τ). Then O(τ) ⊆ Uσ,
otherwise their intersection must be empty since we work with the classical topology and this is
impossible since both contain O(σ). Thus τ ≼ σ using the previous part.

Suppose that τ ≼ σ, it is enough to show that σ ∩O(τ) ̸= ∅. Consider γτ the distinguished point of τ .
Let u ∈ Relint(σ) and t ∈ C∗, we define γ(t) = λu(t) · γτ ∈ Uτ by TN -invariance of Uτ . Now for any
m ∈M we have

γ(t)(m) = χm(λu(t)) · γτ (m) = t⟨m,u⟩ · γτ (m).

But ⟨m,u⟩ > 0 if m ∈ σ∨ \ σ⊥ and ⟨m,u⟩ = 0 if m ∈ σ⊥. Thus, by taking the limit in the sense of
the classical topology, we have γ(0) = limt→0 γ(t) it exists and lies in O(σ) by Proposition 12.3, hence
γ(0) ∈ O(σ)∩O(τ) ̸= ∅. Furthermore we have O(τ) =

⋃
σ′≽τ O(σ′) coming from the classical topology.

Now, for the Zariski topology. Let τ ′ ∈ Σ, then we have

O(τ) ∩ Uτ ′ =
⋃

τ≼σ′≼τ ′

O(τ ′) = V(I) ⊆ Uτ ′

where I = ⟨χm | m ∈ τ⊥ ∩ (τ ′)∨ ∩M⟩ ⊆ C[Sτ ′ ]. Then O(τ) is also the closure of O(τ) in the sense of
the Zariski topology.

12.4 Closure of a TN -orbit

Let Σ be a fan with associated toric variety XΣ. For a given τ ∈ Σ, we denote V (τ) := O(τ) which is a toric
variety with torus TN(τ). Consider also the set

Star(τ) := {σ ∈ N(τ)R | τ ≼ σ ∈ Σ}

where σ corresponds to the image of σ via the quotient map N → N(τ).

Proposition 12.9. For any τ ∈ Σ, V (τ) ∼= XStar(τ).

Proof. Omitted.

Remark 12.10. If P is a full-dimensional lattice polytope, we have a toric variety XP
∼= XΣP

where
ΣP = {σQ | Q ≼ P}. Thus V (σQ) ∼= XQ

∼= XΣQ
(Q is full-dimensional in its fan).

Proposition 12.11. V (σQ) ∼= XQ.

Proof. Here is a sketch. Take a facet presentation of P as P is full-dimensional

P = {m ∈MR | ⟨m,uF ⟩ ≥ −aF , ∀F ≼ P facet}.

By doing a translation of the polytope, we may assume that the origin is in Q. If Q ≼ F ≼ P , we get that
aF = 0. Thus σ⊥

Q = Span(Q). And then, N(σQ) is the dual to Span(Q) ∩M .
Now, take V (σQ) = V (σQ,P ) as before, we have

Star(σQ,P ) = {σ ∈ N(σQ,P )R | σQ,P ≼ σ ∈ ΣP }
= {σQ′,P ∈ N(σQ,P )R | σQ,P ≼ σQ′,P ∈ ΣP }
= {σQ′,P ∈ N(σQ,P )R | Q′ ≼ Q}
= ΣQ.
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12.5 Exercises

Exercise 12.1. See the first example given in class or equivalently Example 3.2.1 of [CLS]:

(i) Compute the remaining limits of one parameter subgroups of P2

(ii) Compute the remaining (C∗)2−orbits in P2

(iii) Show that the limit point equals the distinguished point γσ of the corresponding cone in each case.

Exercise 12.2. Let σ ⊆ NR be a strongly convex rational polyhedral cone . This exercise will consider
limt→0 f(t) where f : C∗ → TN is an arbitrary function.

(i) Prove that limt→0 f(t) exists in Uσ if and only if limt→0 χ
m(f(t)) exists in C ∀m ∈ Sσ.

Hint: Consider a finite set of characters A such that Sσ = NA.

(ii) When limt→0 f(t) exists in Uσ, prove that the limit is given by the following semigroup homomorphism
Sσ → C,m 7→ limt→0 χ

m(f(t))

Exercise 12.3. This exercise is concerned with the proof of the theorem of Orbit-Cone correspondence.

(i) Let γ : Sσ → C be a semigroup homomorphism giving a point in Uσ using the bijection seen many
times. Prove that {m ∈ Sσ | γ(m) ̸= 0} = τ ∩M for some face τ ≼ σ∨.

(ii) Show that O(τ) is invariant under the action of TN .

(iii) Prove that O(τ) ∩ Uσ′ is the variety of the ideal
I = ⟨χm | m ∈ τ⊥ ∩ (σ′)∨ ∩M⟩ ⊆ Sσ′ .

Exercise 12.4. The objective of this exercise is to show that any normal separated toric variety can be
obtained from a fan.

(i) Use Theorem 3.1.7 from the book to show that any normal separated toric variety X has an open
cover consisting of affine toric varieties Ui = Uσi

for some collection of cones σi. Show that for all i, j,
Ui ∩ Uj is also affine. Hint: Use that X is separated.

(ii) Show that Ui ∩ Uj is the affine toric variety corresponding to the cone τ = σi ∩ σj .

(iii) If τ = σi ∩ σj show that τ is a face of both σi and σj . Hint: You may use Exercise 3.2.10 [CLS].

(iv) Deduce that X = XΣ where Σ is the fan consisting of all the σi and all their faces.
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Chapter 13. Singular (co)homology

Clotilde Freydt after the talk of Joel Hakavuori, Isak Sundelius

This section is based on the book Algebraic Topology by Allen Hatcher.

Let X be a topological space. A singular n-simplex in X is a continuous map σ from the standard n-simplex
∆n to X. The singular n-chain group ∆n(X) is the free abelian group generated by the singular n- simplices
in X. Its elements are called singular n-chains in X. The inclusion ∆n−1 ↪→ ∆n induces the following sequence
called chain complex:

...→ ∆n+1(X)
dn+1−−−→ ∆n(X)

dn−→ ∆n−1(X)→ ...

such that dn+1 ◦ dn = 0
And the n-th homology group is defined as

Hn(X;Z) := ker(dn)/Im(dn+1)

The dualization of the chain complex induces the sequence

...← ∆n+1(X)
dn+1

←−−− ∆n(X)
dn←− ∆n−1(X)← ...

the n-th cohomology group is defined as

Hn(X;Z) := ker(dn)/Im(dn−1)

We say that φ ∈ ∆n(X) has compact support if supp(φ) is compact in X.
We define the subcomplex

∆n
c (X) := {φ ∈ ∆n(X) : supp(φ)is compact in X}

And the associated cohomology group

Hn
c (X;Z) := ker(dnc )/Im(dn−1

c )

We recall the three following results:

• (Künneth formula) Let X,Y topological space, the following sequence

0→
⊕
p+q=n

Hp(X;Z)⊗Z H
q(Y ;Z)→ Hn(X × Y ;Z)→

⊕
p+q=n−1

Tor1Z(H
p(X;Z), Hq(Y ;Z))→ 0

is a short exact sequence.

• (Poincaré duality) Let R be a ring and M be a closed orientable n-manifold, the following holds:

Hn−k(M ;R) ∼= Hk(M ;R)

for all 0 ≤ k ≤ n.

• (Relative cohomology groups) Let A ⊆ X be a subspace. The n-th relative cohomology group is defined
as follows:

Hn(X,A) := Hn(X)/Hn(A)
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13.1 Spectral sequences

Definition 13.1. A (cohomology) spectral sequence is a collection of abelian groups Ep,q and
homomorphisms dp,qr with the following structure and properties:

(i) The groups are Ep,qr are indexed by integers p,q,r. Fixing r, we obtain one sheet of the spectral
sequence, which is visualized as a diagram of groups indexed by integer lattice point in the plane.

(ii) In the rth sheet, there are homomorphisms

dp,qr : Ep,qr → Ep+r,q−r+1
r

such that dp+r,q−r+1
r ◦ dp,qr = 0 for all p,q,r: In other words, the rth sheet splits up into a collection of

cochain complexes in which the differentials are all mappings of bidegree (r, 1− r) for the indexing by
p, q.

(iii) The (r+1)st sheet is the cohomology of (Ep,qr , dp,qr ) i.e.

Ep,qr = ker(dp,qr : Ep,qr → Ep+r,q−r+1
r )/im(dp−r,q+r−1

r : Ep−r,q+r−1
r → Ep,qr )

Remarks: - We will only work with first quadrant spectral sequences, for which Ep,qr = 0 when p < 0 or
q < 0. Thus, in each sheet, the nonvanishing terms lie in the quadrant where p, q ≥ 0.

- For a first quadrant spectral sequence, the differentials mapping to Ep,qr and from Ep,qr for fixed p, q vanish
when r is sufficiently large. It follows that for each p, q, there exists some r such that

Ep,qr = Ep,qr+1 = Ep,qr+2 = ...

This common value is defined to be Ep,q∞ .

Definition 13.2. A first quadrant spectral sequence (Ep,qr , dp,qr ) converges to a sequence of abelian groups
Hk, k ≥ 0 if there is a filtration

0 = F k+1Hk ⊆ F kHk ⊆ F k−1Hk ⊆ ... ⊆ F 1Hk ⊆ F 0Hk = Hk

of Hk by subgroups such that
Ep,q∞ ≃ F pHp+q/F p+1Hp+q

For an E1 or E2 spectral sequence we write this as

Ep,q1 ⇒ Hp,q or Ep,q2 ⇒ Hp,q

respectively.

Definition 13.3. We say that a spectral sequence degenerates at the Er sheet if the differential dp,qs = 0
for all p, q and all s ≥ r

Note that degeneration at Er implies that Ep,q∞ ≃ Ep,qr for all p, q so we have a strong form of convergence
in this case.

13.2 Singular Cohomology of Toric Varieties

In this section we focus on the singular cohomology groups of a toric variety XΣ. We will describe them
using, firstly, the singular cohomology of the toric varieties Uσ for a cone σ ∈ Σmax. Secondly, using the
singular cohomology of the torus orbits O(σ) for σ ∈ Σ. The spectral sequences will establish the connection
between these two approaches.

Proposition 13.4. Let σ ⊆ NR be a cone. Then

H•(Uσ;Z)
(i)
≃ H•(TN(σ);Z)

(ii)
≃ ∧•Zn
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Proof. First, note that O(σ) ≃ TN(σ) is a deformation retract of Uσ (see Proposition 12.1.9 in Toric Varieties
by Cox, Little and Schenck), so the first isomorphism (i) follows by excision.
We compute the cohomology group of the torus. The torus (C∗)n contains the real torus (S1)n as a
deformation retract via (t1, ..., tn) 7→ (t1/|t1|, ..., tn/|tn|). Hence

H•((C∗)n;Z) ≃ H•((S1)n;Z) ≃ ∧• Zn

and (ii) follows from the duality of N → N(σ) and M(σ) ⊆M

Example 13.5. Let σ = Cone(e1) then the dual σ∨ = Cone(e1,−e1, e2). Uσ = Spec(C[x, x−1, y]) ∼= C∗×C
that deformation retracts to C∗. We have that N(σ) = Z, so that

H•(Uσ;Z) ≃ H•(TN(σ);Z)

13.2.1 The spectral sequence of a filtered topological space

Let X be a topological space and consider the filtration

∅ := X−1 ⊆ X0 ⊆ X1... ⊆ Xn := X

Theorem 13.6. Let X as above and R a ring. Then there is a spectral sequence (Ep,qr , dp,qr ) with Ep,q1 =
Hp+q(Xp, Xp−1;R)⇒ Hp+q(X;R) where the filtration is given by

F pHp+q(X;R) = ker(Hp+q(X;R)→ Hp+q(Xp;R)),

the kernel of the map induced by the inclusion Xp ↪→ X.

Remark: Note that this theorem still holds for cohomology with compact support.

13.3 A family of complexes

The aim is now to compute the cohomology groups of a toric variety.
We consider a fan Σ and the associated toric variety XΣ. We begin by discussing a notion of orientation for
a pair of cones σ ≺ τ with dimτ = dimσ + 1. First for each cone σ we may pick an orientation of the linear
subspace (Nσ)R by choosing a basis. Now let ν ∈ τ be any vector not contained in σ. Then ν together with
a basis of (Nσ)R together with ν form a basis of (Nτ )R and defines an orientation.

Definition 13.7. The orientation coefficient related to the cones σ, τ as above is defined as follows:

cσ,τ =

 1 if the orientation of τ determined by σ agrees with the chosen one
−1 if not
0 if σ is not a face of τ

Fix an integer q, 0 ≤ q ≤ n and consider the abelian groups and maps:

C•(Σ,∧q) = {Cp(Σ,∧q), δp)|p ∈ Z}

defined as follows: first we take
Cp(Σ,∧q) =

⊕
τ∈Σ(n−p)

∧q M(τ)

where M(τ) = τ⊥ ∩M as usual. This is a free abelian group with

rankCp(Σ,∧q) =
(
p
q

)
|Σ(n− p)|

Then δp : Cp(Σ,∧q)→ Cp+1(Σ,∧q) is the map defined on the components corresponding to the cones (σ, τ)
in the two direct sums as

cσ,τ i
q
σ,τ
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where cσ,τ are the orientation coefficient and iqσ,τ : ∧qM(τ)→ ∧qM(σ) is induced by the inclusion τ⊥ ⊆ σ⊥:
In other words the component of δp in the summand for the cone σ in Cp+1(Σ,∧q) is given by∑

σ≺τ
cσ,τ i

q
σ,τ

Lemma 13.8. C•(Σ,∧q) is a cochain complex i.e. δp+1 ◦ δp = 0 for all p.

Proof. Exercise

Example 13.9. Consider the fan defining P2: Denote ρi =Cone(ui) where u0 = −e1 − e2 and ui = ei for
i = 1, 2.
The following diagram represents the complex C•(Σ,∧q) for q = 0, 1, 2:

q = 2 : 0 −→ 0 −→ 0 −→ Z −→ 0 −→ ...

q = 1 : 0 −→ 0 −→ Z3 C−→ Z2 −→ 0 −→ ...

q = 0 : 0 −→ Z3 A−→ Z3 B−→ Z −→ 0 −→ ...

Recall that
Uσ =

⋃
τ≺σ

O(σ), XΣ =
⋃
σ⊆Σ

Uσ

And the closure
O(τ) =

⋃
τ≺σ

O(σ)

We define a filtration of XΣ by Xp =
⋃

σ⊆Σ(n−p)
V (σ) =

⊔
τ⊆Σ(l),l≥n−p

O(τ).

When working with general Σ, where XΣ may not be compact we will consider cohomology with compact
support (cf first section): We have that Ep,q1 = Hp+q

c (Xp, Xp−1;Z)⇒ Hp+q
c (XΣ;Z).

Proposition 13.10. For p, q ≥ 0, we have

Ep,q1 ≃
⊕

τ∈Σ(n−p)

∧q M(τ) = Cp(Σ,∧q)

Moreover the differentials dp,q1 : Ep,q1 → Ep+1,q
1 agree with the coboundary maps in the complex C•(Σ,∧q) so

that
Ep,q2 = Hp(Σ,∧q)

Proof. By the excision property of cohomology with compact supports, we have

Ep,q1 ≃
⊕

τ∈Σ(n−p)

Hp+q(O(τ),Z))

Furthermore the homeomorphism O(τ) ∼= Rp>0 × SN(τ) and the Künneth formula imply that

Hp+q
c (O(τ),Z)) ≃

⊕
k+l=p+q

Hk
c (R

p
>0,Z)⊗Z H

l
c(SN(τ),Z)

By the Poincaré duality Hk
c (R

p
>0,Z) =

{
Z if k = p
0 otherwise

By Proposition 3.1, for each cone τ of dimension n− p,

Hp+q
c (O(τ),Z)) ≃ Hq(SN(τ),Z)) ≃ ∧qM(τ)

Hence Ep,q1 = Cp(Σ,∧q) as desired.
The second part of the proof is left as an exercise.
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Example 13.11. We compute the E2 sheet of the spectral sequence arising from the fan for P2. By a
direct computation the q = 0 row is E0,0

2 = Z, E1,0
2 = 0, E2,0

2 = 0. On the second row the kernel of C is
1−dimensional and the image of C is Z2. Hence E1,1

2 ≃ Z, and E2,1
2 = 0. Finally E2,2

2 = Z. Hence the E2

sheet of the spectral sequence is just:

0 0 E2,2 ≃ Z

0 E1,1 ≃ Z 0

E0,0 ≃ Z 0 0

13.4 Rational coefficients

To avoid torsion in cohomology, we look at coefficient in Q instead of Z.
By the same argument as in Proposition 3.8

Ep,q1 ≃
⊕

τ∈Σ(n−p)

∧q M(τ)Q (6)

Proposition 13.12. The spectral sequence Ep,q1 = Hp+q
c (Xp, Xp−1;Q)⇒ Hp+q

c (XΣ;Q) degenerates at E2

Proof. We show that dp,qr = 0 for all r ≥ 2 and all (p, q), so that Ep,q2 = Ep,q∞ . For any positive integer l the
multiplication map

φl : N → N

a 7→ l · a

is compatible with Σ so there is a corresponding toric morphism φl : XΣ → XΣ whose restriction to TN ⊆ XΣ

is the group homomorphism
φl|TN

(t1, ..., tn) 7→ (tl1, ..., t
l
n)

and similarly on each torus orbit. Because φl respects the orbit decomposition ofXΣ, it respects the filtration
of section 3.1 and induces homomorphisms

φ∗
l : E

p,q
r → Ep,qr

for each r. These commute with the differentials since the spectral sequence is functorial with respect to
maps that preseves the filtration. One can use that Ep,q1 ≃

⊕
τ∈Σ(n−p)

Hp+q
c (O(τ),Z)) to show that φ∗

l acts on

Ep,q1 by multiplication by lq: Then the same holds for all r since Ep,qr+1 is a quotient of subspaces of Ep,qr .
Let β ∈ Ep,qr , for r ≥ 2. Since dp,qr (β) ∈ Ep+r,q−r+1

r , we have

lq−r+1dp,qr (β)

= φ∗
l (d

p,q
r (β))

= dp,qr (φ∗
l (β))

= dp,qr (lqβ)

= lqdp,qr (β)

Since we use coefficients in Q, this implies that dp,qr (β) = 0 for all β.

One has the following result for complete simplicial toric varieties:
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Theorem 13.13. If XΣ is complete and simplicial, then E2
p,q = 0 when p ̸= q in the spectral sequence 13.12.

In particular,

(i) H2k+1(XΣ;Q) = 0 for all k.

(ii) H2k(XΣ;Q) ≃ E2
k,k for all k.

Proof. See Theorem 12.3.11 in Toric Varieties by Cox, Little and Schenck

There are interesting combinatorial consequences of this theorem on relations between the numbers of cones
of various dimensions in simplicial fans and the Betti numbers of the corresponding toric varieties.

Theorem 13.14. Let Σ be a complete simplicial fan in NR ≃ Rn. Then the Betti numbers of XΣ are given
by

b2k(XΣ) =

n∑
i=k

(−1)i−k
(
i
k

)
|Σ(n− i)|

and satisfy
b2k(XΣ) = b2n−2k(XΣ)

Proof. The Ep,q2 terms of the spectral sequence Ep,q1 = Hp+q
c (Xp, Xp−1;Q) ⇒ Hp+q

c (XΣ;Q) are the
cohomology of the Ep,q1 terms, and we also have Ep,q1 = 0 for p < q by.
Since Ep,q2 = 0 unless p = q by theorem 3.10, it follows that

0→ Ek,k2 → Ek,k1 → Ek+1,k
1 → ...

is an exact sequence. Hence

b2k(XΣ) = dimEk,k2 =

n∑
i=k

(−1)i−kdimEi,k1 =

n∑
i=k

(−1)i−k
(
i
k

)
|Σ(n− i)|

where the last equality holds by 6.
The second assertion follows from Poincaré duality.

13.5 Exercises

Exercise 13.1. Show that the family of complexes (C•(Σ,Λ), δ) constructed during the lectures forms a
chain complex, i.e., δp ◦ δp−1 = 0. See Lemma 12.3.3 [CLS] for hints.

Exercise 13.2.

(i) Construct the family of complexes (C•(Σ,Λ), δ) for the fan of P2 (generated by e1, e2 and −e1 − e2 in
Z2).

(ii) Use this to compute the cohomology of P2.

Exercise 13.3. Let Σ ⊆ N ∼= Zn be a fan. Consider the multiplication map φ̄ℓ : N → N , φ̄ℓ : a 7→ ℓ · a for
ℓ > 0. The map φ̄ℓ is compatible with the fan Σ, so there is a corresponding toric morphism φℓ : XΣ → XΣ

(Theorem 3.3.4). Show that φℓ restricted to the torus of XΣ acts by φℓ |TXΣ
: (t1, . . . , tn) 7→ (tℓ1, . . . , t

ℓ
n).

Deduce that for any τ ∈ Σ(n− p) the induced map φ∗
ℓ on Hq

c (O(τ),Q) is multiplication by ℓq.

Exercise 13.4.

(i) Suppose Ep,q1 ⇒ Hp+q is a first-quadrant spectral sequence with the property that Ep,q2 = 0 for p ̸= q.

Show that Ek,k2
∼= H2k.

(ii) Consider the spectral sequence (with Z-coefficients) Ep,q1 ⇒ Hp+q
c (XΣ,Z) associated to the orbit

filtration of XΣ. Define

χ(Er) :=
∑
p,q∈Z

(−1)p+qrank Ep,qr .

Show that χ(Er) = χ(Er+1) for r ≥ 1.
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(iii) The Euler characteristic χ of XΣ is given by

χ(XΣ) :=

2n∑
i=0

dimHk
c (XΣ,Z).

Show that χ(XΣ) = χ(E∞) and that χ(XΣ) = |Σ(n)|, where n is the rank of N ⊇ Σ. Here Σ is not
necessarily complete.

Note: this shows that even though we necessarily cannot find all the individual Betti numbers from the
combinatorics of Σ when Σ is not a complete simplicial fan, we can still compute the Euler characteristic
of XΣ from the structure of Σ.
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Chapter 14. The McMullen conjecture

Elsa Maneval after the talk of Zichen Gao and Matthew Dupraz

14.1 The statement of McMullen’s condition

We fix the following set of data :

� P is a convex polytope of dimension d

� fi = #{faces of P of dimension i}

� f⃗ = (f0, . . . , fd) is called the f-vector of P.

� We define

hi =

i∑
j=0

(
d− j
d− i

)
(−1)i−jfj−1

where f−1 = 1.

� h⃗ = (h0, . . . , hd) is called the h-vector of P.

Proposition 14.1 (Dehn-Sommerville equations). For any simplicial polytope P of dimension d,

∀ 0 ≤ i ≤ d, hi = hd−i

Remark 14.2. When i = 0, h0 = hd computes the Euler-Poincaré characteristic of the boundary of the
simplicial polytope :

χ(∂P) = 1− (−1)d

We now turn to the definition of M -vectors. For k, i natural numbers, there exists a unique decomposition
of the following type

k =

(
ni
i

)
+

(
ni−1

i− 1

)
+ · · ·+

(
nj
j

)
where 1 ≤ j ≤ nj < · · · < ni−1 < ni.
We can define

k⟨i⟩ :=

(
ni + 1

i+ 1

)
+

(
ni−1 + 1

i

)
+ · · ·+

(
nj + 1

j + 1

)
and 0⟨i⟩ := 0.

Definition 14.3 (M-vector). Let k⃗ = (k0, . . . , kd). k⃗ is an M-vector if k0 = 1 and for all 1 ≤ i < d,

ki+1 ≤ k⟨i⟩i

Theorem 14.4 (McMullen’s condition). The following are equivalent :

(i) There exists a simplicial polytope P with f -vector f⃗

(ii) (h0, h1 − h0, . . . , h⌊ d
2 ⌋
− h⌊ d

2 ⌋−1) is an M-vector and for all 0 ≤ i ≤ d, hi = hd−i.

McMullen stated the conjecture in 1971. The necessity was proved by Stanley in 1979 and the suffisance
was proved by Lee and Billera in 1981. The proof of suffisance was done by constructing a polytope. In this
lecture we focus on the proof of necessity which can be done using toric geometry.
Fix a simplicial polytope P. Dehn-Sommerville equations implies hi = hd−i. It suffices to prove that (h0, h1−
h0, . . . , h⌊ d

2 ⌋
− h⌊ d

2 ⌋−1) is a M-vector to prove the necessity of McMullen’s condition. We will sketch the

argument, which uses Macaulay criterion.
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14.2 Macaulay’s criterion for M-vectors

The fact that (h0, h1 − h0, . . . , h⌊ d
2 ⌋
− h⌊ d

2 ⌋−1) is a M-vector can be deduced from the existence of a certain

algebra. We do not prove this result here.

Theorem 14.5 (Macaulay, 1926). The following are equivalent :

(i) (k0, . . . , kd) is a M-vector

(ii) There exists a graded commutative algebra R = R0 ⊕ . . . Rd over the field K = R0 which is generated
by R1 and such that H(R,n) = dimKRn = kn.

Remark 14.6. H(R,n) is called the Hilbert function.

We fix a simplicial polytope P of dimension d, f -vector f⃗ and h-vector h⃗. Without lost of generality we
can embed P in Rd so that it is full dimensional. We can also assume that P is rational and 0 ∈ int(P).
Let α ⪯ P. σα := cone(α). Define the complete simplicial fan Σ := {σα : α ⪯ P}.

Recall from last lecture that the Betti numbers of XΣ verifies :

b2k+1(XΣ) = 0 (7)

b2k(XΣ) =

d∑
i=k

(
i

k

)
(−1)i−k|Σ(d− i)| (8)

b2d−2k(XΣ) = b2k(XΣ) (9)

Remark 14.7. The following fact indicate that H∗(XΣ;Q) could be useful to build an algebra R satisfying
Macaulay criterion :

b2k(XΣ) = hk

Indeed, dim(σα) = dim(α) + 1 so that |Σ(d − i)| = fd−i−1, and then it suffices to change by i → d − i and
k → d− k in equation (8).

14.3 Cup-product

We use the cup-product to give H∗(XΣ;Q) an algebra structure.

Definition 14.8 (cup-product). Let R be a ring, X a topological space. Let φ ∈ Ck(X;R), ψ ∈ Cl(X;R).
Let σ : ∆k+l → X,

(φ ⌣ ψ)(σ) = φ(σ|[v0,...vk]) · ψ(σ|[vk,...vk+l])

defines a (k + l)-cochain φ ⌣ ψ ∈ Ck+l(X;R).
We are implicitly using inclusions of faces ∆k ↪→ ∆k+l, ∆l ↪→ ∆k+l and the map of cochain complexes
induced by the diagonal morphism X → X ×X

Lemma 14.9. The cup-product has the following compatibility with the boundary map : δ(φ ⌣ ψ) = δφ ⌣
ψ + (−1)kφ ⌣ δψ.

Thus the cup-product induces a map on cohomology. We still call it cup-product.

Hk(X;R)×H l(X;R)
⌣−→ Hk+l(X;R)

For A,B ⊂ X it also induces a map in relative cohomology :

Hk(X,A;R)×H l(X,B;R)
⌣−→ Hk+l(X,A ∪B;R)

Proposition 14.10. Let X, Y be topological spaces, R a ring.
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(i) If f : X → Y continuous map, the induced map

f∗ : H∗(Y ;R)→ H∗(X;R)

is a ring morphism, i.e. f∗(φ ⌣ ψ) = f∗(φ)⌣ f∗(ψ).

(ii) If R is commutative, the cup-product is skew-commutative :

φ ⌣ ψ = (−1)k+lψ ⌣ φ

(iii) If R has a unit 1R, the 0-cochain

ϵ : C0(X) −→ R∑
i

aixi 7−→
∑
i

ai

is the identity for the cup-product operation.

Thus, if R is commutative, the cup-product makes H∗(X;R) a graded ring.

Example 14.11. The cohomology of a complex projective space is the following graded ring :

H∗(CPn;Q) ∼= Q[u]/un+1

H∗(CP∞;Q) ∼= Q[u]

where u ∈ H2(CPn;Q).

Remark 14.12. In the case of H∗(XΣ;Q), there is no odd-degree cohomology so the ring is commutative.

Define
Ai := H2i(XΣ;Q)

then
A := ⊕di=0Ai

is a graded commutative ring and H(A,n) = hn.

14.4 The Hard Lefschetz theorem

We use Hard Lefschetz theorem and the algebra A to define an algebra R satisfying Macaulay criterion for
(h0, h1−h0, . . . , h⌊ d

2 ⌋
−h⌊ d

2 ⌋−1). The Hard Lefschetz theorem in intersection cohomology is a difficult result

that goes beyond the scope of this course.

Theorem 14.13 (Hard Lefschetz). Let X be a normal projective variety of dimension d. There exists a
canonical Chern class ω ∈ H2(X;Q) inducing a map in intersection cohomology :

IHj(X;Q)
−⌣ω−−−→ IHj+2(X;Q)

such that for all 0 ≤ i ≤ d, its composition i times is an isomorphism

IHd−i(X;Q)
∼−→ IHd+i(X;Q)

In our case Σ is complete and simplicial so XΣ is a projective orbifold. It implies that singular cohomology
coincides with intersection cohomology :

Hi(XΣ;Q) ∼= IHi(X;Q)

Now, for 0 ≤ i ≤ ⌊d2⌋ we have an isomorphism ωd−2i : Ai
∼−→ Ad−i, so that ω : Ai → Ai+1 is injective.

We define I to be the ideal generated by ω and A⌊ d
2 ⌋+1. We finally define the graded algebra

R := A/I
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such that

Rk = Ak/ω(Ak−1) if k ≤ ⌊d
2
⌋

and Rk = {0} otherwise. Using h−1 = 0, for all 0 ≤ k ≤ ⌊d2⌋, we observe that

dimRk = hk − hk−1

Now it suffices to prove that R is generated by R1 to use Macaulay criterion and deduce that (h0, h1 −
h0, . . . , h⌊ d

2 ⌋
− h⌊ d

2 ⌋−1) is a M-vector. It is a corollary of the following.

Proposition 14.14. H∗(XΣ;Q) is generated by H2(XΣ;Q)

The rest of lecture will be dedicated to sketch the proof of this proposition.

14.5 A presentation of H∗(XΣ;Q)

Definition 14.15 (Prime divisors and linear equivalence). Let X be an algebraic variety. A prime divisor
is a codimension-1 subvariety. Weil divisors are formal sums of prime divisors. Let D, E be Weil divisors.
If there exists f ∈ C(X)∗ such that div(f) = D−E, we say that D and E are linearly equivalent and we
write D ∼ E.

Proposition 14.16 (Some principal divisors). Let XΣ be the toric variety of a fan Σ. For ρ ∈ Σ(1) a ray
denote the minimal generator uρ. Let m ∈M , χm ∈ C(XΣ)

∗ its associated character.

div(χm) =
∑

ρ∈Σ(1)

⟨m,uρ⟩νρ

where νρ is the closure of T -orbits of ρ, νρ = O(ρ). It is a prime divisor.

We want to build a surjective ring morphism

F : Q[x1, . . . , xr] −→ H∗(XΣ;Q)

such that the algebra generators xi are sent to H2(XΣ;Q).

Refined cohomology. We use refined cohomology to define F . Let X be a complete rational smooth
variety. Let W ⊂ X be an irreducible subvariety of dimension k. It has a refined cohomology class

[W ]r ∈ H2n−2k(X,X \W ;Q)

The image of [W ]r in H2n−2k(X;Q) is a cohomology class denoted [W ].

Proposition 14.17. Let D,E be Weil divisors. If D ∼ E then [D] = [E] ∈ H2(X;Q).

Let Σ be a complete simplicial fan. We write Σ(1) = {ρ1, . . . , ρr} and ui minimal generator of ρi. We can
define F :

F : Q[x1, . . . , xr] −→ H∗(XΣ;Q)

xi 7−→ [νρi ]

We denote Di := [νρi ] = [O(ρi)] the image of xi. We now want to show that F is surjective. We will first
explicit the kernel of F .
If ρi1 + · · ·+ ρis is not a cone in Σ then Di1 ∩ · · · ∩Dis = ∅ so

[Di1 ]r ∩ · · · ∩ [Dis ]r ∈ H∗(X,X \ ∩sj=1Dij ;Q) = H∗(X,X \X;Q)

which implies that
[Di1 ] ∩ · · · ∩ [Dis ] = 0 ∈ H∗(X;Q)
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It is now clear that the following ideals I and J are in the kernel of F .

I := ⟨xi1 . . . xis | i1, . . . , is distincts and ρi1 + · · ·+ ρis is not a cone in Σ⟩

J :=
〈 r∑
i=1

⟨m,ui⟩xi | m ∈M
〉

Indeed, note that the generators of J are sent to [div(χm)] = 0 by Proposition 14.16 and 14.17. We can now
consider :

F̄ : Q[x1, . . . , xr]
/
I + J −→ H∗(XΣ;Q)

Theorem 14.18. F̄ is an isomorphism.

This theorem implies Proposition 14.14. Its proof relies on the description of equivariant cohomology of
toric varieties. After introducing equivariant cohomology, we sketch the proof of Theorem 14.18 in the last
section.

14.6 Equivariant cohomology

Proposition 14.19. Let G be a Lie group.

� There exists a contractible space EG with a free right G-action.

If G acts on X, then G acts on EG×X by g · (e, x) = (e · g−1, g ·x). We define EG×GX = E×X
/
G

� The homotopy type of EG×G X does not depend of the choice of EG.

Definition 14.20. Let R be a ring. The G-equivariant cohomology group of X is the usual cohomology of
EG×G X. We denote it

H∗
G(X;R) := H∗(EG×G X;R)

Example 14.21. For X = {∗}, G Lie group. EG ×G {∗} ∼= EG/G is the classifying space of G denoted
BG. We denote its cohomology ring by

ΛG := H∗
G = H∗(BG;R)

Remark 14.22. There is always a map X −→ {∗}. It induces a map in cohomology

ΛG −→ H∗
G(X;R)

which makes H∗
G(X;R) a ΛG-module.

Example 14.23. For G = TN a torus, with M = Hom(N ;Z) the equivariant cohomology of the point is

ΛTN
∼= SymQ(M)

The equivariant cohomology of toric varieties is of interest because of the following facts. Let XΣ be a
complete simplicial toric variety and T = TN its torus.

H∗
T (XΣ;Q)

∼−→ ΛT ⊗Q H
∗(XΣ;Q)

is an isomorphism of ΛT -modules.
The inclusion map iXΣ

: XΣ −→ EG×G XΣ induces

i∗XΣ
: H∗

T (XΣ;Q)→ H∗(XΣ;Q)

� i∗XΣ
is surjective

� its kernel is ITH
∗
T (XΣ;Q) where IT := {positive degree elements in ΛT }
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Now (equivariant) intersection theory provides a map

[−]T : {T-invariant divisors} ⊂ Div(XΣ) −→ H2
T (XΣ;Q)

Proposition 14.24. Let m ∈M . Recall that m ∈ ΛT . Denote 1 ∈ H0
T (XΣ;Q) a generator. Then

(i) [div(χm)]T = −m · 1.

(ii) Moreover, the following diagram commutes :

{T-invariant divisors} H2
T (XΣ;Q)

H2(XΣ;Q)

[−]T

[−]
i∗XΣ

14.7 Proof of Theorem 14.18

Recall that we want to prove that

F̄ : Q[x1, . . . , xr]
/
I + J −→ H∗(XΣ;Q)

is an isomorphism. We can reduce it to the following theorem in equivariant cohomology.

Theorem 14.25. There is a ring isomorphism

G : Q[x1, . . . , xr]
/
I

∼−→ H∗
T (XΣ;Q)

given by xi 7−→ [Di]T ∈ H2
T (XΣ;Q).

Moreover
G(J) = ITH

∗
T (XΣ;Q)

We denote RQ(Σ) := Q[x1, . . . , xr]
/
I + J and SRQ(Σ) := Q[x1, . . . , xr]

/
I. The reduction to Theorem 14.25

of the Theorem 14.18 relies on the following commutative diagram. The vertical maps are surjective and
Theorem 14.25 implies that G restrict to an isomorphism on their kernels.

SRQ H∗
T (XΣ;Q)

RQ H∗(XΣ;Q)

G

i∗XΣ

F

Idea of the proof. The second part about G(J) comes from Proposition 14.24. Now for the first claim,
recall that SRQ = Q[x1, . . . , xr]/I where xi corresponds to a ray ρi in Σ. For σ ∈ Σ, we define Q[σ] :=
Q[xi1 , . . . , xil ] with xi1 , . . . , xil corresponding to the rays ρi1 , . . . , ρil in σ. The map G fits into the following
diagram :

SRQ
⊕

σ∈Σ(d)

Q[σ]
⊕

τ∈Σ(d−1)

Q[τ ]

H∗
T (XΣ;Q)

⊕
σ∈Σ(d)

H∗
T (Uσ;Q)

⊕
τ∈Σ(d−1)

H∗
T (Uτ ;Q)

α

G

β

A B

α′ β′

� α is defined as follows : ∀f ∈ SRQ, α(f) = (ασ1(f), . . . , ασk
(f)) where

ασ(xi1 . . . xil) =

{
0 if there is ij such that ρij /∈ σ(1)
xi1 . . . xil
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� β is defined as follows :

∀g = (g1, . . . , gk) ∈
⊕

σ∈Σ(d)

Q[σ], β(g) = (βτ1(g), . . . , βτk′ (g)) where

βτ (g) = gi|xi=0 − gj |xj=0

where i < j is such that σi = τ + ρi, σj = τ + ρj are the cones in Σ(d) containing τ (recall that Σ is
simplicial).

Lemma 14.26. The first row of the diagram is exact.

We must finally prove that

� A and B are isomorphisms

� α′ is injective

For the first claim,
H∗
T (Uσ;Q) ∼= H∗

T ({xσ};Q) ∼= ΛT

as Uσ deformation retracts to the torus fixed point xσ.

Injectivity of α follows from the localisation theorem.

Theorem 14.27 (Localisation). Let X be a toric variety with torus T . Then the inclusion i : XT ↪→ X
induces an isomorphism

I−1
T H∗

T (X;Q)
∼−−−−→

I−1
T i∗

I−1
T H∗

T (X
T ;Q)

We have the following diagram :

H∗
T (XΣ;Q)

⊕
σ∈Σ(d)

H∗
T (Uσ;Q)

⊕
σ∈Σ(d)

H∗
T ({xσ};Q)

H∗
T (X

T
Σ ;Q)

α′

φ

∼
∼

The Localisation theorem states that φ become an isomorphism after tensorisation with I−1
T . It means that

the kernel of φ is torsion. But H∗
T (XΣ;Q) is a free finitely generated ΛT -module so it does not have torsion.

Thus, φ is injective and so α′ has to be.
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Chapter 15. Solutions to exercises

15.1 Solutions to Chapter 1

Solutions written by Sergej Monavari

Solution 1.1. Define the map
Vf → V(I(V ), xn+1g − 1)

by sending (x1, . . . , xn) 7→ (x1, . . . , xn,
1

g(x1,...,xn)
). This is well-defined since g is a lift of f and therefore

does not vanish on the tuple of points (x1, . . . , xn) ∈ Vf and is easily seen to be a bijection. Therefore we
have that

C[Vf ] ∼=
C[x1, . . . , xn]

I(V )
[f−1] ∼= C[V ]f .

Solution 1.2. Let R be a UFD, and consider the inclusion R ↪→ K into its fraction field. Let x ∈ K be any
non-zero element, satisfying an equation

xn + an−1x
n−1 + · · ·+ a0 = 0,

with ai ∈ R. Since R is an UFD, we can write x = p
q , where p, q ∈ R are elements with no common divisors.

Then the above equation implies that

pn = −an−1p
n−1q − · · · − a0qn = q(−an−1p

n−1 − · · · − a0qn),

which implies that q|p and therefore p = 1 or q, and therefore x ∈ R.

Solution 1.3. Consider the maps
C[V ] ↪→ R ↪→ C(V ),

where R is the normalisation of C[V ]. Surely, it has to contain the y/x, since this element is integral over
C[V ]. We claim now that C[V ][y/x] is normal. This will imply that then it is already the normalisation,
therefore R ∼= C[V ][y/x]. To show this, consider the map

C[t]→ C[V ][y/x]

sending t 7→ y/x. This is easily seen to be an isomorphism (by showing it is both surjective and injective!).
Therefore, C[V ][y/x] ∼= C[t], but the latter is a UFD, and therefore normal, by exercise 2.

Solution 1.4.

(i) Let S−1R ↪→ K be the inclusion and take x = p
q ∈ K. Take an integral expression

xn + an−1x
n−1 + · · ·+ a0 = 0,

with ai ∈ S−1R. Take s ∈ S such that ai|s for all i. Then we have

(sx)n + san−1(sx)
n−1 + · · ·+ sna0 = 0,

which implies that sn−iai ∈ R and therefore sx ∈ R, since R is normal.

(ii) Let R =
⋂
iRi ↪→ K and take a ∈ K integral over R, i.e.

xn + an−1x
n−1 + · · ·+ a0 = 0,

with aj ∈ R. Then aj ∈ Ri for all i ∈ I, therefore x ∈ Ri for all i and x ∈ R.
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15.2 Solutions to Chapter 2

Solutions written by Clotilde Freydt

Solution 2.1. Let V be an affine algebraic variety. Let p ∈ V such that p is smooth. We know that the
minimal primes ideal of the local ring OV,p are in bijection with the irreducible components of V passing
through p. Furthermore by definition of p being smooth the local ring OV,p is regular, therefore a domain
by the indication.
Now as irreducible components are maximal irreducible closed subsets, they correspond to minimal prime
ideals. As a domain has a unique minimal prime, (0), if OV,p is a domain, p is on a unique irreducible
component of V .
Now suppose that V is a connected, smooth variety. By definition each p ∈ V is smooth. Therefore each
point of the variety belongs to a unique irreducible component and as the variety is connected, each point
belongs to the same irreducible component that thus equals V, showing its irreducibility.

Solution 2.2.

(i) First by definition

C[V ×W ] =
C[x1, ...xn, y1, ..., ym]

I(V ×W )

where I(V × W ) is the ideal corresponding to the product of the varieties V and W respectively
embedded in An and Am.
We have the following:

I(V ×W ) = I(V × Am ∩ An ×W ) = I(V × Am) + I(An ×W ) = I(V ) + I(W )

Therefore we rewrite,
C[x1, ...xn, y1, ..., ym]

I(V ×W )
=

C[x1, ...xn, y1, ..., ym]

I(V ) + I(W )

Now, on the other hand, using commutative algebra we have:

C[V ]⊗C C[W ]

=
C[x1, ...xn]
I(V )

⊗C
C[y1, ..., ym]

I(W )

∼=
C[x1, ...xn]⊗C [y1, ..., ym]

I(V ) + I(W )

∼=
C[x1, ...xn, y1, ..., ym]

I(V ) + I(W )

We can conclude C[V ×W ] ∼= C[V ]⊗C C[W ]

(ii) We start by writing

S̄ ×W =

 ⋂
S⊆B

B closed

B

×W =

 ⋂
S⊆B

B closed

V (IB)

×W
and

S ×W =
⋂

S×W⊆A
A closed

A =
⋂

S×W⊆A
A closed

V (IA)
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Where IB , IA denote the ideal corresponding to the closed sets B and A, by defintion of closed sets in
the Zariski topology. Now we have ⋂

S⊆B
B closed

V (IB)

×W =
⋂
S⊆B

B closed

(V (IB)×W ) =
⋂
S⊆B

B closed

(V (IB)× V ((0))

This writing makes clear that S̄ ×W ⊇ S ×W since V (IB)× V ((0) is closed in V ×W .

On the other hand we consider the closed set V (IA) and we claim that it has the same form as in the
the above expression, namely V (IA) = V (IB)× V ((0)) where B is a closed set containing S. This fact
will derive from the fact that IA = IB + (0) with B closed containing S.

We have
V (IA) = {(a, b) ∈ V ×W |f(a, b) = 0 ∀ f ∈ IA}

By (a), any polynomial f ∈ IA ⊆ C[V ×W ] = C[V ]⊗C C[W ] can be written as
∑
i∈I gi ⊗ hi for some

gi ∈ C[V ] and hi ∈ C[W ]. So that,

V (IA) = {(a, b) ∈ V ×W |f(a, b) =
∑
i∈I

gi(a)⊗ hi(b) = 0 ∀ f ∈ IA}

As A contains S ×W , in particular the condition∑
i∈I gi(a) ⊗ hi(b) = 0 for all (a, b) ∈ S ×W is verified. Now fix a ∈ S. One has C[W ] ∋ f(a,−) =∑
i∈I gi(a)⊗ hi(−) = 0 on the whole W and the only polynomial of C[W ] that satisfies it is trivial.

It implies that the generators of IA are all of the form gi ⊗ 1 where gi’s are generators of B.

Therefore, IA = IB + (0) so that V (IA) = V (IB) × V ((0)) the claimed form, showing the reverse
inclusion.

(iii) We will use that any variety is irreducible if and only if its coordinate ring is a domain. As V and W
are irreducible C[V ] and C[W ] are both domains. Now as C is algebraically closed the tensor product
C[V ]⊗CC[W ] is again a domain and therefore by (b), C[V ×W ] is a domain, thus V ×W is irreducible.

Solution 2.3.

(i) We will show that Φ(C2) = Ĉd = V (I)

The first inclusion Ĉd ⊆ V (I) is straightforward as x = (sd, sd−1t, ..., td) is a point of the vanishing
locus of xixj+1 − xjxi+1 for any s, t ∈ C2 and 0 ≤ i < j ≤ d− 1.

For the second inclusion V (I) ⊆ Ĉd, we first observe that the generators of I are exactly the maximal
minors by i-th and j-th columns of the matrix

A(x) :=

(
x0 x1 ... xd−1

x1 x2 ... xd

)
Therefore we have, x = (x0, ..., xd) ∈ V (I) if and only if all minors of A(x) vanish, if and only if
rank(A) ≤ 1.

So now if x ∈ V (I) there exists some p, q ∈ C (p, q) ̸= (0, 0) such that pA(x)1 − qA(x)2 = 0 (where
A(x)i denotes the i-th row of A(x)).
-When p = 0, A(x)1 = 0 and x is the image of (0, x1/d) ∈ C2 Note that here we take the complex
d-th root of x, as this is not uniquely defined we choose the principal root. -When p ̸= 0, we have
x = (x0, q/px0..., (q/p)

dx0).

By setting s = x0
1/d (by taking again the principal d-th root) and t = p

q s we obtain

x = (sd, sd−1t, ..., td). therefore V (I) ⊆ Ĉd.

(ii) We have Φ((C)2) = Ĉd. The space C2 is the product of irreducible sets and is therefore irreducible.
The set Ĉd is irreducible as the image of an irreducible set under the continuous map Φ.
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15.3 Solutions to Chapter 3

Solutions written by Matthew Dupraz

Solution 3.1. Let I, J denote the left and right ideal in the above equality. It is clear that I ⊆ J as its set
of generators of I is contained in the set of generators of J .
Let us show that I ⊇ J . Let xα−xβ be an element in the set of generators of J , i.e. α, β ∈ Ns are such that
α− β ∈ L. Let l = α− β. Then we have

l+ − l− = α− β.

Since l+ and l− have disjoint supports, α ≥ l+. Indeed, for any i s.t. (l+)i is non-zero, we have that (l−)i = 0
and so

(l+)i = αi − βi.

So consider
α− l+ = β − l− = γ ∈ Ns.

We get that
xα − xβ = (xl+ − xl−)xγ ∈ I.

This implies that I ⊇ J and so we get the desired equality.

Solution 3.2.

(i) We have that for g ∈ C[x1, . . . , xs], Φ∗(g) = g ◦ Φ ∈ C[V ], so we have that

ker(Φ∗) = {g ∈ C[x1, . . . , xs] : g ◦ Φ ≡ 0}
= {g ∈ C[x1, . . . , xs] : ∀y ∈ im(Φ), g(y) = 0}

But any polynomial g ∈ C[x1, . . . , xs] which is zero on im(Φ) is also zero on the Zariski closure
im(Φ) = Y . So in fact we have that

ker(Φ∗) = {g ∈ C[x1, . . . , xs] : ∀y ∈ Y : g(y) = 0} = I(Y )

(ii) In the proof of the proposition which tells us that semigroup algebras give rise to affine toric varieties,
we start with a finite generating subset A = {m1, . . . ,ms} ⊂ S of a semigroup S ⊂ M . We apply the
exercise to the variety V = TN , fi = χmi , so that imΦ = YA. So we get by part 1 that I(YA) = ker(Φ∗),
which yields

C[YA] = C[x1, . . . , xs]/I(YA) = C[x1, . . . , xs]/ ker(Φ∗) ∼= C[S],

and so shows that SpecC[S] = YA, i.e. an affine toric variety.

Solution 3.3. Denote J the lattice ideal of L. Clearly, I ⊆ J as the generators correspond to
(2, 0, 0), (1, 1, 0), (0, 1, 1), which are all in L. So we just have to show I ⊇ J .
First, notice that in R = C[x, y, z]/I,

x̄− ȳ = x̄− x̄2ȳ = x̄(1̄− x̄ȳ) = 0̄,

so x− y ∈ I. Similarly,
x̄− z̄ = x̄− x̄2z̄ = x̄(1̄− x̄z̄) = x̄(1̄− ȳz̄) = 0̄,

so x− z ∈ I.
Now let f = xaybzc − xdyezf a generator of J , i.e. (a− d, b− e, c− f) ∈ L. We have that in R,

f̄ = x̄aȳbz̄c − x̄dȳez̄f = x̄a+b+c − x̄d+e+f .

Since x̄2 = 1, the exponent in R may be seen modulo 2, and since by definition of L, we get that a+ b+ c ≡
d+ e+ f mod 2, we conclude that in fact f̄ = 0̄, i.e. f ∈ I.
Hence we conclude that I ⊇ J and so we get the desired equality.
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Solution 3.4. Identify M ∼= Zn via a basis e1, . . . , en. In fact φ is a Z-module isomorphism, so we may
represent it by an invertible matrix A = (aij) ∈ Zn×n (whose inverse has also coefficients in Z). Let
A = {m1, . . . ,ms}, so that B = {φ(m1), . . . , φ(ms)}. Consider

ΦA : Tn → (C∗)s

t 7→ (χm1(t), . . . , χms(t))

and also

ΦB : Tn → (C∗)s

t 7→ (χφ(m1)(t), . . . , χφ(ms)(t)).

We have that YA is just the closure in Cs of the image of ΦA and YB is imΦB. Notice that the image of a
map does not change if it’s precomposed with a surjective map, so let’s consider the map

ψ : Tn → Tn

t→ (tφ(e1), . . . tφ(en)) = (t
∑n

i=1 ai1ei , . . . , t
∑n

i=1 ainei)

This is actually a bijection of inverse

ψ−1 : Tn → Tn

t→ (tφ
−1(e1), . . . tφ

−1(en))

Indeed,

ψ ◦ ψ−1(t) = (ψ−1(t)φ(e1), . . . , ψ−1(t)φ(en))

=

(
n∏
i=1

tai1φ
−1(ei), . . . ,

n∏
i=1

tainφ
−1(ei)

)
=
(
t
∑n

i=1 φ
−1(ai1ei), . . . , t

∑n
i=1 φ

−1(ainei)
)

= (tφ
−1φ(e1), . . . , tφ

−1φ(en))

= t.

This shows surjectivity of ψ, but the other direction is symmetric.
If we precompose ΨA with ψ, we get:

ΦA ◦ ψ(t) = (χm1(ψ(t)), . . . , χms(ψ(t)))

=

(
n∏
i=1

χm1i(tφ(ei)), . . . ,

n∏
i=1

χmni(tφ(ei))

)

=

(
n∏
i=1

χm1iφ(ei)(t), . . . ,

n∏
i=1

χmniφ(ei)(t)

)
=
(
χ
∑n

i=1 φ(m1iei)(t), . . . , χ
∑n

i=1 φ(mniei)(t)
)

=
(
χφ(m1)(t), . . . , χφ(mn)(t)

)
= ΦB(t).

This shows that imΦB = imΦA and so in particular, this induces an isomorphism YA ∼= YB (as affine
varieties).
Since the tori associated to the affine toric varieties are just the tori imΦA and imΦB, which are equal as we
have just shown and their action is induced from the multiplication in (C∗)s, we deduce that these actions
coincide. We conclude that the isomorphism YA ∼= YB is actually an isomorphism of of toric varieties.
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15.4 Solutions to Chapter 4

Solutions written by Louis Gogniat

Solution 4.1. We denote respectively i), ii), iii), and iv) as the four equivalent properties in the exercise
(from top to bottom). We then prove that i) =⇒ iv) =⇒ ii) =⇒ iii) =⇒ i).

� i) =⇒ iv) : Suppose dimσ∨ < n. Then there exists a hyperplane H ⊆ MR containing σ∨, i.e., there
exists u ∈ NR \ 0 such that

σ∨ ⊆ Hu = {m ∈MR | ⟨m,u⟩ = 0}.
In fact, the condition ⟨m,u⟩ = 0 for every w ∈ σ∨ implies that u ∈ (σ∨)∨ = σ. Therefore, for any
w ∈ σ∨, we have

u ∈ σ ∩Hw = {v ∈ σ | ⟨w, v⟩ = 0}.
Given that u is non-zero, it leads us to the conclusion that {0} cannot be a face of σ.

� iv) =⇒ ii) : Let us assume there exists a non-zero element v ∈ σ ∩ −σ. Notice that if w ∈ σ∨, then
⟨w, v⟩ ≥ 0 (by definition of σ∨). Moreover, since −v ∈ σ, we also have ⟨w,−v⟩ ≥ 0. By bilinearity of
the inner product, we conclude that ⟨w, v⟩ = 0 for every w ∈ σ∨, or equivalently

σ∨ ⊆ Hv = {m ∈MR | ⟨m, v⟩ = 0}.

Given that v is non-zero, Hv is indeed a hyperplane, and we consequently deduce that dimσ∨ ≤ n− 1.

� ii) =⇒ iii) : Suppose that σ contains a positive-dimensional subspace of NR. Then, it is clear that
−σ also contains the same subspace, and thus σ ∩ −σ ̸= {0}.

� iii) =⇒ i) : For this implication, we show that σ ∩−σ is a face of σ, and as a result, if σ ∩−σ = {0},
we conclude that {0} is a face of σ. Recall that if τ is a face of a cone, then τ∗ = σ∨ ∩ τ⊥ is a face
of the dual σ∨ (see Proposition 1.2.10 in [CLS]). In particular, if we apply this proposition to the face
τ = σ∨ of the dual, we find that (σ∨)∨ ∩ (σ∨)⊥ is a face of (σ∨)∨. Since σ = (σ∨)∨, we then see that

(σ∨)∨ ∩ (σ∨)⊥ = {u ∈ σ | ⟨w, u⟩ = 0 ∀w ∈ σ∨}

is a face of σ. Let us show that this latter set is nothing other than σ∩−σ. On one hand, if u ∈ σ∩−σ,
then for all w ∈ σ∨ we have ⟨w,±u⟩ ≥ 0, and thus ⟨w, u⟩ = 0. Conversely, if u ∈ σ satisfies ⟨w, u⟩ = 0
for any w ∈ σ∨, then −u also satisfies this property. Thus, we have ±u ∈ (σ∨)∨ = σ, from which we
conclude that u ∈ σ ∩ −σ.
In conclusion, we indeed have (σ∨)∨ ∩ (σ∨)⊥ = σ ∩ −σ, demonstrating that σ ∩ −σ is a face of σ.

Solution 4.2.

(i) First, let us note that σ∨ is strongly convex since it satisfies property iv) of the first exercise. Indeed,
the fact that σ has maximal dimension implies that dimσ = dim(σ∨)∨ = n. This, in particular, means
that {0} is a face of σ∨, so that we can find some u ∈ σ \ 0 with σ∨ ∩Hu = 0. Since σ is a rational
cone, σ∨ is also rational. Therefore, we may assume that u ∈ σ ∩ N \ 0. We then have ⟨m,u⟩ ∈ N,
with ⟨m,u⟩ = 0 if and only if m = 0 (since σ∨ ∩Hu = 0).

We now prove that H generates Sσ. Consider m ∈ Sσ. If m is irreducible, then m ∈ H. So we may
assume that m is not irreducible, which means that there exist m′,m′′ ∈ Sσ \0 such that m = m′+m′′.
We then observe that

⟨m,u⟩ = ⟨m′, u⟩+ ⟨m′′, u⟩.
Since m′,m′′ are not zero, we have ⟨m′, u⟩ and ⟨m′′, u⟩ > 0, hence

⟨m′, u⟩ < ⟨m,u⟩ and ⟨m′′, u⟩ < ⟨m′, u⟩.

By induction on ⟨m,u⟩, we conclude that every element m ∈ Sσ is a finite sum of elements from H,
meaning that H is a generating set for Sσ.

Additionally, according to Gordan’s lemma (Proposition 1.2.17 in [CLS]), Sσ is finitely generated.
Consequently, Sσ contains a finite number of irreducible elements, from which we conclude that H is
finite.
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(ii) We first establish the following lemma (see Lemma 1.2.7 in [CLS]).

Lemma 4.1. Let τ be a face of a polyhedral cone σ. If v, w ∈ σ and v + w ∈ τ , then v, w ∈ τ .

Proof. Since τ is a face of σ, there exists an element m ∈ σ∨ such that τ = σ∩Hm. Now, observe that
if u+ v ∈ τ , then

⟨m,u+ v⟩ = ⟨m,u⟩+ ⟨m, v⟩ = 0.

Furthermore, as m ∈ σ∨, we have ⟨m,u⟩ ≥ 0 and ⟨m, v⟩ ≥ 0. Consequently, we obtain that

⟨m,u⟩ = ⟨m, v⟩ = 0,

meaning that both u and v are in τ .

Now let ρ be an edge of σ∨ and denote by mρ the ray generator of σ∨ ∩M . Let us assume for the
sake of contradiction that mρ is not irreducible, meaning that there exist m′ and m′′ in Sσ \ 0 such
that mρ = m′ +m′′. Using the above lemma, we then deduce that both m′ and m′′ are in ρ. Since mρ

generates σ∨ ∩M , there exist k′ and k′′ in N \ 0 such that m′ = k′mρ and m′′ = k′′mρ. Therefore we
obtain

mρ = m′ +m′′ = k′mρ + k′′mρ = (k′ + k′′)mρ.

This implies that k′ + k′′ = 1, which contradicts our initial choice of k′ and k′′ as positive integers.
Thus, we conclude that mρ is irreducible, i.e. mρ ∈ H.

(iii) Let G be a generating set of Sσ. By contradiction, suppose that there exists h ∈ H \ G. Since G
generates Sσ, there exist g1, . . . , gk ∈ G and n1, . . . , nk ∈ N \ 0 such that h =

∑
nigi. However, this

contradicts the irredicibility of h. Therefore, H ⊆ G, and consequently, H is the minimal generating
set of Sσ with respect to the inclusion.

Solution 4.3.

(i) First, note that if σ = Cone(s1, . . . , sk), then w ∈ σ∨ if and only if ⟨w, si⟩ ≥ 0 for all i = 1, . . . , k.
In fact, as any u ∈ σ can be expressed as a conical combination of the si, i.e. u =

∑
λisi for some

λi ∈ R≥0, we have

⟨w, u⟩ = ⟨w,
∑

λisi⟩ =
∑

λi⟨w, si⟩ ≥ 0,

as long as ⟨w, si⟩ ≥ 0 for all i.

For σ = Cone(3e1 − 2e2, e1), we obtain that w = xe1 + ye2 ∈ σ∨ if and only if

x ≥ 0 and 3x− 2y ≥ 0.

We illustrate the cone σ and its dual in Figure 18a.

According to Figure 18a, it is easily seen that

m1 = 2e1 + 3e2, m2 = e1 + e2, and m3 = −e2
are the only irreducible elements in Sσ = σ∨ ∩ Z2. Hence, Exercise 2 implies that H = {m1,m2,m3}
is the minimal generating set of Sσ.

(ii) Since Uσ = Spec(C[Sσ]), and because Sσ = NH, we find that Uσ is precisely the affine toric variety
YH. Thus, the toric ideal associated with Uσ is obtained by considering the kernel L of the morphism
Φ̂H : Z3 → Z2 given by the matrix (

2 1 0
3 1 −1

)
.

This kernel is precisely L = ker Φ̂H = ⟨(1,−2, 1)⟩Z. Therefore, the toric ideal of Uσ is

I(YH) = ⟨xl+ − xl− | l ∈ L⟩ = ⟨xkzk − y2k | k ∈ N⟩ = ⟨xz − y2⟩,

where the last equality come from the fact that

(xz)k − y2k = (xz − y2)(
k−1∑
i=0

y2i(xz)k−1−i) for any k ∈ N \ 0.
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Solution 4.4.

(i) Using the same argument as in exercise 3 part (a), we have that w = xe1 + ye2 + ze3 ∈ σ∨ =
Cone(e1, e2, e1 + e2 + 2e3)

∨ if and only if

x ≥ 0, y ≥ 0, and x+ y + 2z ≥ 0.

We graphically represent the dual σ∨ in Figure 18b. To find generators of Sσ, we first decompose

Sσ = S−
σ ∪ S+

σ ,

where S±
σ := {(x, y, z) ∈ Sσ | ± z ≥ 0}. Note that, since R3

≥0 ⊂ σ∨, the three elements

m1 = e1, m2 = e2, and m3 = e3

belong to Sσ and clearly generate the subset S+
σ . Let us turn our attention to S−

σ . We claim that the
set

H− = {m1, m2, m4 = 2e1 − e3, m5 = 2e2 − e3, m6 = e1 + e2 − e3}

generates S−
σ . For z ∈ Z≤0, we denote Az the set defined by the intersection of the line with equation

x+ y + 2z = 0 and S−
σ (see Figure 19), explicitly, we have

Az = {(m,−2z −m, z) | m = 0, . . . ,−2z} for any z ∈ Z≤0.

With these notations, it is not difficult to see that if H− generates Az for all z ∈ Z≤0, then H−

generates S−
σ . By induction on z ∈ Z≤0, let us verify that this is indeed the case.

If z = 0, then Az = {(0, 0, 0)}, and the claim is satisfied. Similarly, if z = −1, then Az = {m4,m5,m6},
and the claim holds true as well. Now, assume the result is true for some z ≤ −1, and let us show that
it is also true for z − 1. Note that for m = 0, . . . ,−2z, we have

(m,−2(z − 1)−m, z − 1) = (m,−2z −m, z) +m5,

for m = −2z + 1,

(m,−2(z − 1)−m, z − 1) = (−2z + 1, 1, z − 1) = (−2z, 0, z) +m6,

and for m = −2z + 2,

(m,−2(z − 1)−m, z − 1) = (−2z + 2, 0, z − 1) = (−2z, 0, z) +m4.

Hence, we see that each element within Az−1 can be expressed as the sum of an element from Az along
with one element from H−. With this established, we obtain by applying the induction hypothesis,
that H− generates Az−1.

Since on one hand, {m1,m2,m3} generates S+
σ , and on the other hand, H− generates S−

σ , we then
deduce that

H = {m1,m2,m3,m4,m5,m6}

is a generating set for Sσ (in fact, it is a minimal generating set, as all the mi are irreducible).

(ii) We propose here a different method than the one presented in exercise 3 part (b) to compute the toric
ideal associated with Uσ. According to section 1.1 of [CLS], the affine toric variety Uσ is the Zariski
closure of the image of the map Φ : (C∗)3 → C6 defined by

Φ(r, s, t) = (r, s, t, r2t−1, s2t−1, rst−1).

We claim that imΦ = V(I) where I is the ideal

I = ⟨zu− x2, zv − y2, zw − xy⟩ ⊆ C[x, y, z, u, v, w].
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Figure 18

(a) The blue surface represents the cone σ, the green
surface its dual σ∨. The vectors m1,m2,m3 are the
irreducible elements that generate Sσ.

(b) The three green, blue, and red faces represent the
three faces of the dual convex cone σ∨.

In what follows, we will assume without providing a proof that I is indeed a prime ideal. So in
particular, V(I) is irreducible. First, it is easily verified that imΦ ⊂ V(I). Conversely, suppose that
x = (x, y, z, u, v, w) ∈ V(I). We then have that

zu = x2, (10)

zv = y2, (11)

zw = xy. (12)

If z ̸= 0, let us set r := x, s := y, and t := z. In this case, we observe that by (1), we have u = r2t−1,
by (2), v = s2t−1, and by (3), w = rst−1. Therefore, we conclude that if x, y, z ̸= 0, then x ∈ imΦ, and
thus we have V(I)∩ (C∗)3 = imΦ. Note that since U := V(I)∩ (C∗)3 is an open (non-empty) subset of
V(I) and V(I) is irreducible, then U is also irreducible and dense in V(I). Taking the Zariski closure,
one obtains

Uσ = imΦ = U = V(I),

so that I is the toric ideal of Uσ.
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Figure 19

(a) Projection of σ∨ onto the plane
with equation z = −1. The dark
blue points represent the set A−1 =
{m4,m5,m6}.

(b) Projection of σ∨ onto the plane
with equation z = −2. The 5 five
dark blue points represent the set
A−2.

(c) Projection of σ∨ onto the plane
with equation z = −3. The seven
dark blue points represent the set
A−3.

15.5 Solutions to Chapter 5

Solutions written by Isak Gustaf Salomon Sundelius

Solution 5.1.

(a) The C-algebra homomorphism induced by γ is given by

C[S]→ C

f(x1, . . . , xs) 7→ f(γ(m1), . . . , γ(ms))

where the elements xi correspond to the characters χmi and the multiplication is given by the semigroup
structure of S. With this it is clear that the kernel of this map must be f ∈ C[S] such that

f(γ(m1), . . . , γ(ms)) = 0

and since we in the exercise description get that p := (γ(m1), . . . , γ(ms)), this condition on f means
that f(p) = 0, so we are done.

(b) We want to show that the affine semigroup homomorphism m 7→ χm(t)γ(m) has induced semigroup
algebra homomorphism C[S]→ C has kernel the maximal ideal corresponding to the point

(χm1(t), . . . , χms(t)) · (γ(m1), . . . , γ(ms)).

The corresponding homomorphism of semigroup algebras is given in the obvious way, so the kernel will
be precisely

{f ∈ C[S] : f(χm1(t)γ(m1), . . . , χ
ms(t)γ(ms)) = 0}.

It is clear that we have

(χm1(t)γ(m1), . . . , χ
ms(t)γ(ms)) = (χm1(t), . . . , χms(t)) · (γ(m1), . . . , γ(ms))

The action by t ∈ TN on p ∈ YA is given by multiplication, and the affine semigroup homomorphism
corresponding to a given point in YA, for instance t ∈ TN ⊆ YA, is given by

m 7→ χm(t).

Then the semigroup homomorphism corresponding to the point t · p is exactly

m 7→ χm(t · p) = χm(t) · χm(p) = χm(t) · γ(m).

by definition of p, and so we are done.
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Solution 5.2. We use the proposition preceding this corollary, from Chapter 5. Part (a) of this proposition
states that the torus action on an affine toric variety V = Spec(C[S]) has a fixed point if and only if S is
pointed.
By definition, Sσ is pointed if and only if Sσ ∩ (−Sσ) = {0}. By definition of Sσ this amounts to

{0} = (σ∨ ∩M) ∩ (−(σ∨ ∩M)) = σ∨ ∩ (−σ∨) ∩M,

since M = −M . We proceed by proving the following lemma:

Lemma. Under the assumptions of the exercise description,

σ∨ ∩ (−σ∨) ∩M = {0} ⇐⇒ σ∨ ∩ (−σ∨) = {0}.

Proof. The implication “⇐= ” is trivial.
For the other direction, consider the generators of Sσ, given by a subset {e1, . . . , eℓ} ⊆ M . In particular,
the Z-linear combinations of these elements constitute Sσ, while the R-linear combinations of these elements
constitute σ∨. An element of σ∨ is given by

m′ =

ℓ∑
i=1

αiei, αi ∈ R.

By definition of the dual, m′ ∈ σ∨ ∩ (−σ∨) if and only if

⟨m′, u⟩ = 0 ∀u ∈ σ.

By choosing a set of generators f1, . . . , fs ∈ N of σ, this may be rephrased as

⟨m′, fj⟩ ∀j

and so
ℓ∑
i=1

⟨ei, fj⟩ ∀j.

Since every ⟨ei, fj⟩ ∈ Z we obtain a matrix {⟨ei, fj⟩}i,j , which has full rank since the ei and fj are linearly
independent by assumption. This gives us that the product of this matrix by the vector {αi}i equals zero,
which in turn implies that all αi are integers, up to some common multiple of some nonzero scalar r ∈ R.
With this we get that

ℓ∑
i=1

αi
r
ei ∈M.

This, together with the fact that

⟨m′, u⟩ = 0 =⇒
〈
m′

r
, u

〉
=

1

r
⟨m′, u⟩ = 0,

gives us that m′

r ∈ Sσ ∩ (−Sσ) which implies that m′/r = 0, so m′ = 0 and with this we are done.

We have from Chapter 4, in particular by using it for the dual σ∨ in place of σ and vice versa (since
(σ∨)∨ = σ), that

σ∨ ∩ (−σ∨) = {0} ⇐⇒ dimσ = dimMR = dimNR

so with this we have proven the first statement of the exercise description.
Furthermore, part (a) of the proposition referenced above states that in this case, where Sσ is pointed, the
unique fixed point of Uσ under the action of its torus is given by the affine semigroup homomorphism

γ : Sσ → C
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m 7→

{
1, m = 0

0, m ̸= 0
.

We then want to calculate the kernel of the corresponding semigroup algebra homomorphism. To do this we
use exercise 1:

C[S]→ C

x 7→

{
1, if x equals χ0

0, otherwise

With this description of the induced semigroup algebra homomorphism it becomes clear that the kernel is
given by

⟨χm | m ∈ Sσ and m ̸= 0⟩ = ⟨χm | m ∈ Sσ \ {0}⟩,

so we are done.

Solution 5.3. The Hilbert basis is defined as

H = {m ∈ Sσ : m irreducible}.

where m is irreducible if there exist no m1,m2 ∈ Sσ \ {0} such that m1 +m2 = m.
We begin by calculating the dual σ∨:[

d
−1

]
·
[
x
y

]
= 0 ⇐⇒ dx− y = 0 ⇐⇒ dx = y,

[
0
1

]
·
[
x
y

]
= 0 ⇐⇒ y = 0

so

σ∨ = SpanR≥0

{[
1
d

]
,

[
1
0

]}
= SpanR≥0

{[
1
0

]
,

[
1
1

]
,

[
1
2

]
, . . . ,

[
1
d

]}
.

With this we get that when intersecting with M we get

Sσ = SpanZ≥0

{[
1
0

]
,

[
1
1

]
,

[
1
2

]
, . . . ,

[
1
d

]}
.

so it is clear that the smallest choice of irreducible elements spanning M are given by

H =

{[
1
0

]
,

[
1
1

]
,

[
1
2

]
, . . . ,

[
1
d

]}
.

For the next part, we have stated in Chapter 5 that dimTpσUσ ≤ ℓ if Uσ → Cℓ is any embedding, where
pσ is the unique fixed point of the torus action on Uσ. A more general version of this statement is given in
Lemma 1.0.6 of .
The last lemma of lecture states that dimTpσUσ = |H |. Since we already know that we can embed Ĉd into

Cd+1, we then get that the minimal dimension ℓ of affine space in which we can embed Ĉd is |H | = d+ 1.

Solution 5.4. An affine semigroup S ⊆M is saturated by definition if for any k ∈ N \ {0} and any m ∈M ,
km ∈ S implies m ∈ S.
For S = NA, and by the semigroup structure of any affine semigroup S, we see that S is saturated if and
only if for every point m ∈ NA, the R≥0-span of m inside MR intersected with M occurs in NA. Since M is
a lattice and by definition of the cone Cone(A), we see that this is equivalent to

NA = Cone(A) ∩M,

since Cone(A) collects R≥0-linear combinations of the elements of A andM only contains points with integer
coordinates (and additionally, since NA ⊆M).
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15.6 Solutions to Chapter 6

Solutions written by Juan Felipe Celis Rojas

Solution 6.1. Let V1, V2 be two affine toric varieties. Recall that we proved that an affine variety morphism
is toric iff the corresponding C-algebra homomorphism is induced by a semi-group homomorphism iff the
morphism can be restricted to the tori inside the varieties and this restriction is a group homomorphism.
First assume that the morphism φ : TN1

→ TN2
extends to a toric morphism φ : Uσ1

→ Uσ2
. We have the

following diagram.

TN1 TN2

Uσ1
Uσ2

φ

Now since Spec(−) is a contravariant functor the diagram above is equivalent to the diagram

C[M1] C[M2]

C[Sσ1
] C[Sσ2

]

where the map in the bottom C[Sσ2 ] → C[Sσ1 ] is induced by an affine semi-group homomorphism, because
Uσ1
→ Uσ2

is a toric morphism.
Then all the morphisms in this diagram are entirely determined by semi-group homomorphisms. Observe
that this is true only if Uσ1

→ Uσ2
is toric. So this diagram is equivalent to

M1 M2

Sσ1
Sσ2

Observe that applying functor −⊗Z R gives us an equivalence of diagrams because Sσ1
and Sσ2

are always
saturated. Recall σ1 and σ2 are strongly convex rational polyhedral cones, and we have seen that this is
equivalent to Uσ1 , Uσ2 being normal, and equivalently Sσ1 , Sσ2 being saturated.

(M1)R (M2)R

σ∨
1 σ∨

2

Then we can dualize to get another equivalent diagram

(N1)R (N2)R

σ1 σ2

φR

yielding φR(σ1) ⊆ σ2.
First we denote the map

Φ : Cn+1 → Cm+1 : a 7→ (f0(a), . . . , fm(a))

we want to show that it induces a map from V to Pm. Let [a] = [a0 : · · · : an] ∈ V . Since

V ∩ Vp(f0, . . . , fm) = ∅

it follows that for any representative a ∈ Cn+1 of [a] ∈ V we get

Φ(a) ̸= 0
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because
Φ(a) = 0 ⇐⇒ a ∈ Vp(f0, . . . , fm).

Therefore Φ(a) defines an element [Φ(a)] ∈ Pm.
As the polynomials f0, . . . , fm are homogeneous the choice of representative a ∈ Cn+1 of [a] ∈ V does not
change the class of Φ(a) in Pm. Whence the map

Φ : V → Pm : [a] 7→ [f0(a) : · · · : fm(a)]

is well defined.

Solution 6.2.

(i) To show that the Segre embedding is indeed an embedding we must show that it is injective, continuous
and closed. Observe that it is continuous because it is defined by polynomials. Moreover, exercise 4
implies that the Segre embedding is closed. It remains to show that it is injective.

Let ([a], [b]), ([a′], [b′]) ∈ Pn × Pm be such that

σn,m([a], [b]) = σn,m([a′], [b′])

then there is λ ∈ C∗ such that

λaibj = a′ib
′
j ∀ 0 ≤ i ≤ n, 0 ≤ j ≤ m.

Observe that there must exist 0 ≤ k ≤ n, 0 ≤ l ≤ m such that a′k ̸= 0 and b′l ̸= 0. Then we get

a′i =
λbl
b′l
ai ∀ 0 ≤ i ≤ n

b′j =
λak
a′k

bj ∀ 0 ≤ j ≤ m.

Therefore [a] = [a′] and [b] = [b′]. In other words σn,m is injective.

(ii) Now let I be the ideal generated by

{zijzkl − zilzkj | 0 ≤ i ≤ n, 0 ≤ j ≤ m} .

We denote

Ui = Pn\Vp(xi) ⊂ Pn

Vj = Pm\Vp(yj) ⊂ Pm

Wij = Pnm+n+m\Vp(zij) ⊂ Pnm+n+m

for all 0 ≤ i ≤ n, 0 ≤ j ≤ m. Notice that {Ui}, {Vj}, {Wij} form open covers for Pn,Pm and Pnm+n+m

respectively. We claim that
σn,m(Ui × Vj) = Vp(I) ∩Wij .

Let ([a], [b]) ∈ Ui × Vj , then
σn,m([a], [b])ij=aibj ̸=0

and
(zrszkl − zrlzks)([a], [b]) = arbsakbl − arblakbs = 0.

It follows that
σn,m(Ui × Vj) ⊆ Vp(I) ∩Wij .

Now let [z] ∈ Vp(I) ∩Wij . Then define

ak = zkj ∀ 0 ≤ k ≤ n

bl =
zil
zij

∀ 0 ≤ l ≤ m.
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Observe that this is well defined because zij ̸= 0. Moreover [a] ∈ Ui and [b] ∈ Vj . It remains to see
that it is a pre-image of [z] under the Segre embedding. Indeed

σn,m([a], [b])kl = akbl = zkj
zil
zij

= zkl

because [z] ∈ Vp(I) implies
zijzkl − zilzkj = 0.

Hence we have proven that σn,m(Ui × Vj) = Vp(I) ∩Wij . Now it is enough to see the following:

σn,m(Pn × Pm) = σn,m

⋃
i,j

Ui × Vj


=
⋃
i,j

σn,m(Ui × Vj)

=
⋃
i,j

Vp(I) ∩Wij

= Vp(I) ∩
⋃
i,j

Wij

= Vp(I) ∩ Pnm+n+m

= Vp(I).

Solution 6.3. Let V ⊆ Pn × Pm defined by fl(x, y) = 0 where fl is bihomogeneous of bidegree (al, bl) for
l = 0, ..., s. The goal of this exercise is to show that V can be viewed as a projective variety of Pnm+n+m via
the Segre embedding.

(i) For each l, consider dl ≥ max{al, bl} and α = (α0, . . . , αn) ∈ Nn, β = (β0, . . . , βn) ∈ Nm be such that

n∑
i=0

αi = dl − al

m∑
j=0

βj = dl − bl.

Define the bihomogeneous polynomial

gl,α,β(x, y) = xαyβfl(x, y).

Note that this polynomial is bihomogeneaous of degree (dl, dl). We will show that

V = Vp (gl,α,β | l ∈ {0, . . . , s}, α, β) =: V ′.

It is clear that V is included in the vanishing locus of the gl,α,β ’s by definition of these polynomials.
It remains to show the other inclusion. Let (p, q) ∈ V ′. Since p ∈ Pn and q ∈ Pm there exist
0 ≤ i ≤ n, 0 ≤ j ≤ m such that pi ̸= 0 and qj ̸= 0. Moreover

gl,α,β(p.q) = 0

for all choices of l, α, β. In particular it is true for α and β with αi = dl − al and βj = dl − bl. Thus
we have

pdl−ali qdl−blj fl(p, q) = 0

which implies that
fl(p, q) = 0

for all l ∈ {0, . . . , s}. Whence
V = V ′.
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(ii) We want to show that σn,m(V ) is a projective sub-variety of Pnm+n+m.

Let us use part (a). Observe that the polynomials gl,α,β are bihomogeneous of bidegree (dl, dl). So we
can view them as follows:

gl,α,β ∈ (C[z0, . . . , znm+n+m])2dl .

Then we have
σn,m(V ) = Vp(gl,α,β | l ∈ {0, . . . , s}, α, β).

It follows that σn,m(V ) is indeed a closed sub-variety of Pnm+n+m. In particular the Segre embedding
is a closed map.

15.7 Solutions to Chapter 7

Solutions written by Zichen Gao

Solution 7.1.

(a) First of all, in any abelian category A , and an object M in A , the functor Hom(·,M) is a left exact
functor. In other words, if

N1 → N2 → N3 → 0

is exact, then
0→ Hom(N3,M)→ Hom(N2,M)→ Hom(N1,M)

is exact. The category of abelian affine group schemes over C is abelian, so here we can apply the
above result to the exact sequence T → T ′ → T ′′ → 0, and M = C∗. Now we only need to prove
that for an injective morphism α : (C∗)n → (C∗)m, it induces a surjection α∗ : Hom((C∗)m,C∗) →
Hom((C∗)n,C∗).

Recall that (C∗)n ≃ Spec(C[Zn]) and (C∗)m ≃ Spec(C[Zm]). So the morphism α : (C∗)n → (C∗)m

induces a map α∨ : C[Zm] → C[Zn]. And since α is toric, α∨ restricts to a morphism of lattices
Zm → Zn, which corresponds to the homomorphism α∗ : Hom((C∗)m,C∗) → Hom((C∗)n,C∗). So we
only need to show the surjectivity of C[Zm]→ C[Zn]. In fact, since α is a morphism of tori, its image
is a close subgroup of the targeting torus, and α induces an isomorphism onto its image. In particular,
topologically, α is a homeomorphism onto a closed subset of the targeting space. Combining with the
fact that all the involved schemes are affine schemes, we know that α is a closed immersion of affine
schemes. Hence C[Zm]→ C[Zn] is surjective.

(b) For the first part, tensoring with Q is the same as localizing at Z \ {0}, and localization is an exact
functor. For the second part, taking dual is an exact functor in the category of Q-vector spaces.

Solution 7.2.

(a) Z′A is a subgroup of the lattice M , hence is still a lattice.

(b) The smallest affine subspace containing A is the affine space H = m1 +
∑

R(mi − m1). It is also
easy to verify that Z′A =

∑
Z(mi − m1), since the sum of the coefficients of the mi’s is zero. So

dimH = dimR
∑

R(mi −m1) = dimR R⊗Z Z′A = rank Z′A.

(c) If ∃u ∈ N , k ∈ N \ {0}, s.t. ⟨mi, u⟩ = k for each i, then ⟨
∑s
i=1 aimi, u⟩ = k(

∑s
i=1 ai), which gives us

the exact sequence

0 −→ Z′A −→ ZA ⟨ ,u⟩−−−→ kZ −→ 0

Then k > 0 implies that rankZA− 1 = rankZ′A.
If there isn’t an u ∈ N and k ∈ N \ {0}, s.t. ⟨mi, u⟩ = k for each i, then by Proposition 2.1.4 of [CLS],
IL is not homogeneous, where L is the kernel in the exact sequence

0 −→ L −→ Zs −→ ZA
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where the last map sends ei to mi, and IL = ⟨xα − xβ |α, β ∈ Ns and α − β ∈ L⟩. Since IL is not
homogeneous, some generator xα−xβ is not homogeneous, so that (α−β)·(1, . . . , 1) ̸= 0, but α−β ∈ L.
This implies that in the exact sequence

0 −→Ms−1 −→ Zs ·(1,...,1)−−−−−→ Z −→ 0

the image of L ⊆ Zs is lZ ⊆ Z for some l > 0. This gives a diagram

0 0 0

0 L ∩Ms−1 L lZ 0

0 Ms−1 Zs Z 0

0 Z′A ZA Z/lZ 0

0 0 0

with exact rows and columns. The exactness of the columns and the first two rows is clear. The
exactness of the third row can be shown by five-lemma. Hence rankZA = rankZ′A.

Solution 7.3.

(a) Suppose rankM = n, and A = {m1, . . . ,ms}. Then the projective variety induced by A +m is the
closure in Ps−1 of the set

{[χm1+m(t1, . . . , tn) : · · · : χms+m(t1, . . . , tn)]|ti ∈ C∗}

but

[χm1+m(t1, . . . , tn) : · · · : χms+m(t1, . . . , tn)]

=[χm1(t1, . . . , tn) · χm(t1, . . . , tn) : · · · : χms(t1, . . . , tn) · χm(t1, . . . , tn)]

=[χm1(t1, . . . , tn) : · · · : χms(t1, . . . , tn)]

The closure of all these latter points is the projective toric variety induced by A, so A and A + m
induce the same projective toric variety.

(b) Let A = {0, 1} ⊆ Z. Then the affine toric variety induced by A is the Zariski closure in C2 of the set
{(1, t)|t ∈ C∗}, hence is a copy of C. Let m = 2, then m + A = {2, 3}, and the affine toric variety
induced by m +A is the curve y2 − x3 = 0, which is not isomorphic to C, since it is not smooth, for
example.

Solution 7.4.

(a) For an element

(
1 2 3
i j k

)
, let’s denote the assigned permutation matrix by Mijk. We explain here

why M123 +M231 +M312 =M132 +M321 +M213. For the three matrices M123, M231 and M312, since
the corresponding permutations send i to the three different elements , the place of the 1 in the i-th
rows of these matrices should be different. Hence the i-th row of their sum should be (1, 1, 1). More
concretely,

M123 =

1 0 0
0 1 0
0 0 1

 ,M231 =

0 1 0
0 0 1
1 0 0

 ,M312 =

0 0 1
1 0 0
0 1 0

 ,
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so

M123 +M231 +M312 =

1 1 1
1 1 1
1 1 1

 .

The same is true for the other three matrices:

M132 =

1 0 0
0 0 1
0 1 0

 ,M321 =

0 0 1
0 1 0
1 0 0

 ,M213 =

0 1 0
1 0 0
0 0 1

 ,

so

M132 +M321 +M213 =

1 1 1
1 1 1
1 1 1

 .

In summary, M123 +M231 +M312 =M132 +M321 +M213 Therefore,

χM123 · χM231 · χM312 = χM123+M231+M312 = χM132+M321+M213 = χM132 · χM321 · χM213

This implies that x123x231x312 − x132x321x213 ∈ I(XP3).

(b) It is straightforward to compute that Z′P3 is generated over Z by 1 0 −1
0 0 0
−1 0 1

 ,

0 1 −1
0 0 0
0 −1 1

 ,

 0 0 0
1 0 −1
−1 0 1

 ,

0 0 0
0 1 −1
0 −1 1


And it’s clear that these generators are linearly independent, so rankZ′P3 = 4 = dimXP3

(c) By (a), XP3
⊆ V(x123x231x312 − x132x321x213). The latter is an irreducible hypersurface, hence of

dimension 4. But XP3
is also an irreducible variety of dimension 4, so XP3

= V(x123x231x312 −
x132x321x213). In particular, I(XP3) = ⟨x123x231x312 − x132x321x213⟩.

15.8 Solutions to Chapter 8

Solutions written by Maxence Alexandre Coppin.

Solution 8.1. Let P be a polytope.
”⇒” Assume that P is not full dimensional. Let F be a facet of P with a supporting hyperplane Hu,a. Since
P is not full dimensional, there exists n ∈ (Span(P )∨)⊥. Consider the hyperplane Hn+u,a, we want to prove
that it is a suupporting hyperplane of F different from Hu,a. We have

Hn+u,a ∩ P = {m ∈ P | ⟨n+ u,m⟩ = a} = {m ∈ P | ⟨u,m⟩ = a}

= Hu,a ∩ P = F,

where the second equality holds because ⟨n,m⟩ = 0 since n ∈ (Span(P )∨)⊥. Now suppose that these define
the same supporting hyperplane, then for every m ∈M \ Span(P ), we have ⟨n+ u,m⟩ = a = ⟨u,m⟩, hence
⟨n,m⟩ = 0 for any m. Since this paring is non-degenerate we must have n = 0, we get a contradiction.
”⇐” Suppose that P is full dimensional. Let F be a facet of P and Hu,a, Hv,b be two supporting hyperplane
of F . Since P is full dimensional, the facet F is a polytope of dimension dimP − 1, by definition it means
that F is contained in an affine subspace of dimension dimP − 1. But since Hu,a ∩ P = Hv,b ∩ P = F , the
intersection Hu,a ∩Hv,b ̸= ∅ and it must have dimension at least dimP − 1, hence they must be equal.

Solution 8.2. Let P be a full dimensional polytope of dimension d with the origin as interior point.

104



(i) Notice that since the origin is an interior point of P , we have that for any facet F of P , 0 = ⟨uF , 0⟩ >
−aF , hence aF > 0.

” ⊇ ” Let m ∈ P , then for any F we have that

⟨uF ,m⟩ ≥ −aF ⇔ ⟨
1

aF
uF ,m⟩ ≥ −1.

Thus 1/aFuF ∈ P ◦ for any facet F , then Conv(1/aFuF | F facet of P ) ⊆ P ◦.

” ⊆ ”

(ii) Since P is full-dimensional, each facet F of P has a unique supporting hyperplane HuF ,−aF . We have
a bijection between the set of facets of P and vertices of P ◦ given by

F 7→ 1

aF
uF

This bijection induces a bijection between the set of faces of P and faces of P ◦. Indeed, for Q a facet of
two facets of F , F ′ of P , the intersection of the two supporting hyperplanes associated to these facets
is exactly Span(Q), thus Q correponds uniquely to the edge between the points 1/aFuF and 1/aF ′uF ′ .
And we can pursuit this construction inductively to obtain the wanted bijection.

It is immediate by construction that a face of P with dimension n is send to a face of P ◦ with dimension
d− n− 1 by this bijection and it is inclusion reversing.

(iii) Let r > 0, we want to prove that (rP )◦ = 1/rP ◦.

(rP )◦ = {u ∈ N | ⟨rm, u⟩ ≥ −1 for all m ∈ P}

= {u ∈ N | ⟨m, ru⟩ ≥ −1 for all m ∈ P}

= {1
r
u ∈ N | ⟨m,u⟩ ≥ −1 for all m ∈ P} = 1

r
P ◦.

Now if we take 2P where P = Conv(±e1,±e2 ⊆ R2, we have that (2P )◦ = 1
2P

◦ is well-defined, but it
is not a lattice polytope.

Solution 8.3. Let P be a polytope.
”⇒” Assume that P is normal. Let (m, k) ∈ C(P ) ∩ (M × Z). Then k ∈ Z and the element m has

height k, and by normality of P , we have that m =
∑k
i=1mi for some mi ∈ P ∩M . Thus we have that

(m, k) =
∑k
i=1(mi, 1), hence (P ∩M)× {1} generates the semigroup C(P ) ∩M × Z.

”⇐” Assume that (P∩M)×{1} generates C(P )∩(M×Z). We always have the inclusion P∩M+. . .+P∩M ⊆
kP ∩ M . So let m ∈ kP ∩ M , notice that (m, k) ∈ C(P ) ∩ (M × Z). By assumption we have that

(m, k) =
∑k
i=1(mi, 1) where mi ∈ P ∩M , hence m =

∑k
i=1mi ∈ P ∩M + . . .+ P ∩M .

Solution 8.4. Consider P = Conv(0, e1, e2, e1 + e2 + 3e3) ⊆ R3.

(i) Let m ∈ P ∩Z3, then m = αe1+βe2+γ(e1+e2+3e3) = (α+γ)e1+(β+γ)e2+3γe3 where α, β, γ ≥ 0
and α+ β + γ = 1. If α = β = γ = 0, we have that m = 0 ∈ P . Else, it yields three cases :

� If γ = 0, then m = αe1 + βe2 whith α+ β = 1. If α = 0, then m = e2. If β = 0, then m = e1.

� If γ = 1, then α = β = 0, so m = e1 + e2 + 3e3.

� If γ = 1/3, then α, β ≥ 2/3. Since α+ β = 2/3, we have that m cannot lies in Z3.

Thus the only lattice points of P are its vertices.

(ii) We have that TP∩Z3 ⊆ P3 since P ∩ Z3 has only four points. Furthermore dimTP∩Z3 =
rk(Z′{0, e1, e2, e1 + e2 + 3e3}) = rk(Z{0, e1, e2, e1 + e2 + 3e3}) = rk(Ze1 + Ze2 + Z(e1 + e2 + 3e3)) = 3
since 0 ∈ P ∩ Z3. Thus we have TP∩Z3 = P3 because dimP3 = 3.

(iii) It is just some computation to show that it is indeed the Hilbert basis of C(P ). Since the Hilbert basis
of C(P )∩ (Z3×Z) contains 6 elements, the set (P ∩Z3)×{1} cannot generates C(P )∩ (Z3×Z) since
it has less elements than 6 (it would contradicts the minimality of the Hilbert basis).
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15.9 Solutions to Chapter 9

Solutions written by Emma Marie Billet

Solution 9.1. First P ⊆ MR being very ample, it must be a lattice polytope so P ∩M = {m1, ...,ms} are
the vertices of P, and we may assume m = ms without loss of generality.

(i) Note that 0 is indeed in C because m ∈ P ∩M by very ampleness. To show that Hu,0 is a supporting
hyperplane of 0 ∈ C is equivalent to prove that {0} = Hu,0 ∩ C and u ∈ C∨ = σm.

”⊆” This inclusion is trivial because we just proved 0 ∈ C and clearly ⟨u, 0⟩ = 0.

”⊇” Consider m′ ∈ C ∩Hu,0, then m
′ ∈ C

=⇒ m′ =
∑s−1
i=1 λi(mi − m) where λi ≥ 0, i ∈ {1, ..., s − 1}. And m′ ∈ Hu,0 =⇒ ⟨m′, u⟩ =∑s−1

i=1 λi⟨mi −m,u⟩ = 0, but this is equivalent to

s−1∑
i=1

λi⟨mi, u⟩ =
s−1∑
i=1

λi⟨m,u⟩ (13)

Now we can use the assumption that Hu,a is a supporting hyperplane of m ∈ P which implies that
{m} = P ∩ Hu,a and P ⊆ H+

u,a. From these we obtain ⟨m,u⟩ = a, ⟨mi, u⟩ ≠ a, ⟨mi, u⟩ ≥ a so
⟨mi, u⟩ > a, ∀i ∈ {1, ...s − 1}. Combining this with with (1) gives a contradiction, unless
λi = 0,∀i ∈ {1, ..., s− 1} or equivalently m′ = 0 as desired.

Finally we have to prove, u ∈ σm which is equivalent to C ⊆ H+
u,0. Consider

∑s
i=1 λi(mi−m) ∈ C for

some λi ≥ 0 ∀ i ∈ {1, ..., s}, denote
∑s
i=1 λi =: λ > 0 unless we consider 0. Then x =

∑s
i=1

λi

λ mi ∈ P
which implies that we have x ∈ H+

u,a =⇒ ⟨
∑s
i=1 λimi, u⟩ ≥ a =⇒

∑s
i=1 λi⟨mi, u⟩ ≥ λa = λ⟨m,u⟩ by

hypothesis on m ∈ P . This implies ⟨
∑s
i=1 λi(mi −m), u⟩ ≥ 0 as desired. Remark that if we consider

0, clearly 0 ∈ H+
u,0. This finishes the proof of part (a).

(ii) Prove that dim(C) = dim(P ) = n. Because P is full dimensional the only thing to prove is dim(C) ≥
dim(P ), recall that the dimension of C,P is the dimension of the smallest subspace of MR containing
C and P respectively. Thus it suffices to prove that C ⊆ H =⇒ P ⊆ H for any affine subspace
H ⊆MR. Assume C ⊆ H for some subspace H. Then if we show mi ∈ H,∀i ∈ {1, ..., s}
=⇒ P = Conv(mi|i ∈ {1, ..., s}) ⊆ H.
But using that mi −m ∈ C ⊆ H, i ∈ {1, ..., s− 1}, we are done if we prove m ∈ H.
Claim: Wlog, m ∈ C = Cm ⊆ H. This finishes the proof.
Proof of the claim: it always exists a translation of P under which m ∈ C. The dimension of a full
dimension polytope is invariant under translation.

Solution 9.2.

(i) P and m + P have the same normal fan for m ∈ M a lattice point. Note that P +m is still a full
dimensional lattice polytope as m is a lattice point and dimension is invariant under translation. We
clearly have a bijective correspondence φ between faces of P and faces of P +m, given by Q ≼ P 7→
Q+m ≼ P +m. Note that φ preserved face inclusion. Let’s prove for Q ≼ P, that σQ = σφ(Q).

Using σQ = Cone(uF |Q ≼ F ≼ P, F facet ), it suffices to prove uF = uφ(F ) for any facet F. Indeed
uF , uφ(F ) are uniquely defined (up to multiplication by a positive real number) because, P and P +m
are full dimensional.

Let F ≼ P =⇒ P ⊆ H+
uF ,aF =⇒ ∀m ∈ P : ⟨m,uF ⟩ ≥ −aF .

Then consider some m̃ ∈ P +m =⇒ m̃ = n +m =⇒ ⟨m̃, uF ⟩ = ⟨n, uF ⟩ +mF ≥ −(aF −mF ) =:
−aF+m for mF := ⟨m,uF ⟩ and using n ∈ P . This directly proves P +m ⊆ H+

uF ,−aF+m
. Moreover,

considering m̃ ∈ F + m makes all inequalities above being equalities, and this proves F + m =
HuF ,−aF+m

∩ (P + m). Indeed for the other inclusion we have ⟨n + m,uF ⟩ = −(aF − mF ) =⇒
⟨m,uF ⟩ = −aF =⇒ m ∈ P ∩Huf ,aF = F .
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(ii) We basically use the same strategy, P and kP have the same normal fan for k ≥ 1 an integer. Note
that kP is still a full dimensional lattice polytope as k is an integer and dimension is invariant under
homothety. Indeed the basis of the subspace containing P will still generate kP since a generating set
allows multiplication by a scalar. We clearly have a bijective correspondence φ between faces of P and
faces of kP , given by Q ≼ P 7→ kQ ≼ kP . Also note that φ preserved face inclusion. Let’s prove for
Q ≼ P, that σQ = σφ(Q).

Using σQ = Cone(uF |Q ≼ F ≼ P, F facet of P ), it suffices to prove uF = uφ(F ). Indeed, in this case
they generate the same cone.

Let F ≼ P =⇒ P ⊆ H+
uF ,aF =⇒ ∀m ∈ P : ⟨m,uF ⟩ ≥ −aF .

Then consider some m̃ ∈ kP =⇒ m̃ = k.m =⇒ ⟨m̃, uF ⟩ = ⟨k.m, uF ⟩ = k⟨m,uF ⟩ ≥ −k.aF =: −akF
using m ∈ P . This directly proves kP ⊆ H+

uF ,−akF
. Moreover, considering m̃ ∈ kF makes all

inequalities above being equalities, and this proves kF = HuF ,−akF
∩ kP.

Indeed for the other inclusion we have ⟨k.m, uF ⟩ = −k.aF =⇒ ⟨m,uF ⟩ = −aF =⇒ m ∈ P∩Huf ,aF =
F .

This finishes the proof of exercise 2.

Solution 9.3. The proof of this exercise is mostly based on exercise 8.2.b. This exercise tells us that it
exists a bijection between faces of the polytope and faces of the dual polytope. Since 0 is an interior point
of P , which is full dimensional, we have P =

⋂
FfacetH

+
uF ,−aF where the aF > 0 for all facets. This allows

us to characterize the dual polytope as P ◦ = Conv( 1
aF
uF |F facet of P) so that the faces of P ◦ are the

convex hull of some vertices { 1
aF
uF }. Hence the bijection is given by Conv( 1

aF
uF |F facet of P containing

Q) ≼ P ◦ is associated to the face Q ≼ P . Denote by φ this bijection.

Then, by definition the normal fan of the polytope P ⊆MR is ΣP = {σQ |Q ≼ P}.

Claim: σQ = Cone(Q′) ⊆ NR where the latter means the cone generated by the vertices of Q′ and
Q′ = φ(Q). This claim directly proves the statement of the exercise since φ is bijective and φ(Q) ≼ P ◦.

Proof of the claim: We have σQ = Cone(uF |F facet containing Q); and Cone(Q′) = Cone( 1
aF
uF |F

facet containing Q), but we have an equality between both of them since more generally Cone(m1,m2) =
Cone(λ1m1, λ2m2) for any λ1, λ2 ≥ 0. In fact this is a property of cones and you can clearly see this taking
the definition.

Solution 9.4.

(i) We set {e1, ..., en} canonical basis of Rn so that △n = Conv(0, e1, ..., en). We denote A = {0, e1, ..., en}
and e0 = −

∑n
i=1 ei. We need to prove the following second equality (the first is the definition of the

normal fan) :
Σ△n

= {σQ |Q ≼ △n} = {Cone(S) |S ⊊ {e0, ..., en}}

For the sake of simplicity, we denote {e0, ..., en} =: E. Note that for any face
Q ≼ △n, Q = Conv(A\S̃) for S̃ ⊊ {0, e1, ..., en}, indeed any proper face of the n-simplex is the
convex hull of at most n vertices. Thus, any facet F ≼ △n, is of the form Fi = Conv(A\{ei}) for
i ∈ {1, ..., n} or F0 = Conv(A\{0}) since a facet is determine by n vertices.

Claim: uFi
= ei for i ∈ {1, ..., n} and uF0

= e0

Proof of the claim : First of all, uF is well defined since △n is full dimensional. In order to prove this
we distinguish the cases i ∈ {1, ..., n} or i = 0.

Case 1: We need to show Fi = {m ∈ △n | ⟨m, ei⟩ = 0} and △n ⊆ H+
ei,0

. Let i ∈ {1, ..., n}.
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”⊆” Consider m =
∑n
j=1 λjej ∈ Fi = Conv(A\{ei}) =⇒ λi = 0, and

∑n
j=1 λj ≤ 1, λj ≥ 0, ∀j. Then

by orthonormality of the canonical basis ⟨m, ei⟩ = λi = 0 and m ∈ △nas desired.

”⊇” Consider m ∈ △n =⇒ m =
∑n
j=1 λjej ,

∑n
j=1 λj ≤ 1, λj ≥ 0 ∀j. Clearly

⟨m, ei⟩ = 0 =⇒ λi = 0 =⇒ m ∈ Conv(A\{ei}) = Fi.

Lastly, consider m =
∑n
j=1 λjej ∈ △n,

∑n
j=1 λj ≤ 1, λj ≥ 0 ∀j. Then

⟨m, ei⟩ = λi ≥ 0 =⇒ m ∈ H+
ei,0

. This finishes the proof of case 1.

Case 2: Analogously we need to show F0 = {m ∈ △n | ⟨m, e0⟩ = −1} and △n ⊆ H+
e0,−1.

”⊆” Consider m =
∑n
j=1 λjej ∈ F0 = Conv(A\{0}) =⇒ so that

∑n
j=1 λj = 1, and λj ≥ 0, ∀j. Then

by orthonormality of the canonical basis ⟨m, e0⟩ = −
∑n
i=1

∑n
j=1 λjδij = −

∑n
i=1 λi = −1 and

m ∈ △n as desired.

”⊇” Consider m ∈ △n =⇒ m =
∑n
j=1 λjej ,

∑n
j=1 λj ≤ 1, λj ≥ 0, ∀j. Clearly

⟨m, e0⟩ = −1 =⇒ −
∑n
i=1 λi = −1 =⇒ m ∈ Conv(e1, ..., en) = Conv(A\{0}) = F0.

Lastly, consider m =
∑n
j=1 λjej ∈ △n,

∑n
j=1 λj ≤ 1, λj ≥ 0 ∀j. Then

⟨m, e0⟩ = −
∑n
i=1 λi ≥ −1 =⇒ m ∈ H+

e0,−1. This finishes the proof of case 2 and claim 1.

Finally, for any face Q ≼ △n we have the following equality σQ = Cone(uF |F facet containing Q).

Thus, for Q = Conv(A\S̃), Fi, i ∈ {0, 1, ..., n} contains Q if and only if ei ∈ S̃ (or 0 ∈ S̃). Hence, using
the claim 1, we obtain σQ = Cone(ei | ei ∈ S̃ or 0 ∈ S̃). That is to say σQ = Cone(S) for S ⊆ E.

Moreover we have a bijection given by : φ̂ : Conv(A\S̃)↔ Cone(S) which is induced by φ : A→ E :
ei 7→ ei, for i ∈ {1, ..., n}; and 0 7→ e0. Note that φ is clearly a bijection. In fact φ̂(Conv(A\S̃)) =
Cone(φ(S̃)).

Combining everything, we obtain {σQ |Q ≼ △n} = {Cone(S) |S ⊊ {e0, ..., en}} because σQ = φ̂(Q).
This finishes the proof of part (a).
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Figure 20: Pictures of normal fans of the n-simplex for n=1,2,3

(ii) Consider k ∈ N≥1, and k△n ⊆ Rn whose underlying lattice is M = Zn. Note that k△n is full
dimensional, and normal hence very ample for every such k. Suppose, k△n ∩M = {m1, ...,msk}, then
the projective toric variety Xk△n∩M is given by the projective closure of the image of the map Φ:

Tn ∼= (C∗)n → Csk → Psk−1, t̄ = (t1, ..., tn) 7→ [χm1(t̄), ..., χms(t̄)].

We try to compute k△n ∩ Zn,
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m = (b1, ..., bn) ∈ k△n ∩M ⇐⇒ bi ∈ Zn≥0 ∀ i ∈ {1, ..., n}

and m ∈ k△n = Conv(0, ke1, ..., ken) =⇒ m =
∑n
i=0 ai.kei (set e0 = 0), and

∑n
i=0 ai = 1 ⇐⇒

m =
∑n
i=1 biei where b1, ..., bn are the coefficients in the canonical basis with

∑n
i=1 bi ≤ k, using

bi = ai.k ∀i ∈ {1, ..., n} and b0 = a0.k ∈ Z≥0

Hence

k△n ∩ Zn = {(b1, ..., bn) ∈ Zn≥0 |
n∑
i=1

bi ≤ k}

Therefore, this set can be rewritten as

{(b0, b1, ..., bn) ∈ Zn+1
≥0 |

n∑
i=0

bi = k}

(to see the bijection you can take b0 = n−
∑n
i=1 bi ∈ Z≥0). The cardinality of the latter set is known

and equals
(
n+k
n

)
=: sk (number of ways to put n bars (space) among n+k bullets (sum of bullets

between 2 spaces gives the value of some bi).

Thus, Xk△n∩M is the projective closure of

{[(t̄)m1 : ... : (t̄)msk ] | t̄ ∈ (C∗)n | mi = (b1, ..., bn) ∈ Zn≥0 |
n∑
i=1

bi ≤ k} ⊆ Psk−1

where for mi = (b1, ..., bn) ∈ Zn we have (t̄)mi = tb11 · ... · tbnn .

On another hand we have

νk(Pn) = {[P1(x̄) : ... : Psk(x̄)] | x̄ = [x0 : ... : xn] ∈ Pn} ⊆ Psk−1

where the Pi(X0, ..., Xn) ∈ C[X0, ..., Xn] are the sk :=
(
n+k
n

)
monomials of total degree k. Such

polynomials are of the form Pi(X0, ..., Xn) = Xb0
0 · ... ·Xbn

n where (b0, ..., bn) ∈ Zn+1 and
∑n
i=0 bi = k.

Then, we prove that the two ways of seeing Xk△n are equal or in other words we need to show

Φ((C∗)n) = νk(Pn)

� Firstly we have the following commutative diagram:

Psk−1

Pn (C∗)n

νk
Φ

ψ

Where Φ, νk have been defined previously, and ψ is the quotient map composed with the usual
injection.

Now consider some (t1, ..., tn) ∈ (C∗)n, νk ◦ ψ(t1, ..., tn) = νk([1 : t1 : ... : tn]) but this is clearly
equal to Φ(t1, ..., tn) since each monomial Pi(1, t1, ..., tn) = 1b0tb11 ...t

bn
n corresponds exactly to

χmi(t1, ..., tn) for mi = (b1, ..., bn) ∈ Zn;
∑n
i=1 bi ≤ k . This shows the diagram commutes. And

in particular, it proves
Φ((C∗)n) = νk ◦ ψ((C∗)n) ⊆ νk(Pn),

we don’t have an equality here since ψ isn’t surjective.
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� Moreover we have that νk(Pn) ⊆ Psk−1 is closed since νk is proper. The details of this are left to
the reader. This implies using the equality above that

Φ((C∗)n) ⊆ νk(Pn),

so we are left to prove νk(Pn) is in fact the Zariski closure.

� Also, since both Pn and (C∗)n are irreducible (cf. algebraic curves course). Their images under
continuous maps are also irreducible, and Φ((C∗)n) is also irreducible (being the closure of an
irreducible).

� Now, we argue on dimensions, you can verify that both Φ and νk are injective continuous maps.
Therefore n = dim((C∗)n = dim(Pn) =⇒ dim(Φ((C∗)n)) = dim(νk(Pn)) = n, and since
Φ((C∗)n) is an open in its closure dim(Φ((C∗)n)) = n

� Finally the last argument is that Φ((C∗)n) ⊆ νk(Pn) have the same dimension and if we we
supposed that the inclusion is strict it would give a contradiction with irreducibility.

=⇒ Φ((C∗)n) = νk(Pn)

This finishes the proof.

15.10 Solutions to Chapter 10

Solutions written by Joel Jeremias Hakavuori

Solution 10.1.

(i) The facet presentation of P is given by{
xi ≥ −1 for all 1 ≤ i ≤ n
−
∑n
i=1 xi ≥ −1.

The vertex corresponding to the origin of ∆n is shifted to (−1, . . . ,−1), from which we see that we
require xi ≥ −1, and the hyperplane connecting the vertices ei is given by −

∑n
i=1 xi ≥ −n, which

after shifting by (−1, . . . ,−1) gives −
∑n
i=1 xi ≥ −1.

To show that P is smooth, observe that P and ∆n have the same normal fan, and as seen during
Chapter 10, ∆n is smooth as the corresponding variety X∆n

is Pn, which is smooth. Recall that XQ

is a smooth projective variety for a full dimensional lattice polytope Q ⇔ Q is a smooth polytope ⇔
ΣQ is a smooth fan. Hence we see that P is smooth.

Now that we have a facet presentation P = {m ∈ MR|⟨m,uF ⟩ ≥ −aF , F facet of P}, we can use the
result stating that P ◦ = Conv(( 1

aF
)uF ∈ NR | F facet of P ), which shows that

P ◦ = Conv(e0, e1, . . . , en), where e0 = −
∑n
i=1 ei.

(ii) With the facet presentation of P , the fact that P ◦ = Conv(( 1
aF

)uF ∈ NR | F facet of P ), and that
(P ◦)◦ = P , we can read off the facet presentation of P ◦ from the presentation of P as the convex hull
of the points (−1, . . . ,−1), p1, . . . , pn, with pi having i

th coordinate n and others −1. Thus P ◦ has
facet presentation {m ∈ MR|⟨m,uF ⟩ ≥ −aF , F facet of P} with all aF = 1 and the collection of uF
consisting of the vector uF0

(−1, . . . ,−1) and uFi
= (−1, . . . , n, . . . ,−1) with n as ith coordinate for

i = 1, . . . n.

(iii) To show that P ◦ is not smooth for n ≥ 2, we again use the result stating that P is smooth if and
only if XΣP

is smooth. By exercise 9.3, the normal fan ΣP◦ consists of the cones over the faces of
(P ◦)◦ = P . To show that P ◦ is not smooth, it suffices to show that one of the affine pieces of XΣP◦ is
not smooth, i.e., that one of the cones of ΣP◦ is not smooth. Consider the cone corresponding to Uσe0

=
Spec(C[σ∨

e0 ∩M ]). This cone σ∨
e0 is the generated by the elements (n+ 1, 1, . . . , 1), . . . , (1, . . . , n+ 1).

Let ai be the element with n+ 1 in the ith position. A cone is smooth if the minimal generators (the
ray generators of the edges) of σ ⊆ N form part of a Z-basis of N . The minimal generators in this
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case are exactly the elements {a1, . . . , an}. Observe that to generate the lattice points in σ∨
e0 ∩Z

n, we
require (at least) (1, . . . , 1) ∈ σ∨

e0 in addition to all {ai}ni=1, as (1, . . . , 1) is in σ∨
e0 ∩ Zn. If an integer

linear combination
∑n
i=1 kiai of the elements {a1, . . . , an} is on the diagonal, then k1 = k2 = . . . = kn.

As
∑n
i=1 kai = k(

∑n
i=1 ai) = k(n+ 1)(1, . . . , 1) ̸= (1, . . . , 1) for any nonzero integer k when n ≥ 2, we

see that (1, . . . , 1) is not generated as a Z-linear combination of {a1, . . . , an}. Hence we require at least
n+ 1 elements to form a minimal generating set of σ∨

e0 , which is never a subset of a basis of Zn. Thus
P ◦ is not smooth, as ΣP◦ has a cone which is not smooth.

Solution 10.2.

(i) In the context of this course R is a finitely generated k-algebra R = k[x1, . . . , xn]/I, where k is a
field and I is an ideal in k[x1, . . . , xn]. We want to show that R is Noetherian, i.e., ideals I ⊆ R
are finitely generated. Observe that quotients of Noetherian rings are Noetherian: ideals of R/I
are the ideals of R containing I, so every ascending chain of ideals in R/I will stabilize, which is
an equivalent condition for a ring to be Noetherian. Hence it suffices to show that k[x1, . . . , xn] is
Noetherian. Furthermore, if we show that k[x] is Noetherian, then the result follows by induction, as
k[x1, . . . , xn] = k[x1, . . . , xn−1][xn]. A field k is obviously Noetherian, as (0) is the only proper ideal,
and the fact that k[x] is Noetherian follows from Hilberts basis theorem. Thus we get that every ideal
I ⊆ R is finitely generated.

(ii) Let W ⊂ V be a subvariety defined by the ideal I ⊂ R. By part (a), I = ⟨f1, . . . , fr⟩ for some fi ∈ R,
and hence V \W = V \ (V(⟨f1, . . . , fr⟩)) = ∪ri=1D(fi), where D(fi) are the principal opens of each fi
in Spec(R). As D(fi) ≃ Vfi , we get that V \W ≃ ∪ri=1Vfi .

(iii) Suppose we have an open cover ∪j∈JUj = V of V , with Uj = V \ Xj for some Xj = V(Ij). Then
V = ∪J(V \ Xj) = (∩JV(Ij))

c, and hence we have that 1 ∈
∑
J Ij . The element 1 is generated by

finitely many elements chosen from the collection {Ij}j∈J , and choosing the finitely many open sets
corresponding to these elements, we see that we get a finite subcover of V .

Solution 10.3.

(i) We need to show that ∼ is reflexive, symmetric and transitive. Reflexivity is clear, as f |U ∼ f |U for
all U ⊂ X, and similarly if f ∼ g then g ∼ f . To show transitivity, take f ∼ g and g ∼ h, so f |U = g|U
and g|V = h|V for some U, V ⊂ X, and hence f |U∩V = h|U∩V . As X is irreducible, all open subsets
are dense, so U ∩ V is a nonempty open subset of X. Thus f ∼ h.

(ii) Let ⟨U, f⟩ be a representative of an equivalence class, i.e. ⟨U, f⟩ ∼ ⟨V, g⟩ if there exists a nonempty open
W where f |W= g |W . As X is irreducible, any nonempty opens have nonempty intersection, and we
can turn the set of equivalence classes of part (a) into a ring by defining ⟨U, f⟩+ ⟨V, g⟩ = ⟨U ∩V, f + g⟩
and similarly for multiplication. If f ̸= 0 is a rational function which is regular on some nonempty
open U ⊆ X, then 1

f is regular on D(f) ̸= ∅, so ⟨U, f⟩ has a multiplicative inverse, and we see that
the set of equivalence classes form a field.

(iii) A rational function f ∈ C(X) is a regular function f : U → C defined on some nonempty Zariski open
subset U ⊆ X, with f and g equivalent if they agree on some nonempty open subset of X. Now, let
U ⊆ X be a nonempty open subset of X. With this definition it clear that C(U) ⊆ C(X), as any
f ∈ C(U) is regular on some nonempty V ⊆ U ⊆ X. Conversely, if f ∈ C(X), f is regular on some
nonempty open V ⊆ X. As U is dense in X, U ∩ V is a nonempty open subset of U , and f is regular
on U ∩ V , so f ∈ C(U).

Solution 10.4.

(i) On Wi−1 we have the relations R := {xi−1yj − xj−1yi} for 1 ≤ i < j ≤ n, so yj =
xj−1yi
xi−1

. Hence, we

may simplify the coordinate ring of the affine open Wi−1 to get

Spec(C[
x0
xi−1

, . . . ,
xn
xi−1

, y1, . . . , yn] / R) = Spec(C[
x0
xi−1

, . . . ,
xn
xi−1

, yi]),

as yj =
xj−1

xi−1
· yi for j ̸= i in the quotient.
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(ii) We want to give the gluing data to identify Wi−1 \V(xj−1) and Wj−1 \V(xi−1). By the above, we
have the coordinate rings C[ x0

xi−1
, . . . , xn

xi−1
, yi] xj−1

xi−1

and C[ x0

xi−1
, . . . , xn

xi−1
, yi] xi−1

xj−1

for Wi−1 \ V(xj−1)

and Wj−1 \V(xi−1) respectively. As in the case when gluing the affine pieces for projective space, the
gluing map φij :Wi−1 \V(xj−1)→Wj−1 \V(xi−1) will send

φij :
xk
xi−1

7→ (
xk
xj−1

)/(
xj−1

xi−1
), (k ̸= i− 1),

and
(
xj−1

xi−1
)−1 7→ xi−1

xj−1
,

which are well defined on the intersection. Due to the relations xi−1yj − xj−1yi, we have yi =
xi−1

xj−1
yj ,

and hence map φij : yi 7→ xi−1

xj−1
yj , which is again well defined on the intersection. Observe that

φij = φ−1
ji and φki = φkj ◦ φji wherever all three maps are defined.

15.11 Solutions to Chapter 11

Solutions written by Matthias Georges A Schuller

Solution 11.1.

(i) Since Uα and Uβ are open and both contain p, there is an open W ⊂ Uα ∩ Uβ containing p. The local
ring is a local property thus OUα,p

∼= OW,p and similarly OUβ ,p
∼= OW,p. This yields OUα,p

∼= OUβ ,p.
The Zariski tangent space is a property defined from the local ring and isn’t changed by isomorphisms,
so we deduce the isomorphism TUα,p

∼= TUβ ,p.

(ii) Suppose Uα, Uβ are two affine open sets containing p. As previously there is an open W ⊂ Uα ∩ Uβ
containing p. Lets show dimp Uα = dimp Uβ .
We do this by finding for each irreducible component of Uα containing p an irreducible component
of W containing p of the same dimension, and similarly the other way around. Then doing the same
between Uβ and W , this will show dimp Uα = dimpW = dimp Uβ .
Let p ∈ A ⊂ Uα be an irreducible component, then A∩W is an irreducible component ofW containing
p. Furthermore A and A ∩W have the same dimension. To see this, let A = Spec(R) where R is an
integral domain. Since A ∩W is a nonempty open subset of A, there is a nonzero f ∈ R such that
D(f) ⊂ A ∩W where D(f) = {q ∈ A | f(q) ̸= 0}. Thus we have dimD(f) ≤ dim(A ∩W ) ≤ dimA.
Recall that for irreducible affine varieties the dimension is equal to the dimension of the coordinate
ring. Note that D(f) = SpecRf . The integral C-algebras R and Rf have the same fraction field and
hence the same transcendence degree over C. This implies dimD(f) = dimA, which gives the equality
dim(A ∩W ) = dimA.
On the other hand, let p ∈ B ⊂ W be an irreducible component. Then B̄ ⊂ Uα is an irreducible
component containing p and since B = B̄ ∩W the above implies dimB = dim B̄.
This proves the announced result and shows that the local dimension dimpX is well defined.

(iii) Combining the two previous points shows that smoothness is well-defined for abstract varieties.

Solution 11.2.

(i) Let V = {y ∈ Y | f(y) = g(y)} and

f × g :

{
Y → X ×X
y 7→ (f(y), g(y)).

Also consider the diagonal map ∆ : X → X ×X. Note that

V = (f × g)−1((f × g)(Y ) ∩∆(X)).

Since X is separated, ∆(X) is closed in X ×X, hence (f × g)(Y )∩∆(X) is closed in (f × g)(Y ). The
map f × g : Y → (f × g)(Y ) is a morphism so in particular Zariski continuous. Then V being the
inverse image of a closed set is closed itself in Y .

113



(ii) Define

f :

{
U ∩ V → (U × V ) ∩∆(X)

p 7→ (p, p)

and

g :

{
(U × V ) ∩∆(X)→ U ∩ V
(p1, p2) 7→ p1.

It is easy to see that f and g are well defined and that they are polynomial maps when restricted
between open subsets of affine open sets, thus f and g are morphisms of varieties. Furthermore, the
two maps are inverses of each other, hence (U × V ) ∩∆(X) ∼= U ∩ V .
Note that U and V being affine implies that U × V is affine. Also ∆(X) is closed in X × X so
(U × V ) ∩ ∆(X) is closed in U × V . Being closed in an affine variety implies being affine, therefore
(U × V ) ∩∆(X) is affine, and thus the same is true for the isomorphic U ∩ V .

(iii) For a counterexample of point (a), take X to be the line with two origins obtained by gluing U, V , two
copies of C. Then the identity morphisms f : C → U and g : C → V give morphisms f, g : C → X.
The set {y ∈ C | f(y) = g(y)} is C∗, which is not closed in C.
For a counterexample of point (b), imagine a construction of a plane with two origins. Take U, V two
copies of C2 and glue them along their Zariski open subset C2\0 via the identity map, to form the
abstract variety X. Then U and V are affine open subsets of X, however U ∩ V = C2\0 is not affine.

Solution 11.3. Let σ0 = Cone(0), σ1 = Cone(e1) and σ2 = Cone(−e1). Let’s compute Uσi for i = 0, 1, 2.
First compute the dual cones : σ∨

0 = Cone(±e1,±e2), σ∨
1 = Cone(e1,±e2) and σ∨

2 = Cone(−e1,±e2).
Then we get

Uσ0 = Spec(C[x±1, y±1])

= Spec(C[x±1]⊗ C[y±1])

= Spec(C[x±1])× Spec(C[y±1]),

Uσ1
= Spec(C[x, y±1])

= Spec(C[x]⊗ C[y±1])

= Spec(C[x])× Spec(C[y±1]),

Uσ2
= Spec(C[x−1, y±1])

= Spec(C[x−1]⊗ C[y±1])

= Spec(C[x−1])× Spec(C[y±1]).

Uσ1 and Uσ2 glue along Uσ0 . All the Uσi have the Spec(C[y±1]) component in common, hence we have

XΣ
∼= P × Spec(C[y±1]) = P × C∗

where P is the variety obtained by gluing Spec(C[x]) and Spec(C[x−1]) along Spec(C[x±1]) via the maps
C[x] ↪−→ C[x±1] and C[x−1] ↪−→ C[x±1]. This glues to P1, therefore XΣ

∼= P × C∗ ∼= P1 × C∗.

Solution 11.4. Let’s begin by showing that for σ1 ∈ Σ1, σ2 ∈ Σ2 we have (σ1 × σ2)∨ = σ∨
1 × σ∨

2 .
The point (m,m′) ∈ (M1)R × (M2)R is in (σ1 × σ2)∨ if and only if

0 ≤ ⟨(m,m′), (u, u′)⟩ = ⟨m,u⟩+ ⟨m′, u′⟩

for all (u, u′) ∈ σ1 × σ2.
This implies directly the inclusion σ∨

1 × σ∨
2 ⊂ (σ1 × σ2)∨.

For the other inclusion, take (m,m′) ∈ (σ1 × σ2)
∨. For all u ∈ σ1, (u, 0) ∈ σ1 × σ2 so we must have
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0 ≤ ⟨(m,m′), (u, 0)⟩ = ⟨m,u⟩, which implies m ∈ σ∨
1 . Similarly we find m′ ∈ σ∨

2 . This proves the equality.
Then we have

Sσ1×σ2
= (σ1 × σ2)∨ ∩ (M1 ×M2) = (σ∨

1 ∩M1)× (σ∨
2 ∩M2) = Sσ1

× Sσ2

and

Uσ1×σ2
= Spec(C[Sσ1×σ2

])

= Spec(C[Sσ1
× Sσ2

])

= Spec(C[Sσ1
]⊗ C[Sσ2

])

= Spec(C[Sσ1
])× Spec(C[Sσ2

])

= Uσ1
× Uσ2

.

To conclude that XΣ1×Σ2
∼= XΣ1 × XΣ2 it remains to study how those affine pieces glue together. Take

σ1 × σ2, σ′
1 × σ′

2 ∈ Σ1 × Σ2. The pieces Uσ1×σ2
and Uσ′

1×σ′
2
glue together along Uτ where τ = (σ1 × σ2) ∩

(σ′
1 × σ′

2) = (σ1 ∩ σ′
1)× (σ2 ∩ σ′

2) =: τ1 × τ2. The gluing maps are given by

C[Sσ1×σ2
] = C[Sσ1

]⊗ C[Sσ2
] ↪−→ C[Sτ1 ]⊗ C[Sτ2 ] = C[Sτ1×τ2 ]

and similar for C[Sσ′
1×σ′

2
], which is exactly what we would expect for XΣ1×XΣ2 , therefore we have XΣ1×Σ2

∼=
XΣ1

×XΣ2
.

15.12 Solutions to Chapter 12

Solutions written by Julia Michèle Marie Morin

Solution 12.1. (i) Let u = (a, b) ∈ Z2 and λu(t) : C∗ → TN , t 7→ [1 : ta : tb] be a one-parameter
subgroup. The book already deals with the limits λu(t) as t→ 0 when a, b > 0 and a = b < 0.

� when a = 0, b > 0 we have limt→0

[
1 : ta : tb

]
= [1 : 1 : 0]

� when a > 0, b = 0 we have limt→0

[
1 : ta : tb

]
= [1 : 0 : 1].

� when a > b, b < 0 we have limt→0

[
1 : ta : tb

]
= limt→0

[
t−b : ta−b : 1

]
= [0 : 0 : 1] because −b > 0

and a− b > 0.

� when a < 0, b > a we have limt→0

[
1 : ta : tb

]
= limt→0

[
t−a : 1 : tb−a

]
= [0 : 1 : 0] because −a > 0

and b− a > 0

� when a = b = 0 we have limt→0

(
1, ta, tb

)
= [1 : 1 : 1]

(ii) By the orbit-cone correspondence we know that there are 7 (C∗)2-orbits inXΣ ≃ P2, each corresponding
to a cone in the fan Σ, represented in the picture below :
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The correspondence associates to each cone σ ∈ Σ the orbit O(σ) = TN · γσ = TN · limt→0 λ
u(t) when

u ∈ Relint(σ) by Proposition 3.2.2 of the book.

Recall that the action of (C∗)2 on P2 is given by

(C∗)2 × P2

((t1, t2); [1 : x : y])→ [1 : t1x : t2y]

because the description of XΣ ≃ P2 arising from the polytope ∆2 gives the inclusion
(C∗)2 ⊆ P2, (t1, t2) 7→ [1 : t1 : t2]

Therefore, let us compute :

� Let us take u = (1, 1) ∈ Relint(σ0), then O(σ0) = {(t1, t2) · limt→0 [1 : t : t] | (t1, t2) ∈ (C∗)2} =
[1 : 0 : 0]

� Let us take u = (−1, 0) ∈ Relint(σ1), then O(σ1) = {(t1, t2) · limt→0

[
1 : t−1 : 1

]
| (t1, t2) ∈

(C∗)2} = {(t1, t2) · limt→0 [t : 1 : t] | (t1, t2) ∈ (C∗)2} = [0 : 1 : 0]

� Let us take u = (1,−1) ∈ Relint(σ2), then O(σ2) = {(t1, t2) · limt→0

[
1 : t : t−1

]
| (t1, t2) ∈

(C∗)2} = {(t1, t2) · limt→0

[
t : t2 : 1

]
| (t1, t2) ∈ (C∗)2} = [0 : 0 : 1]

� Let us take u = (1, 0) ∈ Relint(σ3), then O(σ3) = {(t1, t2) · limt→0 [1 : t : 1] | (t1, t2) ∈ (C∗)2} =
{[1 : 0 : t2] | t2 ̸= 0} = {[x1 : 0 : x3] | x1, x3 ̸= 0}

� Let us take u = (0, 1) ∈ Relint(σ4), then O(σ4) = {(t1, t2) · limt→0 [1 : 1 : t] | (t1, t2) ∈ (C∗)2} =
{[1 : t1 : 0] | t1 ̸= 0} = {[x1 : x2 : 0] | x1, x2 ̸= 0}

� Let us take u = (−1,−1) ∈ Relint(σ5), then O(σ5) = {(t1, t2) · limt→0

[
1 : t−1 : t−1

]
| (t1, t2) ∈

(C∗)2} = {(t1, t2) · limt→0 [t : 1 : 1] | (t1, t2) ∈ (C∗)2} = {[0 : t1 : t2] | t1, t2 ̸= 0}
� Let us take u = (0, 0) ∈ Relint(σ6), then O(σ6) = {(t1, t2) · limt→0 [1 : 1 : 1] | (t1, t2) ∈ (C∗)2} =
{[x1 : x2 : x3] | x1, x2, x3 ̸= 0}

(iii) For our toric variety X∆2 ≃ P2 coming from the polytope ∆2 = Conv(m0,m1,m2) where m0 = (0, 0),
m1 = (1, 0), m2 = (0, 1) ∈ R2, let us denote the homogeneous coordinates of P2 as [x0 : x1 : x2]. Then
we have:

X∆2
∩ Ui = Uσmi

i.e X∆2
∩ Ui is the affine toric variety of the cone σmi

in the normal fan of ∆2.

For simplicity we denote σmi
as σi. Let us describe the cases of one cone of each dimension, the other

cases as similar :

� The limit point corresponding to the cone σ0 is [1 : 0 : 0]. The distinguished point γσ0
∈ Uσ0

is
given by the semi-group homomorphism:

γ0 : Sσ0 → C

m 7→

{
1 if m ∈ σ⊥

0 ∩M,

0 otherwise.

We know this means that γσ0 is the point (γ0(m1), γ0(m2)) = (0, 0) ∈ (C∗)2 where m1 = (1, 0)
and m2 = (0, 1) are the generators of the semi-group Sσ0

. The isomorphism (C∗)2 ∼= U0 tells us
that this is indeed the point [1 : 0 : 0] ∈ Uσ0

⊆ P2.

� The limit point corresponding to the cone σ3 is [1 : 0 : 1]. The distinguished point γσ3
∈ Uσ3

=
X∆2 ∩ U0 ∩ U2 (see Proposition 0.13, week 5) is given by the semi-group homomorphism:

γ3 : Sσ3 → C

m 7→

{
1 if m ∈ σ⊥

3 ∩M,

0 otherwise.
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By Proposition 1.1 of the notes of week 5, we know this means that γσ3
is the point γ3(m1) =

(0) ∈ C∗ where m1 = (1, 0) is the generator of the semi-group Sσ3 . The isomorphism C∗ ∼= U0∩U2

tells us that this is indeed the point [1 : 0 : 1] ∈ Uσ3 ⊆ P2.

� The limit point corresponding to the cone σ6 is [1 : 1 : 1]. The distinguished point γσ6 ∈ Uσ6 =
X∆2 ∩ U0 ∩ U1 ∩ U2 can only be the point [1 : 1 : 1] because U0 ∩ U1 ∩ U2 = [1 : 1 : 1] ∈ P2.

Solution 12.2. Suppose that f : C∗ → (C∗)m ≃ TN is induced by the map Z → Zm, 1 7→ u = (e1, ..., em)
by tensoring with −⊗Z C∗, i.e f is given by

t 7→ (te1 , ..., tem)

(i) ⇒ Suppose that limt→0(t
e1 , ..., tem) exists in Uσ. From proposition 3.2.2 of the book this means that

u ∈ σ. Now let m ∈ Sσ then

limt→0χ
m(f(t)) = limt→0t

⟨m,u⟩

But m ∈ σ∨ ∩M , which means ⟨m, v⟩ ≥ 0 ∀v ∈ σ by definition of σ∨. Therefore ⟨m,u⟩ ≥ 0 and
limt→0t

⟨m,u⟩ exists in C.
⇐ Suppose that limt→0χ

m(f(t)) exists in C for all m ∈ Sσ. This implies that ⟨m,u⟩ ≥ 0 for all
m ∈ Sσ. Let A = {m1, ...,ms} be such that Sσ = NA. We have ⟨mi, u⟩ ≥ 0 ∀i ∈ {1, ..., s}.
Therefore u ∈ H+

m1
∩ ... ∩H+

ms
= σ and by proposition 3.2.2 of the book again limt→0f(t) ∈ Uσ.

(ii) Suppose that limt→0f(t) = limt→0(t
e1 , ..., tem) exists in Uσ. Then it corresponds to the semi-group

homomorphism :
γ : Sσ → C

m 7→ χm(limt→0f(t))

Since the limit exists and χm is a continuous function ∀m, we have

χm(limt→0(t
e1 , ..., tem)) = χm(limt→0(t

e1), ..., limt→0(t
em)))

= limt→0χ
m(te1 , ..., tem) = limt→0χ

m(f(t))

and we are done.

Solution 12.3. (i) Let σ be a cone in the fan Σ, σ is strongly convex rational polyhedral by definition of
a fan. Therefore, σ∨ is rational too, let {m1, ...,ms} ⊆ M be the finite set of its minimal generators.
Therefore Sσ = NA with A = {m1, ...,ms}.
Let p be the point associated to the given semi-group homomorphism γ : Sσ → C. We know that
γ(m) = χm(p) ∀m ∈ Sσ. Now let m ∈ Sσ, then there exists a1, ..., as in N such that m = a1m1 + ...+
asms.

γ(m) = χm(p) = χa1m1+...+asms(p) ̸= 0

⇔ χa1m1(p) · ... · χasms(p) ̸= 0

⇔ (χm1(p))a1 · ... · (χms(p))as ̸= 0

Suppose that (χmi(p)) ̸= 0 for all i. Then γ(m) ̸= 0 ∀m ∈ Sσ and the set {m ∈ Sσ | γ(m) ̸= 0} = τ∩M
for τ = σ∨.

Now suppose that there exists a non-empty indice set I ⊆ {1, ..., s} such that (χmi(p)) = 0 ∀i ∈ I.
Then

(χm1(p))a1 · ... · (χms(p))as ̸= 0

⇔ ai = 0 ∀i ∈ I

Let us denote J = {j1, ..., jn} = {1, ..., s} \ I. Then the set {m ∈ Sσ | γ(m) ̸= 0} = {m ∈ Sσ | m =∑
ajmj , for some aj ∈ N, j ∈ J} = τ ∩M where τ = Cone(mj1 , ...,mjn) ≤ Cone(m1, ...,ms) = σ∨.
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(ii) Let TN ∼= (C∗)s act on XΣ and let τ ∈ Σ. O(τ) is invariant under the action of TN by definition. Now
let p′ = limt→0 λ

u(t) · p ∈ O(τ), for p ∈ O(τ) and a one-parameter subgroup λu with u ∈ Zs, u ̸= 0.
Then let us take s ̸= 1 ∈ TN such that the action of s on p′ is given by :

s · lim
t→0

λu(t) · p = s lim
t→0

λu(t) · p = lim
t→0

λu(t)s · p = lim
t→0

λu(t) · s · p

which is in O(τ) since s · p ∈ O(τ)

(iii) Parts c) and d) of the Orbit-Cone correspondence theorem (Theorem 3.2.6 in the book) imply that

O(τ) ∩ Uσ′ =
⋃

σ is a face of σ′ containing τ

O(σ)

≃
⋃

τ⊆σ≤σ′

{
γ : Sσ → C | γ(m) ̸= 0⇔ m ∈ σ⊥ ∩M

}
.

First, notice that if τ ̸⊂ σ′ then O(τ) ∩ Uσ′ = ∅ so let us assume that τ ⊆ σ′.

We claim that ⋃
τ⊆σ≤σ′

{
γ : Sσ → C | γ(m) ̸= 0⇔ m ∈ σ⊥ ∩M

}
≃ {γ̃ : Sσ′ ∩ τ⊥ → C | γ̃ semi-group homomorphism }

where it is easy to verify that Sσ′ ∩ τ⊥ is an affine semi-group.

First let γ : Sσ → C be a semi-group homomorphism such that γ(m) ̸= 0 ⇔ m ∈ σ⊥ ∩ M with
τ ⊆ σ ≤ σ′. Then we define

γ̃ : Sσ′ ∩ τ⊥ → C

m 7→

{
γ(m) if m ∈ σ⊥ ∩ Sσ′ ,

0 otherwise.

which is well defined because σ⊥ ⊆ τ⊥ and Sσ′ ⊆ Sσ. It is a semi-group homomorphism because γ is.

Now let γ̃ : Sσ′ ∩ τ⊥ → C be a semi-group homomorphism. Then σ′ is a face of itself containing τ by
assumption. We define

γ : Sσ′ → C

m 7→

{
γ̃(m) if m ∈ σ′⊥ ∩M,

0 otherwise.

But this set corresponds exactly to the affine toric variety Spec(C[Sσ′ ∩τ⊥]) = Spec(C[(σ′)∨∩M ∩τ⊥])
which is the variety of the ideal generated by the χm with m ∈ τ⊥ ∩ (σ′)

∨ ∩M .

Solution 12.4. (i) From Theorem 3.1.7 in the book, we know that every point p ∈ X has a TN -invariant
affine open neighboorhood, let call it Up. Then ∀p ∈ X, Up is normal (because OX,p ≃ OUp,p and X is
normal) and irreducible, as a non-empty open in an irreducible set. Therefore each Up is a normal affine
toric variety and from Theorem 1.3.5 of the book, there exists a strongly convex rational polyhedral
cone σp such that Up = Spec(C[Sσ]) = Uσp

.

Therefore, (Uσp
)p∈X is an open cover of X with affine toric varieties and by quasi-compactness we can

find a finite number of points {p1, ..., pn} such that X =
⋃n
i=1 Ui where Ui := Uσpi

.

Moreover, since Ui and Uj are affine open subsets of the separated variety X, their intersection is also
affine.
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(ii) Let Uσi
= Ui ∀i, then Ui ∩ Uj is TN -invariant since both Ui and Uj are, it is non-empty open in the

irreducible Ui so it is irreducible. Moreover, it is normal since OUi∩Uj ,p = OUi,p for any p ∈ Ui ∩ Uj
and Ui is normal. From point 1, we know that it is affine. Therefore, Ui ∩ Uj is an affine toric variety
corresponding to a cone τ . Let us show that Ui ∩ Uj = Uσi∩σj

.

Using question 3. of the same exercise, we have that σi ∩ σj is a face of both σi and σj . By exercise
3.2.9 of the book, we have that Uσi∩σj

is an affine open subset of both Uσi
and Uσj

. In particular,
Uσi∩σj ⊆ Uσi ∩ Uσj .

Moreover, both Uσi∩σj and Uσi ∩ Uσj are open and irreducible in Ui, so they are both of maximal
dimension dimUi. As an affine toric variety, Uσi∩σj

has a unique TN -invariant subvariety of maximal
dimension (which is Uσi∩σj

). It has to coincide with Uσi
∩Uσj

since it is TN -invariant and of maximal
dimension.

(iii) Let us show WLOG that σi ∩ σj is a face of σi. We have that σi ∩ σj ⊆ σi and Uσi∩σj is open in Uσi .
From exercise 3.2.9 of the book, it follows that σi ∩ σj is a face of σi.

(iv) The collection of cones σi and their faces verifies the definition of a fan. Indeed, all cones are strongly
convex rational polyhedral. Moreover, point 3. of the exercise exactly corresponds to the third condition
in the definition of a fan (see Definition 3.1.2 in the book). Point 2. of the exercise corresponds to the
gluing condition for XΣ : X is constructed exactly as XΣ from all its cones and faces so that X ≃ XΣ.

15.13 Solutions to Chapter 13

Solutions written by Julie Estelle Marie Bannwart

Solution 13.1. If Σ is a fan in NR, fix an integer 0 ≤ q ≤ rankN =: n. For all 1 ≤ p ≤ n− 1, we want to
show that the composition

Cp−1(Σ,Λq)
δp−1

−→ Cp(Σ,Λq)
δp−→ Cp+1(Σ,Λq)

is the zero map. It suffices to show this in these degrees, because if Cp(Σ,Λq) is non zero then
0 ≤ q ≤ p ≤ n.

In particular, it suffices to show that the compositions:

ΛqM(τ)
⊕

τ ′∈Σ(n−(p−1))

ΛqM(τ ′)
⊕

σ′∈Σ(n−(p+1))

ΛqM(σ′) ΛqM(σ)δp◦δp−1

are the zero maps (where the first map is the inclusion of a summand, for any fixed τ ∈ Σ(n− (p− 1)), and
the last map is the projection on one of the summands, for any fixed σ ∈ Σ(n− (p+ 1))).

From the definition of the differentials summand by summand, this composition is given by:

∑
σ′∈Σ(n−p)
σ≼σ′≼τ

cσ′,σcτ,σ′ιqσ′,σ ◦ ι
q
τ,σ′ =

 ∑
σ′∈Σ(n−p)
σ≼σ′≼τ

cσ′,σcτ,σ′

 ιqτ,σ

where, ιqτ,σ : ΛqM(τ) → ΛqM(σ) denotes the map induced by the inclusion M(τ) = τ⊥ ∩M ⊆ σ⊥ ∩M =
M(σ) and the coefficients cτ,σ′ keep track of the orientation: for a chosen orientation on every cone in Σ,
cτ,σ′ has value 1 if the orientation induced by our chosen orientation of τ on σ′ agrees with the one we chose
for σ′, and −1 if it induces the other orientation (and 0 if σ′ is not a face of τ). So we only have to show
that the sum on the right hand side of the above equation vanishes. Note that this sum has exactly two
terms. Indeed:
Claim: A face σ of codimension 2 in a strongly convex polyhedral cone τ is contained in exactly two facets
of τ .
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Proof of the claim: First of all, σ is contained in at least two facets, because any face of such a cone was
the intersection of the facets containing this face. In particular, if σ was contained in only one facet, then
it would be itself a facet, which contradicts the fact that σ has codimension 2 in τ . To show that σ cannot
be contained in three distinct facets or more, recall that there is an inclusion-reversing bijection between
the faces of τ and the faces of its dual cone τ∨, that exchanges dimension and codimension. Assume by
contradiction σ is contained in three facets of τ or more. Then, in the dual cone τ∨, the dual face τ∗ is a
vertex, and σ∗ is some face of dimension 2 containing τ∗. It has at least three edges, all containing τ∗, one
for each facet of τ that contains σ. Embedding the two dimensional cone σ∗ in the plane, it is now clear
that it cannot have three edges all containing its vertex τ∗, because such cones in the plane either have one
or two edges. This is a contradiction, and finishes the proof of our claim.

Let σ1 and σ2 be the two facets of τ that contain σ. Pick an R-basis B ⊆ σ of spanσ, positively oriented.
Let ui ∈ σi \ σ for i = 1, 2. In particular, B ∪ {ui} ⊆ σi is an R-basis of spanσi and since σ1 ̸= σ2, we must
have u2 /∈ σ1 and therefore B ∪ {u1, u2} ⊆ σ is an R-basis of spanσ.

� Assume first that cσ1,σ = 1. This means that (B, u1) is positively oriented with respect to the orientation
on σ1. Hence cσ,τ = sgn(B, u1, u2) (the orientation of this basis). If on the contrary cσ1,σ = −1, then
−cσ1,τ = sgn(B, u1, u2) (orientation of the basis (B, u1, u2)). Hence cσ1,σcσ1,τ = sgn(B, u1, u2) in both
cases.

� Proceeding similarly with σ2 we obtain cσ2,σcσ2,τ = sgn(B, u2, u1).

� Therefore the sum we have to compute rewrites sgn(B, u1, u2) + sgn(B, u2, u1) = 0, because swapping two
vectors in a basis reverses the orientation.

This concludes the proof; (C•(Σ,Λ), δ) is indeed a chain complex.

Solution 13.2. To fix notation, here is a representation of the fan of P2 described in the exercise, in NR = R2

for N = Z2.

(i) On the cones of dimension 2 in the fan, we choose the orientation induced by the standard orientation
on R2, where (e1, e2) is positively oriented. On the cones of dimension 1 we choose the vectors e1, e2
and −e1− e2 respectively as positively oriented basis. Here the rank of N is 2. Hence we only have to
compute Cp(Σ,Λq) when 0 ≤ q ≤ p ≤ 2.

� q = 0: By definition, for any 0 ≤ p ≤ 2, Cp(Σ,Λ0) =
⊕

τ∈Σ(2−p) Λ
0M(τ). Since for Λ0A = Z for

any abelian group A, we obtain:

p = 0 p = 1 p = 2

Zσ0 ⊕ Zσ1 ⊕ Zσ2 Zτ0 ⊕ Zτ1 ⊕ Zτ2 Z{0}

1σ0
1τ1 − 1τ2 1τ0 1

1σ0
1τ2 − 1τ0 1τ1 1

1σ0 1τ0 − 1τ1 1τ2 1

δ0 δ1
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The facets of σ0 are τ1 and τ2. We have cσ0,τ1 = 1 and cσ0,τ2 = −1: indeed the positively oriented
basis (e1) ⊆ τ1 of span τ1 can be completed by e2 ∈ σ0 \ τ1 into the basis (e1, e2) ⊆ σ0 of spanσ0,
which is positively oriented; whereas the positive basis (e2) of τ2 can be completed by e1 ∈ σ0 \ τ2
into the negatively oriented basis (e2, e1) of spanσ0. The other orientation coefficients are
computed in the same way. For δ1, the orientation induced on {0} necessarily agrees with the
chosen one, the only degenerate one that exists.

� q = 1: For all 0 ≤ i ≤ 2, σ⊥
i = {0}, hence Λ1M(σi) = 0. We also have τ⊥0 ∩M = Z(e1 − e2),

τ⊥1 ∩M = Ze2, τ⊥2 ∩M = Z(−e1). Finally, Λ1M({0}) = Ze1 ⊕ Ze2. We obtain:

p = 0 p = 1 p = 2

0 Z(e1 − e2)⊕ Z(e2)⊕ Z(−e1) Ze1 ⊕ Ze2

1 · (e1 − e2) 1 · e1 ⊕ (−1) · e2

1 · e2 0 · e1 ⊕ 1 · e2

1 · (−e1) (−1) · e1 ⊕ 0 · e2

δ0 δ1

Again all orientation coefficients appearing in the definition of δ1 are equal to 1, and the map is
induced by the inclusions τ⊥i ⊆ {0}⊥.

� q = 2: We only have to consider p = 2. We have

Λ2M({0}) = Λ2(Ze1 ⊕ Ze2) ∼= Z(e1 ∧ e2)

and we obtain:
p = 0 p = 1 p = 2

0 0 Z(e1 ∧ e2)δ0 δ1

(ii) By Theorem C.2.5 [CLS], a filtration of a topological space provides us with a spectral sequence
converging to the compactly supported cohomology of the space. Applying this to the filtration for XΣ,
by Proposition 12.3.5 of [CLS], we have Cp(Σ,Λq) = Ep,q1 ⇒ Hp+q

c (X;Z), and Ep,q2 = Hp(C•(Σ,Λq)).
If we show that Ep,q2 = 0 for all p ̸= q, we can conclude by exercise 4.a) below that:

∀k ∈ N, H2k(XΣ,Z) = H2k(P2,Z) = Ek,k2

and the other cohomology groups are zero (we can consider the usual cohomology instead of the
compactly supported ones, because we know that the projective plane P2 is compact; one way to
see this is to invoke a theorem saying that if the fan Σ is complete, which is the case here because
σ0 ∪σ1 ∪σ2 = R2, then the variety XΣ is compact). Computing the sheet E2 of this spectral sequence
yields:
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For q = 2, this is easy to see, since only one group in the complex C•(XΣ,Λ
2) does not vanish.

For q = 1, we have E1,1
2 = H1(C•(Σ,Λ1)) = ker(δ1) ∼= Z because this kernel is free abelian as a

subgroup of a free abelian group, and has rank 1 by the null-rank theorem for abelian groups, because
the domain has rank 3 and the image has rank 2 (indeed δ1 is surjective because its image contains
e1 and e2 (image of (−1) · (−e1) and 1 · e2 respectively)). Because of this surjectivity we also get
E2,1

2 = H2(C•(Σ,Λ1)) = coker δ1 = 0.

For q = 0, δ1 is clearly surjective and hence as before E2,0
2 = 0. We also note that ker δ1 = Im δ0

hence E1,0
2 = 0. Finally, ker(δ0) is a free abelian group of rank 1 because the domain has rank 3

and the image of the map has rank 2; indeed 1τ1 − 1τ2 and 1τ2 − 1τ0 are Z-linearly independent, and
1τ0 − 1τ1 = −(1τ2 − 1τ0)− (1τ1 − 1τ2). Hence E0,0

2
∼= Z.

So we conclude as explained above that

Hk(P2,Z) ∼=

{
Z if k ∈ {0, 2, 4}
0 otherwise

Solution 13.3. By Theorem 3.3.4 of [CLS], φℓ
∣∣
TXΣ

is given by the map φℓ ⊗ C∗ : N ⊗Z C∗ → N ⊗Z C∗,

up to the isomorphism TXΣ
∼= N ⊗Z C∗. Choose an isomorphism N ∼= Zn and let e1, . . . , en be a Z-basis of

N corresponding to the canonical basis in Zn. Then, any (t1, . . . , tn) ∈ TXΣ
∼= N ⊗Z C∗, identified via this

isomorphism with
∑n
i=1 ei ⊗ ti, is mapped by φℓ to

n∑
i=1

(l · ei)⊗ ti =
n∑
i=1

(ei ⊗ ti + · · ·+ ei ⊗ ti)︸ ︷︷ ︸
ℓ times

=

n∑
i=1

ei ⊗ tℓi ( since we consider C∗ with multiplicative structure)

which corresponds via the same isomorphism to (tℓ1, . . . , t
ℓ
n) ∈ TXΣ , as desired.

To consider the map φ∗
ℓ induced in cohomology by φℓ, we first have to make sure that φℓ preserves O(τ).

By Theorem 3.3.4, φℓ is a toric map. Hence it is equivariant with respect to the action of the torus, so the
image of any orbit is contained in another orbit. In particular, to check that φℓ(O(τ)) ⊆ O(τ), it suffices to
show that there exists x ∈ O(τ) with φℓ(x) ∈ O(τ). Let x = γτ be the distinguished point for τ . Then,
pick any u ∈ RelInt(τ) (the relative interior is empty if and only if τ is the zero cone. But then
O(τ) = O({0}) is the torus of XΣ, so we already know it is preserved by any toric morphism). By
Proposition 3.2.2 in the book, we have limt→0 λ

u(t) = γτ . Therefore, by continuity,
φℓ(γτ ) = φℓ(limt→0 λ

u(t) = limt→0 φℓ(λ
u(t)). Because λu(t) belongs to the torus of XΣ for any t ∈ C∗, by

the first part φℓ just raises it to the ℓ-th power, so that φℓ(γτ ) = limt→0 φℓ(λ
u(t)) = limt→0 λ

ℓ·u(t) = γτ ,
because ℓ · u ∈ RelInt(τ) since ℓ > 0. Hence φℓ preserves O(τ).

Let 0 ≤ p ≤ n and consider τ ∈ Σ(n−p). Then, we have in cohomology the following commutative diagram:

Hq
c (O(τ),Q) Hq

c (O(τ),Q)

Hq
c (TN(τ),Q) Hq

c (TN(τ),Q)

(
∧
M(τ))(q) = ΛqM(τ) (

∧
M(τ))(q) = ΛqM(τ)

((ℓ·)∨)Λ
q

≀ ≀

φ̂∗
ℓ

φ∗
ℓ

f∗ f∗

with φ̂ℓ the map induced on TN(τ), by the map of lattices φ̃ℓ : N(τ)→ N(τ) induced by φℓ (since N(τ) is a
quotient ofN). The vertical isomorphisms on the second row come from the fact thatH∗

c (TN(τ),Q) ∼=
∧
M(τ)

as algebras, and the exponent (q) denotes the degree q part. The vertical map f∗ is the map induced in
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cohomology by the isomorphism f : TN(τ)
∼= O(τ). For this diagram to commute we have to check that

φℓ ◦ f = f ◦ φℓ. The situation is the following:

O(τ) O(τ)

TN(τ) = N
/
⟨τ ∩N⟩⊗Z C∗ TN(τ)

N ⊗Z C∗ = TN N ⊗Z C∗ = TN

π⊗C∗

t 7→t·γτ

f

φ̃ℓ⊗C∗

f

φℓ

π⊗C∗

φℓ⊗C∗

t 7→t·γτ

The top square commutes if and only if the precomposition of the two different possible maps by the
surjective map π⊗C∗ are equal. This holds because the lower square commutes (mutliplication by ℓ on the
lattice commutes with taking the quotient) and the outer rectangle too (the map φℓ obtained from
Theorem 3.3.4 is toric and hence equivariant under the action of the torus, and we have seen φℓ(γτ ) = γτ ).

The map (ℓ·)∨) appearing on the previous diagram is dual to the multiplication by ℓ on N(τ), hence it is
also multiplication by ℓ on M(τ). We are taking its q-th exterior power, hence it multiplies each of the q
terms in a form by ℓ, by multilinearity we obtain that the map ((ℓ·)∨)Λq

is multiplication by ℓq. Hence also
φ∗
ℓ on the top of the diagram is multiplication by ℓq.

Solution 13.4.

(i) Denote the filtrations with respect to which we have convergence by

0 = F k+1Hk ⊆ F kHk ⊆ · · · ⊆ F 1Hk ⊆ F 0Hk = Hk for all k ∈ N.

Since the E2 sheet has only non-zero modules on the diagonal, the 0-th homology of the complexes it
defines consists exactly of these modules on the diagonal, and 0 elsewhere. In particular the sequence

degenerates at sheet E2 and Ep,q∞ = Ep,q2
∼= F pHp+q

/
F p+1Hp+q for all p, q ∈ Z.

Fix k ∈ N. Then, for all j ≤ 2k + 1, j ̸= k, it holds that

F jH2k
/
F j+1H2k = Ej,2k−j∞ = Ej,2k−j2 = 0

since j ̸= 2k − j. In particular,

F 2k+1H2k = F 2kH2k = · · · = F k+1H2k = 0

H2k = F 0H2k = F 1H2k = · · · = F kH2k = F kH2k
/
F k+1H2k = Ek,k∞ = Ek,k2 .

And for all j ≤ 2k + 2, we have

F jH2k+1
/
F j+1H2k+1 = Ej,2k+1−j

∞ = Ej,2k+1−j
2 = 0

since 2k+1− j ̸= j because 2k+1 ̸= 2j for parity reasons. Hence all groups in the filtration are equal
to F 2k+2H2k+1 = 0, and H2k+1 = 0.

(ii) By the way we defined the complexes C•(Σ,Λ•), the modules Ep,q1 in the first sheet E1 are all of finite
rank and vanish outside of the square 0 ≤ p, q ≤ n. In particular, the sum introduced in the exercise
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is finite. For all r ≥ 1, we compute, using the analog of the null-rank for abelian groups:

χ(Er+1) =
∑
p,q∈Z

(−1)p+qrankEp,qr+1

=
∑
p,q∈Z

(−1)p+qrankH0(Ep+•·r,q−•·(r−1)
r ) (by definition)

=
∑
p,q∈Z

(−1)p+qrank
(
ker(Ep,qr → Ep+r,q−r+1

r )
/
Im(E

p−r,q−(r−1)
r → Ep,qr )

)
=
∑
p,q∈Z

(−1)p+q(rank (ker(Ep,qr → Ep+r,q−r+1
r ))− rank (Im(Ep−r,q−(r−1)

r → Ep,qr )))

=
∑
p,q∈Z

(−1)p+q(rank (Ep,qr )− rank (Im(Ep,qr → Ep+r,q−r+1
r ))

− rank (Im(Ep−r,q−(r−1)
r → Ep,qr )))

= χ(Er) +
∑
p,q∈Z

(−1)p+q+1rank (Im(Ep,qr → Ep+r,q−r+1
r ))

−
∑

p′,q′∈Z
(−1)p

′+r+q′+r−1rank (Im(Ep
′,q′

r → Ep
′+r,q′−r+1
r ))

( by setting p′ = p− r and q′ = q − (r − 1))

= χ(Er) (because (−1)p′+r+q′+r−1 = (−1)p′+q′+1.)

(iii) Since the spectral sequence degenerates at E2 (Proposition 12.3.10 [CLS]), it holds that:

χ(E∞) :=
∑
p,q∈Z

(−1)p+qrankEp,q∞ =
∑
p,q∈Z

(−1)p+qrankEp,q2 = χ(E2) = χ(E1)

by the previous question.

Hence, since Ep,q1 ⇒ Hp+q
c (XΣ,Z) =: Hp+q, we have:

χ(XΣ) =

2n∑
k=0

(−1)krankHk
c (XΣ,Z)

=

2n∑
k=0

(−1)k
k∑
j=0

rank
(
F jHk

/
F j+1Hk

)

=

2n∑
k=0

(−1)k
k∑
j=0

rank (Ej,k−j∞ )

=
∑

0≤q,j≤2n

(−1)q+jrank (Ej,q∞ ) (setting q = k − j)

= χ(E∞) ( Ep,q∞ = 0 when p ̸= q or p > n or q > n)
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In particular,

χ(XΣ) = χ(E1) =
∑
p,q∈Z

(−1)p+qrank (Cp(Σ,Λq))

=
∑

0≤q≤p≤n

(−1)p+q
(
p

q

)
|Σ(n− p)|

=

n∑
p=0

(−1)p|Σ(n− p)|
p∑
q=0

(−1)q
(
p

q

)

=

n∑
p=0

(−1)p|Σ(n− p)|δp=0(p)

= |Σ(n)|

because for all x ∈ R and p ≥ 1, (x − 1)p =
∑p
q=0

(
p
q

)
xp−q(−1)q. Inserting x = 1, we obtain that∑p

q=0(−1)q
(
p
q

)
is equal to 0. For p = 0 the sum has a single term equal to 1. This finishes the proof.
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