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Chapter 0. Preface

The present manuscript grew out of the student seminar in pure mathematics at EPFL (organized by Dimitri
Wyss as main lecturer, and Sergej Monavari as teaching assistant), which took place in the Fall semester of
2023. The goal was to get familiar with the basics of toric varieties following the book of Cox-Little-Shenck
crLsf

The seminar consisted of 2 hours of lectures and 2 hours of exercises per week for 14 weeks. Lectures, notes
and solutions were given and written by the students participating the seminar course.

In the first chapters, we recall the basics of affine varieties, and all the background material concerning
normality, smoothness and other basic properties of affine varieties. Then we introduce algebraic tori and
affine toric varieties, and the combinatorial language needed to describe them, comprising cones, polyhedra,
lattices and operations among them. In the second part of the course, projective varieties and abstract
varieties are recalled, in order to study projective toric varieties — and their associated fan — and abstract
toric varieties, arising from their combinatorial counterpart, the normal fans. At the end, the language of
toric varieties is applied to present a (part of the) solution of McMullen’s conjecture, following Stanleyﬂ
Again, the necessary background for the singular cohomology and spectral sequences is introduced.

Every chapter ends with a few exercises, whose solutions can be found at the end of the notes.

We finish by taking all responsabilities for possible typos and mistakes that you could find in these notes.

ID. Cox, J. Little, H. Schenck, Toric varieties, Graduate Studies in Mathematics 124. Providence, RI: American
Mathematical Society (AMS) 841 p. (2011).
2R. Stanley, The number of faces of a simplicial convex polytope, Adv. Math. 35, 236-238 (1980).



Chapter 1. Affine varieties

Chapter written by Prof. Dimitri Wyss

1.1 Reminder on affine varieties

For the duration of the seminar an affine (algebraic) variety V' is the zero-set of an ideal I C S = Clzy, ..., ]
for some positive integer n i.e.

V=VI)={peC"| f(p)=0forall fel}.
To V we may associate its coordinate ring
Clv] = 5/1(V),

where I(V) = {f € S | f(p) =0 for all p € V}. One should think of C[V] as the ring of functions on V in
the category of algebraic varieties. Next we recall a few facts about these objects:

e (Hilbert’s basis theorem) Any I C S is finitely generated, thus V is the zero-set of finitely many
polynomial equations.

(Hilbert’s Nullstellensatz) Since C is algebraically closed

I(V(I)=+/I)={f eS| f el for some s >1}.
In particular, C[V] is reduced i.e. does not contain any non-zero nilpotent elements.
e C[V] is an integral domain <= I(V) is prime <= Vis irreducibleﬂ

e The category of affine algebraic varieties is equivalent to the (opposite) category of finitely generated
reduced C-algebras. In particular V' 2 W if and only if C[W] = C[V].

e Affine subvarieties of V correspond to ideals in C[V]. In particular a point p € V corresponds to the
maximal ideal

my, =my, ={f € C[V]| f(p) =0}.

Given a finitely generated reduced C-algebras R we use the notation Spec(R) for the corresponding variety.
Usually the spectrum of a ring consists as a set of all prime ideals in R, but in light of the last bullet point,
one should rather think of Spec(R) as the set of all maximal ideals in R in this seminar.

1.1.1 Topologies and open affines

An affine variety V admits two natural topologies. The classical or Fuclidean topology by considering V' as
a subspace of C" and the Zarisiki topology, where the closed sets are subvarieties of V. For now we will
work with the Zariski topology.

An important class of open subset of an affine variety V are the affine opens: For any f € C[V]\ {0} consider

Vi={peV|[[flp)#0} =V \{f=0}
If we let g € Clzy, ..., z,] be a lift of f, then we can identify V; with the affine variety
V(I, g2z, —1) C C™TL

If V is irreducible, C[V] is an integral domain and can describe the coordinate ring of V; as a subring of the
field of fractions C(V):

Clvy] ={n/f' € C(V) | heC[V], I > 0}.
In other words C[Vy] = C[V];, where C[V]; denotes the localization of C[V] at the multiplicative subset
{1, f,f%,...}. The following example will be crucial in this seminar:

30ther authors often require an (affine) algebraic variety to be irreducible



Example 1.1. If V = C" and f = z123...2,. Then V; = (C*)™ and
C[Vf] = C[xitlv ce axfl}’

the ring of Laurent polynomials.

1.1.2 Normality and smoothness

Normality is a somewhat strange property of a variety, but will have a very nice interpretation for toric
varieties. Recall that an integral domain R with field of fractions K is normal, or integrally closed, if every
element of K which is integral over R (i.e. the root of a monic polynomial with coefficients in R) already
lies in R. For example any UFD is normal.

Definition 1.2. An irreducible affine variety V' is normal if C[V] is.
Example 1.3.
e C" is normal since C[zy,...,x,] is a UFD.

e V =V(23—y?) C C?is not normal. Let Z,7 the the images of z, y in C[V]. Then a small computation
shows that y/z € C(V) \ C[V] but (7/7)* = 7.

Given an irreducible affine variety V one can always pass to a normal variety V'’ by considering the integral
closure

C[V] ={a € C(V) | « is integral over C[V]}.

Then C[V]' is a reduced (contained in C(V)), integrally closed and finitely generated (this is non-triviall)
C-algebra. We define

V' = Spec(C[VT])
and call it the normalization of V. The inclusion C[V] C C[V]’ corresponds to a morphism V' — V called
the normalization map.

Example 1.4. For V = V(22 — y?) the normalization is given by C[y/Z] and the map C — V, t s (£2,t3)
is the normalization map.

1.2 Exercises

Exercise 1.1. Let V' C C" be an affine algebraic variety and f € C[V]\ {0}. Show that there is a natural
bijection between the open Vi C V and V(I(V), 2,419 — 1) C C*!, where g € Clz1, ..., z,] is any lift of f.
If V is irreducible, deduce from this the identification C[Vy] = C[V];, where C[V]; denotes the localization
of C[V] with respect to {1, f,...}.

Exercise 1.2. Prove that any UFD is normal.

Exercise 1.3. Let V = V(23 —y?) be a cusp. Show that the normalization of V is given by C[y/Z] C C(V),
where 7,7 denote the images of x,y in C[V]. Deduce that the morphism C — V, t — (¢2,¢3) is the
normalization map.

Exercise 1.4.

(a) Let R be a normal domain with field of fractions K and let S C R be a multiplicative subset. Prove
that the localization S™!R is normal.

(b) Let Ry, i € I be normal domains with the same field of fractions K. Prove that the intersection (1., R;
is normal.



Chapter 2. Smoothness and algebraic tori

Chapter written by Julie Bannwart after the talk of Dimitri Wyss

2.1 Smooth affine varieties

Intuitively, smoothness for a variety carries the same idea as for manifolds: the absence of “corners”,
“wrinkles”, “cusps” etc. In the algebraic setting, there are different characterizations of this notion.

Definition 2.1. Let V' be an affine variety and p € V. We denote by m,, the maximal associated with p in
C[V]. The local ring Oy, or simply O, of V' at p is the localization of C[V] at m,:

Op = (C[V]\ m,)~'C[V],
and we denote its unique maximal ideal by m,,.

Note that if V' is irreducible, then C[V] is a domain and O, = {5 e C(V)|g(p) # O} can be seen as a
subring of the fraction field C(V') of C[V].
Smooth varieties should come, like smooth manifolds, with a notion of a tangent space at any point:

Definition 2.2. The Zariski tangent space of V' at p is the C-vector space:
T,(V) = Homc (mp/mg,(c) = (mp/mf,> ;

where (—)* denotes the dual of a C-vector space.

Example 2.3. Let f € Clz,y] non constant, and V' := V(f) the associated affine plane curve. Assume
p=(0,0) € V and let 7, 7 be the images of  and y in O, v, so that m, = (Z,7). Then:

rnp/rn?j = (Tvy)/(EQ’Ty’gz).

We have dim¢ 7,(V) = dimg (mp /m§> < 2 because this C-vector space is generated by the classes of  and
Y in the quotient.

Actually this dimension is even equal to 2 unless there is some relation between T and 7, due to f, i.e. unless
f contains a linear summand, or equivalently if its derivative does not vanish at the origin.

Lemma 2.4. Let V C C" be an affine variety and p € V. Let fi,..., fs be generators of (V) (which exist
by Noetherianity of Clx1,...,x,]), and define for 1 <i < s linear polynomials:

afi Ofi
o, P) 14+ E(P) “xn € Clay, ..., xy).

dp(fi) =
Then T,,(V') is isomorphic to the vector subspace of C" defined by the linear equations dp(f1) = --- = dp(fs) =
0. In particular, dimc T,(V) < n.
Proof. Omitted. O

Continuing our analogy with manifolds, smoothness means that there are as many tangent directions at any
point as the dimension of our object, and we have a local approximation of it by a vector space. Therefore
to define smoothness, we first need a local notion of dimension for varieties:

Definition 2.5. The dimension of V' at p for V an affine variety and p € V' is the Krull dimension of O, v :

dimp(V) = dimKrull Op,V



This definition may hide some subtleties when V' is not irreducible, the dimension might not be the same in
every point. But if V' is irreducible, it is basically the Krull dimension of the coordinate ring of the variety.
Geometrically, dim, (V') is the maximum of the dimensions of the irreducible components of V' containing p.

Example 2.6. Let V := V(zy,yz) C C3. It decomposes in irreducible components as V(x,2) U V(y). We
may represent this variety, and several points together with the dimension of the variety at these points, if
we imagine working over R, as follows:

.0

odim L

According to the above discussion about smoothness being characterized by the number of tangent directions,
we now want to define:

Definition 2.7.

e A point p in an affine variety V is called smooth or non singular if dim, (V') = dim¢ T,(V).
e The point p is singular if it is not smooth.

e The variety V is smooth if all its points are smooth.

Remark 2.8. Any point lying on two or more irreducible components of V' is singular, in particular a
smooth and connected variety is irreducible. We leave the proof of this fact as an exercise.

Lemma 2.9. (Jacobi criterion) For V irreducible, andp € V.=V (f1,..., fs) with f1,..., fs € Clxy,..., 2],
the point p is smooth if and only if the Jacobian matrix

dfi
It = (5w)
J i<s, j<n

has rank n — dim, (V') (the dimension doesn’t actually depend on p here).

Example 2.10. Let V = V(zy — z2w) C C* Then for f = zy — 2w, we have J,(f) = (yp, T, —wp, —2z,) for
any p = (2, Yp, 2p, wp) € CL. Therefore by the Jacobi criterion (since f is irreducible), the singular points
of V are exactly the points p such that rank(J,(f)) # 4 — dim(V) = 1, i.e. the points such that J,(f) = 0.
Therefore V' has a unique singular point p = (0,0, 0,0).

Combining the definitions above, we get that a point p € V is smooth if and only if O, is such that

dim¢ (mp /m?]) = dimk,u1 Op. We give a special name to this property:

Definition 2.11. A local ring R with unique maximal ideal m and residue field k = R/ m is called regular
if dimy, (m/m2) = dimgun R

This property has a basic consequence that we will not prove:

Theorem 2.12. Any regular local ring is a UFD.



Remark 2.13. For local, finitely generated C-algebras of Krull dimension 1, being regular is equivalent to
being a PID. Indeed, by Theorem regularity implies being a UFD, but by standard facts of commutative
algebra, a Noetherian UFD with Krull dimension 1 is a DVR, and for a DVR being a UFD is the same as
being a PID (and finitely generated C-algebras are Noetherian). Conversely any local PID that has Krull
dimension 1 is not a field, and is regular: let p be a generator of the maximal ideal, then p # 0 and (p) / (p)?

admits as a basis over C the image of p in the quotient.
Proposition 2.14. Any smooth irreducible affine variety is normal.

Proof. If V is an irreducible variety, then C[V] is a domain, so by standard commutative algebra, we have:

CVvi= (] CWVlu=[)0
m<C[V] peEV
maximal ideal

viewing localizations of C[V] as subrings of its fraction field C(V).

If further V' is smooth, by Theorem [2.12|above, O, is a UFD for all p € V, so by Exercise O, is normal
for all p € V. By Exercise C[V] = Nyey Op is then itself normal. By definition, this means that the
variety V is normal. O

Normality is one type of “regularity condition” that one can impose on a variety. Smoothness is another
one, and it is stronger, by the proposition we just showed. Actually, smoothness is the strongest regularity
condition for varieties that one usually asks for.

2.2 Product varieties

Given two affine varieties V' C C” and W C C™, their product as a set is naturally again an affine variety.
Indeed, letting I = I(V') and J = I(W), we have that V x W = V((I,J)) C C"*™ where I is embedded in
Clx1,. .., Tntm) in variables z1,...,z, and J is embedded in the same polynomial ring by considering the
polynomials in J as having variables x,y1,...Zn4m. As for the ring of regular functions:

Proposition 2.15. In the setting above, C[V x W] = C[V] ®c C[W].
Proof. Exercise [2.2 O

We could also have defined V' x W as the variety associated with the ring C[V] ®¢ C[W], if we proved that
the latter was a finitely generated reduced C-algebra, and then check that V' x W defined in this way enjoys
the universal property of the product for V and W as varieties.

Remark 2.16. The Zariski topology on V' x W as an affine variety is in general not the product topology.
For instance, C x C with the product topology has irreducible closed sets:

(0,C x CYU{{c} x C, {e} x {d},C x {d} | e,d € C},

whereas C? has more irreducible closed subsets in the Zariski topology, for instance all irreducible plane
curves like the parabola.

2.3 Algebraic tori

Definition 2.17. A torus is an affine algebraic variety T isomorphic to (C*)" for some n € N (the latter
is a variety, see example 1.1 in notes for week 1). In particular, T is an algebraic group since (C*)™ is. Let
then dim T = n.

We do not define a torus as being the variety (C*)™ itself for some n € N in the same way as we do not
define a finite dimensional vector space over C to be C™ itself for some n € N, the latter corresponding to
fixing a basis in our vector space. We do not want to make such non-canonical choices, which is one of the
reasons why we only ask for something isomorphic to one of the varieties (C*)", for n € N.

10



2.3.1 Characters of tori
Definition 2.18. A character of a torus T is a homomorphism of (algebraic) groups x : T — C*.

Example 2.19. Consider the torus (C*)" itself for some n € N. Every n-uple of integers m := (aq,...,a,) €
Z" defines a character x™ : (C*)” — C* mapping (t1,...,tn) > 77 -+ - ton.

Proposition 2.20. All characters of the torus (C*)™ are of the form x™ for some m € Z", as defined in
Ezample[2.19

Proof. (Sketch) Let x be a character on this torus. Then it corresponds to a map between the rings of
regular functions on the varieties C* and (C*)™, i.e. Example to a ring homomorphism

¢ :Clz,z7 '] — Clzy, 27, ..., Tn, 2, 1)

Since x is a unit in the first ring, it gets mapped to a unit, and one can show that this implies that

o(x) = A-xft - a8 for some m = (a1,...,a,) € Z"™ and A € C*. Since x is a group homomorphism,
x(1,...,1) =1, so really identifying the polynomials in the domain and codomain of ¢ as regular functions
on our varieties, we have: ¢(z)(1,...,1) = A = z(x(1,...,1)) = 1. Going back from rings to varieties, we
get x(t1, ... tn) =01 80 V(tq, ..., t,) € (C*)™. O

Proposition 2.21. Characters on a given torus T form an abelian group (M, +), with (x+x')(t) := x (&)X (t)
for allt € T. This group of characters is isomorphic to Z", i.e. the characters of T form a lattice of rank
dim T (namely a free abelian group of this rank).

Indeed, note that in Example above, the addition of characters we defined, i.e. pointwise multiplication,
correspond to addition of the associated vectors in Z".

Notation. We write x™ : T'— C* for the character represented by m € M.
Proposition 2.22.

o Let ¢ : Th — Ty be an (algebraic) group homomorphism of tori. Then the image of ¢ is a closed
subtorus of Ts.
o Let T be a torus and H < T be an irreducible subgroup. Then H is a torus.
Note that this result does not hold for non-irreducible subgroups in general: consider the subgroup V (z" —

1) € C* in a one-dimensional torus (the group of n-th roots of unity in C*) for n > 2. It is not a torus, but
consists instead of n distinct points (so it is not irreducible).

Proposition 2.23. Let T be a torus acting by linear maps on a finite dimensional C-vector space W, i.e.
there is a group homomorphism S : T — GLc(W). Then there exists a basis of W, such that the induced
map T — GL,(C) factors through the diagonal torus (C*)" C GL,(C) (corresponding to diagonal matrices).

Namely we can simultaneously diagonalize all matrices in the image of S. This is a generalization of the
fact that if two diagonalizable matrices commute, then there exists a basis in which they are both diagonal.
Here all matrices in the image of S commute, because T is abelian as a group.

In representation theory, characters can be used to decompose representations. Characters on tori can be
used with the same purpose, and provide an analog of Proposition without having to choose a basis:
Proposition 2.24. In the setting of Proposition[2.23, define for any character m € M the subspace:

W ={weW|St)(w)=x"{t)w Vvt eT}.

Then W decomposes as a direct sum: W = @ Won.
meM

The spaces W, correspond to some kind of common eigenspaces for all transformations in the image of S.
In particular, if Wy, # {0}, it means that the character x™ “detects eigenvalues”: for any ¢t € T, x™(¢t) is
an eigenvalue of S(t).

11



2.3.2 One-parameter subgroups of tori
Definition 2.25. A one-parameter subgroup of a torus T' is a homomorphism of algebraic groups A : C* — T.

Example 2.26. Similarly to Example[2.19] any n-tuple of integers corresponds to a one-parameter subgroup
of (C*)™: indeed to u := (by,...,b,) € Z™, we can associate the one-parameter subgroup A* such that
AU(t) = (tbr, ..., tb») for all t € C*.

Proposition 2.27. All one parameters subgroups of (C*)™ are of the form A\“ for some u € Z™, as defined
in Example[2.26. In general one-parameter subgroups of a torus T form a lattice N of rank dimT'.

Notation. We write \* : C* — T for the one-parameter subgroup represented by v € N.

2.3.3 Duality between characters and one-parameter subgroups

Proposition 2.28. One-parameter subgroups on a torus T are dual to characters on T, in the sense that
there exists a bilinear, perfect (i.e. non-degenerate) pairing:

(0,0) : M X N — Z,
associating to (m,u) € M x N the unique integer £ € 7 such that the composition x™ o A* : C* — C* sends
any t € C* to t*.

The integer ¢ exists because x"" o A* becomes a character on the torus C*, and we have seen that all characters
on such a torus are of the form t s t¢ for some ¢ € Z.

Let us make this pairing more explicit if we choose an isomorphism of our torus 7' with (C*)". Such an
isomorphism induces identifications M = Z™ and N = Z" where n-tuples of integers correspond to

characters and one-parameters subgroups as in Examples and Let m = (a1,...,a,) € Z" = M
and w = (b,...,b,) € Z" = N. Then (m,u) = >, a;b;, which corresponds to the standard dot product,
and this proves in particular that the pairing is perfect. This formula comes from the fact that for
EET 2 (C7), X (NU(t) = X" (.., #97)) = (1)1 - - (tPn)n = grsbibtant,

By non-degeneracy of the pairing, we get isomorphisms of abelian groups:
N = Homgy(M,Z) M = Homy(N,Z)
u— (o, u) m i (m,e).
Proposition 2.29. Let T be a torus. There is an isomorphism of groups:
N@zC" =T
u®t— A“(t).

Hence for a lattice N we can consider the torus associated with N, defined as Ty = N ® 7 C*.

2.4 Exercises

Exercise 2.1. Show that a point lying in the intersection of at least two irreducible components of an affine
variety cannot be smooth. In particular, a connected, smooth variety is irreducible. (Hint: You may use
that any regular local ring is a domain).

Exercise 2.2. Let V and W be affine varieties and let S C V be a subset.
(a) Show that C[V x W] = C[V] & C[W].

(b) Prove that S x W =S x W, where (-) denotes the Zariski closure.

(¢) Assume that V and W are irreducible. Prove that V' x W is irreducible.

12



Exercise 2.3. Let I C Clxo,...,z4] be the ideal generated by TiZjp1 — Tipaxj for 0 <i < j < d—1and
Cy the surface parametrized by

B(s,t) = (s, 5771, ..., std7h th) € O
(a) Prove that Cy = V(I).

(b) Prove that Cy is irreducible.
Hint: Write Cy as the Zariski-closure of a torus.

In the next chapter we will see that éd is an example of an affine toric variety.
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Chapter 3. Affine toric varieties

Chapter written by Matthias Schuller after the talk of Joel Hakavuori and Isak Sundelius

3.1 The definition of affine toric varieties

Definition 3.1. An affine toric variety is an irreducible affine variety V' that contains a torus T as a Zariski
open subset, and such that the action of T on itself extends to V', meaning an action T'x V' — V given by
a morphism.

Example 3.2. Obvious examples are (C*)™ and C". For the latter the action is component-wise
multiplication and clearly extends.
Another example is the curve C' = V(2® — y?). Its torus is C'\{0} which is isomorphic to C* via

C* — C\{0}
tes (12, 1°).
The action extends as follows :

C'xC—-C
(t, (s%,8%)) = ((ts)%, (ts)*)

where we use C' = {(s2, s%)|s € C}.

3.2 Toric varieties from lattices

Given a torus Ty with character lattice M and a set A = {mq,...,ms} C M, consider the map
CI)A Ty — cs

defined b,
efined by DA(t) = (X™(£), s X ().

We then define Y4 C C? to be the Zariski closure of the image of @ 4.

Proposition 3.3. The above constructed Y 4 is an affine toric variety with ZA as character lattice, where
ZA C M is the sublattice generated by A.

Proof. The map ® 4 can be regarded as a map of tori Ty — (C*)®. Because it is defined from characters, it
is indeed a group homomorphism. Then by Proposition[2.22] T := ® 4(T) is a torus that is closed in (C*)*.
Since Y4 is the Zariski closure of T, it follows that Y4 N (C*)* = T, and then that T is open in Y4, because
(C*)® is open in C®. As a torus, T is irreducible, hence so is its Zariski closure Y4.

To finish proving that Y4 is an affine toric variety with torus 7', let’s consider the action of T'. For t € T C
(C*)* we have an action on C® inherited by (C*)® which takes varieties to varieties. Then we have

T=t-TCt Y4

Any variety in C® containing T contains its closure Y4, so Y4 C t-Yy4. Repeating that for t~! gives
Y4 =1t-Y4. The action of T extends on Y4, therefore Y4 is an affine toric variety.

It remains to compute the character lattice of Y4. Let’s denote it by M’. We have the following
commutative diagram :

Ty Pa (C*)S

!

14



A map of tori induces a map on character lattice via pre-composition. Hence the above diagram induces a
commutative diagram of character lattices

where &5,4 : Z° — M is the map induced by ® 4. This map takes the standard basis e, ...,es to mq, ..., ms,
thus its image is the sublattice ZA generated by A = {my,...,ms}. From the diagram we then obtain
M’ = ®4(Z®) = Z.A, which concludes the proof. O

3.3 Toric ideals
Let Y4 be defined as before, and define

L= ker(ff)A) = {(11; wls) € Z°

Z;l lim; = O} .

Given I = (Iy,...,1l5) € Z°, set I} = Zzpoliei and I_ = _Zli<oliei7 then | =1, — ;.
We define
I, = (z'* =2~ |l e L) C Clzy, ..., x4

where z! = [l
Proposition 3.4. The ideal of the affine toric variety Y4 is
I(Y4)=1Ir=(@"—2°|a,BeN*,a— B €L).

Proof. The second equality of the statement corresponds to Exercise [3.1] and we will use it here as a
description of I7,.
Let’s start by showing the inclusion I;, C I(Y4). Take «, 8 € N® such that « — 8 € L. Then we have

S

Z(ai — Bl)mz =0 = zs:aimi = iﬁlmz
i=1

i=1 i=1
Let f =2 — 28, Then for p = (x™ (t),..., "™ (t)) € im ® 4, we see that
f(p) = x=m (1) = x= P (1) =0,

so 2% — 27 € I(im®4). Now, since Y4 is the Zariski closure of im ® 4, we must have I(Y4) = I(im ®4),
otherwise V(I(im® 4)) would be a closed subset containing im ® 4 and strictly smaller than Y4. Hence
% — 2P is in I(Yy).

Next we show the inclusion I(Y,4) C Ir. Fix a monomial order on C[xzy,...,2,]. Also, for simplicity, fix an
isomorphism T 2 (C*)™ so that we may assume M = Z" and x™i(t) = t".

Suppose I(Y4) & Ir. Pick f € I(Y.4)\I;, with minimal leading term, denote it by «®. Since f(t™,...,t™=)
is zero as a polynomial in t1, ..., ts, there must be some cancellation happening involving the terms coming
from z®. That is, there is some monomial z° in f such that

H(tmi)ai — H(tmi),@i
Z QM = Z Bim.

This gives a — 8 € L. But then 2 — 28 € I, C I(Yy4) so f — 2@ + 28 € I(Y4)\I1 and the latter has strictly
smaller leading term that f, which is a contradiction. Therefore I(Y4) = Iy.. O

which implies

Definition 3.5. Let L C Z° be a sublattice.
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e Theideal I, = (2 — 2% |, € N*,a — B € L) is called a lattice ideal.
e A toric ideal is a prime lattice ideal.
Proposition 3.6. The ideal I C Clxy,...,x5] is toric if and only if it is prime and generated by binomials.

Proof. If I is toric then by definition it is prime and generated by binomials.

Suppose [ is a prime ideal generated by binomials of the form z® — . Then T := V(1) N (C*)* is nonempty
since it contains (1, ...,1). Furthermore, if ¢,#’ are in T it is easy to see that ¢-¢’ and ¢! also are in T, hence
T is a subgroup of (C*)*. Since I is prime, V(I) C C? is irreducible, so T = V(I) N (C*)® is an irreducible
subvariety of (C*)® that is also a subgroup. Proposition then tells us that T is a torus.

Projecting of the i-th coordinate gives a character of T', which we write as x™¢ : T'— C* for m; in M, the
character lattice of T. Let A = {my,...,ms}. For t € T we have

Dalt) = (X (1), ... x™ () =1,
soIm® 4 =T. Since T = V(I) N (C*)*® is dense in V(I), we get Y4 = V(I). Because I is prime, we have
I =1(Y,) by the Nullstellensatz. Therefore, by Proposition 1 is toric. O

3.4 Affine semigroups

Definition 3.7. A semigroup is a set S with an associative binary operation and identity. An affine
semigroup is a semigroup S satisfying :

e The binary operation is commutative, we will write it +.

e Sis finitely generated. In other words, there is a fine set A C S'such that S = NA = {} _ 1 amm|an, €
N}.

e S can be embedded in a lattice M.
Example 3.8. N C Z" is an affine semigroup. It is generated by A = {eq,...,e,}.

Definition 3.9. Given an affine semigroup S, the semigroup algebra C[S] is the C-vector space with S as
basis and with multiplication induced by the semigroup structure of S. To make this more explicit, we think
of the lattice M in which S is embedded as the character lattice of some torus Ty. Then if A = {my, ..., ms}
is a generating set of S we define C[S] = C[x™, ..., x"™].

Example 3.10.

o If S =N" C 2", then C[S] = Clx1, ..., Ty].

o If S =7" =NA for A= {=ey,..., e, }, then C[S] = C[tF!, ..., tF] = C[Tn].
Proposition 3.11. Let S C M be an affine semigroup. Then

(a) C[S] is a domain and is finitely generated as a C-algebra.

(b) Spec(C[S]) is an affine toric variety whose torus has character lattice ZS, and if S = NA for a finite set
A C M, then Spec(C[S]) = Y4.

Proof. (a) Since we have C[S] = C[x™1,...,x™¢], it is indeed finitely generated. The embedding S C M
implies C[S] C C[M]. By the previous example, we know that the latter is a domain, thus so is C[S].
(b) Suppose S = NA with A = {my,...,ms} C S C M. We define the morphism

7 : Clzy,...,zs] = C[M]
by z; — x". It corresponds to the morphism

(I)A:Tn—HCS,
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that is, we have m = (®4)*. Exercise gives that kern is the toric ideal I(Y,4). The image of 7 is
C[x™,...,x™=] = C[S]. Computing the coordinate ring of Y4 C C* yields the following :
ClYa] =Clz1, ..., zs])/I(Y4)
= Clzy,...,zs]/ ker 7
>~ Imn = C[S].

This implies Spec(C[S]) = Y4, so Spec(C[S]) is an affine toric variety. From Proposition its character
lattice is ZA. Since NA = S, we have ZS = Z.A. This concludes the proof. O

3.5 Equivalence of constructions

First, we will study the action of Ty on C[M]. The action of T on itself induces an action on C[M] as
follows : for t € Ty and f € C[M], define t - f € C[M] by p — f(t'p) for p € T.

Lemma 3.12. Let A C C[M] be a subspace stable under the action of Tn. Then
A= c-x™
xmEeA

Proof. Let A" =P, mc4 C-x™. The inclusion A’ C A is immediate.
For the other inclusion, pick f € A\{0} C C[M]. We can write

[= 2: emX™
meB
where B C M is finite and ¢,,, # 0 for all m € B. Define

B = Spang(x™ | m € B) C C[M].

Let’s evaluate ¢ - x™. It is given by p — Y™ (¢t~ - p) = x™(t~1)x™(p), so we can write ¢ - ™ = x"™(t~1)x™.
It follows that B is stable under the action of T. Since A is stable under the action of Ty, we get that
BN Ais as well. It is also a finite dimensional vector space, and the above results show that Ty acts on it
linearly. Then a previous proposition implies that B N A decomposes as the direct sum

BNA= @ B,
meM
with
Bn={beBNA|t-b=x"(t)b Vt € Ty}

Take m € M and b =}, p cx! € BN A. Suppose b is nonzero and b € B,,. This means that for every
teTy :

D ax™x = x" ()b
leB
—t.b

—=t. <Z Cle>
leB
= chxl(t_l)xl.

leB
This implies that for each component !, for every t € Ty we have
ax™(t) = ax'(t™) = ax7'(1).

So either ¢, = 0 or m = —I. Since b is nonzero, ¢; # 0 for some (unique) I, then m = — and b = axt.
Thus the B, contain either only 0 or a character and its multiples. This means that B N A is spanned by
characters. Then the expression for f € BN A implies x™ € A for every m € B. Therefore f is in A’, which
proves A = A’. O
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3.6 Exercises
Exercise 3.1. Let L C Z° be a sublattice. Prove that
( —a* |tel)= (2" |, N, a—pB € L).

Note that when ¢ € L, the vectors ¢4, ¢_ € N°® have disjoint support (i.e., no coordinate is positive in both),
while this may fail for arbitrary «, 5 € N® with a — g € L.

Exercise 3.2. Fix an affine variety V. Then elements f1, ..., fs € C[V] give a polynomial map ® : V — C®,
which on coordinate rings is given by

é* I(C[Lbh...,l’s] —)C[V], $1'—>f1
Let Y C C be the Zariski closure of the image of ®.
(i) Prove that I(Y) = Ker(®*).

(ii) Explain how this applies to the proof of proposition which tells us that semigroup algebras give rise to
affine toric varieties.

Exercise 3.3. Prove that I = (22 — 1,2y — 1,y2z — 1) is the lattice ideal for the lattice
L={(a,b,c) €Z® | a+b+c=0mod 2} CZ>

Exercise 3.4. Suppose that ¢ : M — M is a group isomorphism. Fix a finite set A C M and let B = p(A).
Prove that the toric varieties Y4 and Yz are equivariantly isomorphic, meaning that the isomorphism respects
the torus action.
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Chapter 4. Convex polyhedral cones

Chapter written by Zichen Gao after the talk of Juan Felipe Celis Rojas and Emma Marie Billet
Theorem 4.1. Let V be an affine variety. The following are equivalent:

(a) V is toric.

(b) V=Y for some AC M finite.

(c) V is defined by a toric ideal.

(d) V = Spec(C[S]) for S an affine semigroup.

Proof. (b)= (a) and (¢) < (b) & (d) was already proved in Chapter 3| It remains to show that a = (d):
Let V be a toric variety with torus Ty, and let M be the character lattice of Ty. Then the inclusion Ty C V/
induces a homomorphism ¢ : C[V] — C[Tx] = C[M]. This map is injective, since T is dense in V. Recall
from Chapter [3| that we already know

ClV] = ®ymeciviCx™.

Set S = {m € M|x™ € C[V]}, then we have C[V] = C[S], and hence V = Spec(C[V]) = Spec(C[S]). To
show that S is an affine semigroup, what is left is to show that it has a finite generating set. As C[V] is
finitely generated, C[V] = C|[f1,..., fs] for finitely many f;’s. For each f; we write a factorization of it
under x™’s. The set of all x" that appear is a finite generating set of S. Therefore, S is indeed an affine
semigroup. O

Example 4.2. Let V = V(zy — zw). It is the closure of the image of the map
(C) =V
(t1,t2,t3) = (t1, b2, 3, tataty )

The lattice points used in this map can be represented as the column of the matrix
1 00 1
01 0 1
00 1 -1

4.1 Convex Polyhedral Cones

Fix a pair of dual vector spaces Mg and Ng.

Definition 4.3. A convex polyhedral cone in Ny is a set of the form

o = Cone(S) = {>_ Aty >0} C Ng,
ues

where S C Ny is finite.

Definition 4.4. A polytope in Ny is a set of the form

P =Conv(S) ={D>_ M >0, A\ =1} C N,

ues u€esS
where S C Ny is finite.

Example 4.5. Let S = {e1, ea,€1 +€3,e2+ e3}. The following figure shows the convex polyhedral cone and
the polytope determined by S.
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polytere

Figure 1: Cone and polytope corresponding to e, ea,e1 + €3, ez + €3

4.2 Dual Cones and Faces
Definition 4.6. Let 0 € N be a cone. We define its dual by

0" = {m € Mg|(m,u) >0 Vu € o}.
Remark 4.7. (¢V)V =o0.

Example 4.8. Let M = Nz = R3 and suppose their pairing is given by the inner product
{(m1, ma,m3), (n1,n2,n3)) = miny + maons +manz. Let 0 € Ng be defined by o = Cone(ey,es) C R?, then
for any m = (z,y,2) € Mg, m € ¢ if and only if ((x,v, 2),(1,0,0)) > 0 and ((x,y, 2),(0,1,0)) > 0, if and
only if > 0 and y > 0. Therefore, 0¥ = {(z,y, 2) € R3|z > 0,y > 0}.

Remark 4.9. ¢V is a convex polyhedral cone.

Definition 4.10. Let m € Mg, m # 0. The hyperplane defined by m is defined to be H,, = {u €
Nr|{(m,u) = 0}. And the closed half-space is defined to be

H = {u € Ng|(m,u) >0} C Ng.

H,, is a supporting hyperplane of a polyhedral cone o C Ny if 0 C H.}, and H,} is a supporting half-space.
Note that H,, is a supporting hyperplane of ¢ if and only if m € ¢V \ {0}.

Definition 4.11. A face of the polyhedral cone o is 7 = H,, N for some m € " \ {0}. We denote this by
7 < 0. A facet is a face of codimension 1. An edge of a cone is a face of dimension 1.

Remark 4.12. From now on, the dimension of a set will mean the dimension of the vector space generated
by this set. And the codimension here means the difference between the dimensions of the subspace and the
total space.

This relation has the following basic properties:
Lemma 4.13.
(1) If T X o, then T is a cone.
(2) If 1,72 2 0, then 11 N1y = 0.
(3) If p 27 =20, thenp < o.
Definition 4.14 (Dual face). Given 7 < o, where o C Ng is a polyhedral cone. We define
™t ={m e Mg|(m,u) =0 Vu € 7}
™ ={meco'|(mu)=0Yuecr}=0"N1"
We call 7* the dual face of 7.

Example 4.15. The Figure [2[shows o = Cone(ey, e3) and its dual 0¥ C R3.
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Figure 2: A 2-dimensional cone ¢ C R? and its dual ¢¥ C R?

Definition 4.16. The relative interior Relint(c) of a cone ¢ C N is the interior of o in W, where W is
the span of o. It can be charaterized by the dual space:

u € Relint(0) < (m,u) >0 Vme€oV\ ot

Definition 4.17. A cone o € Ny is strongly convez if {0} is a face of o.
Example 4.18. In Example the cone 0 = Cone(ey, e3) is strongly convex, but its dual cone ¢V is not.

Lemma 4.19 (Separation Lemma). Let 01,09 be polyhedral cones in Ng that meet along a common face
T =01 Noy.Then
T=H,Noy=H, Noy

for any m € Relint(ay N (—02)Y). In particular such an m does exist.

Definition 4.20. A cone o C Ng is rational if o = Cone(S) for S C N finite. Recall that Ng = N ®z R
and N is a lattice.

Remark 4.21. Faces and dual of a rational cone are rational.

A strongly convex rational polyhedral cone o has a canonical generating set, constructed as follows. Let p
be an edge of o. Since o is strongly convex, p is a ray, i.e. a half-line, and since p is rational, the semigroup
pN N is generated by a unique element u of the intersection. We call u the ray generator of p. The following
Figure [3| shows the ray generator of a rational ray p in the plane. The points are the lattice N = Z2 and the
white ones are p N N.

Figure 3: A rational ray p C R? and its unique ray generator

Lemma 4.22. A strongly convex rational polyhedral cone is generated by the ray generators of its edges.
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4.3 Semigroup Algebras and Affine Toric Varieties

Given a rational polyhedral cone ¢ C N, the lattice points
S,=c"NMCM

form a semigroup. In fact, it is finitely generated.

Lemma 4.23 (Gordan’s Lemma). S, = oV N M is finitely generated and hence is an affine semigroup.

Proof. Firstly, the dual cone of ¢ can be written as ¥ = Cone(T) for a finite T C M, T = {my,...,m,}.
Let K = {>_, 0;m;|d; € [0,1]} C Mg. So K is a bounded region. Since M is discrete, we have that K N M
is finite. We claim that T U (K N M) C S, generate S,. In fact, for any element w € S,

T
w = E )\imi
i=1

= ZL)\iJmi + Z{)‘Z}ml
i=1 i=1
where the latter term lies in K N M. O
Theorem 4.24. Let 0 C Ng ~ R" be a rational cone with an affine semigroup S,. Then
(1) U, = Spec(C[S,]) is an affine toric variety.
(2) dimU, = n < the torus of Uy is Ty = N ®y C* < o is strongly convex.

Proof. (1) This is just a corollary of some previous result.

(2) U, is an affine variety whose torus has character lattice ZS, = S, — S, = {m1 — ma|mi,ms € S, }
First we prove that M/ZS, is torsion-free. Let m € M be such that km € ZS,, and k > 1, we need to
show that m € ZS,. Write km = m; — mo where my,mg € S,, then m +my = 5% + %mg € S,, so

m = (m + mg) —ma € ZS,. Therefore,
The torus of U, is Ty & ZS, = M < rank ZS, = n.

The first equivalence follows from the fact that the torus of U, has character lattice ZS, (Proposition
1.1.14(b) of [CLS]). Since ZS, C M, and M is the character lattice of Ty, the torus of U, is T if and only
their character lattices are the same, i.e. ZS, = M. Moreover, note that M is a finitely generated abelian
group, and ZS, C M is a subgroup. Since we have just proved that M/ZS, is torsion-free, we know that
75, = M if and only if their ranks are equal. So the second equivalence holds. Proposition 1.2.12 of [CLS]
tells us that o is strongly convex if and only dimo¥ =n , so

dimU, = n < rankZS, = n < dimo” = n < o is strongly convex.

The first equivalence comes from the fact that the dimension of an affine toric variety is the dimension of its
torus, which is the rank of its character lattice. The second equivalence is from Exercise 1.2.6 of [CLS]. O

Example 4.25. Take the cone o0 = Cone(eq, e2,e1+e3,ea+e3) C Ng = R3 with N = Z3. Then its dual cone
is 0¥ = Cone(ey, ea,€3,61 + €3 —e3) C R3, and the lattice points in this cone are generated by the matrix
corresponding to the affine toric variety V(axy — zw). Therefore U, = V(zy — zw), which has dimension 3.
And it’s clear that in this case o is strongly convex. See Figure [4]

Definition 4.26. Let 0 C Ny be a strongly convex rational polyhedral cone. ¢ is smooth if its ray generators
form a part of a Z-basis of V.

For example, if 0 = Cone(ey,...,e,) CR", then
0" = Cone(ey,...,ep, +eri1,...,xep),
and U, = Spec(C[zy, ... ,xr,xrﬂl, .o, @F]) = C" x (C*)"~". This cone ¢ is smooth. And as we will see in

future lectures, if ¢ C Ng ~ R" is a smooth cone of dimension r, then U, ~ C" x (C*)"~".
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Figure 4: A strongly convex cone o C R3 with dim U, = 3

4.4 Exercises

Exercise 4.1. Let 0 C Nr = R" be a polyhedral cone. Then:

o is strongly convex <= {0} is a face of o
<= o contains no positive-dimensional subspace of Ny
<~ oN(—o)={0}
<— dimo" =n.

Exercise 4.2. Let 0 C Ny be strongly convex of maximal dimension and let S, = ¢V N M. Then # =
{m € S,| m is irreducible} has the following properties:

(a) . is finite and generates S,.

(b) . contains the ray generators of the edges of oV.

(¢) S is the minimal generating set of S, with respect to inclusion.
Hints:

(a) Using Exercise we see that it exists u € o N N\0 such that (m,u) € N for all m € S, and
(myu)y =0 <= m=0.

(b) Show that the ray generators of the edges of ¢V are irreducible in S,. Given an edge p of ¢, it will
help to pick v € o N N\{0} such that p = H, No".

Exercise 4.3. Consider the cone o = Cone(3e; — 2e,e1) C R
(a) Describe o and find generators of oV N Z2. Draw a picture of the dual cone.
(b) Compute the toric ideal of the affine variety U, .

Exercise 4.4. Consider the cone o = Cone(eq, ea,e1 + e3 + 2e3) C R3.
(a) Describe ¢ and find generators of oV N Z3. Draw a picture of the dual cone.

(b) Compute the toric ideal of the affine variety U, .
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Chapter 5. Smooth and normal affine toric varieties

Chapter written by Joel Hakavuori after the talk of Clotilde Freydt and Julia Morin

5.1 Points of Affine Toric Varieties

Proposition 5.1. Let V = Spec(C[S]) be the affine toric variety corresponding to an affine semigroup S.
Then there is a bijective correspondence between

(i) Pointsp eV
(i) Mazimal ideals in m C C[V]
(i4i) Semigroup homomorphisms S — C, where C is considered as a semigroup under multiplication.

Proof. The correspondence between (i) and (ii) is the standard correspondence following from Hilbert’s
Nullstellensatz. For (iii), given a point p € V we define the corresponding semigroup homomorphism as
m — x™(p) € C. Conversely, let v : S — C be a semigroup homomorphism. By Proposition the
characters {x™}mes for a basis for the algebra C[S]. The map 7 induces a C-algebra homomorphism
7 : C[S] — C mapping x™ — ~v(m). Note that F(1) = 1 as v(0) = 1, so by C—linearity we see that this map
is surjective, and hence C[S]/ ker(¥) = C. Recall that an ideal I C R is maximal if and only R/I is a field,
so we see that ker(¥) is a maximal ideal of C[S] = C[V], and thus corresponds to a point p € V. Concretely,
p can be expressed as p = (y(m1),...,v(ms)) € C°, where {mq,...,ms} is a generating set of S. O

This result allows us to describe the torus action on V intrinsically. Earlier we saw that the action of the
torus Ty of an affine toric variety Y4 C C? is induced by the usual action of (C*)® on C*. However, this
action requires an embedding into C*. To describe the action intrinsically, you will show in exercise 1 of week
5 that the point ¢ - p for t € Ty and p € V corresponds to the semigroup homomorphism m — x™(¢t)y(t),
where + is the homomorphism corresponding to p € V' described by Proposition [5.1

Definition 5.2. An affine semigroup S is pointed if SN (=S) = {0}, i.e., if 0 is the only invertible element
of S.

Proposition 5.3. Let V' be an affine toric variety and S an affine semigroup.

(i) If V = Spec(C[S]), then the torus action has a fized point if and only if S is pointed. In this case, the
unique fized point is given by the semigroup homomorphism defined by

mH{L m=0 (1)
0, m#0.

(ii) If V =Yy for some A C S\ {0}, then the torus action has a fized point if and only if 0 € Y4, in which
case the unique fized point is 0.

Proof. For part i), let v : S — C be the semigroup homomorphism corresponding to p € V. Then p is fixed
by the torus action if and only if x™(¢)y(m) = v(m) for all t € T and m € S. As x°(t) = 1 and ~(0) = 1,
m = 0 satisfies the equation for all ¢. If m # 0, there always exists some ¢ for which x™(t) # 0, so we require
that v(m) = 0. Thus, if a fix point exists, it is unique and given by . From the correspondence between
points and semigroup homomorphisms we get that a fixed point exists if and only if S is pointed, as only
then the map is a semigroup homomorphism.

For part i), assume that Y4 C C*® has a fixed point, so S = NA is pointed and the unique fixed point
p is given by . From the concrete description of p corresponding to the map given in the proof of
Proposition [5.1] and the fact that 0 ¢ A, we see that p is the origin in C*, and hence 0 € Y4. Conversely,
0 € Y4 is fixed by (C*)®, and hence by T'= Y4 N (C*)® C (C*)%. O

Here is useful corollary, whose proof is left as an exercise.
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Corollary 5.4. Let U, be the affine toric variety of a strongly convex rational polyhedral come o C Ng.
Then the torus action has a fized point if and only if dim o = dim Ng, in which case the fized point is given
by the maximal ideal

(X" m € 55\ {0}) € C[S,].

5.2 Normality and saturation

Recall that an affine variety V' is normal if and only if its coordinate ring C[V] is normal, i.e., C[V] is
integrally closed in its field of fractions. In this section we study the conditions for an affine toric variety to
be normal.

Definition 5.5. An affine semigroup S C M is saturated if for all k € N\ {0} and m € M, km € S implies
meS.

Theorem 5.6. Let V' be an affine toric variety with torus T'. Then the following are equivalent:
(i) V is normal.
(i) V = Spec(C[S]), where S C M is a saturated affine semigroup.
(iii) V = Spec(C[S,|) = Uy, where S, =¥ N M and o C Ng is a strongly convex rational polyhedral cone.

Proof. (i) = (ii): Assume V is normal, so C[S] = C[V] is integrally closed in its field of fractions. Suppose
km € S for some k € N\ {0} and m € M. We want to show that m € S, i.e., that S is saturated. The
character x™ can be considered as a rational function on V, and as km € S, we also have y*™ € C[9].
We observe that y™ is a root of the monic polynomial #* — x*™, which has coefficients in C[S]. As C[S] is
normal, we get that ™ € C[S], and hence m € S.

(if) = (iii): Let A C S be a finite generating set of S, so Cone(A) C Mg and rank(ZA) = n. Then dim
Cone(A) = n, as the dimension of the cone of A is equal to the dimension of the span of S when A generates
S. Hence o = (Cone(A))Y C Ng is a strongly convex rational polyhedral cone, so S C ¢ N M. The other
inclusion is proved in Exercise from which we get S =S, .

(iii) = (i): Suppose o C N is a strongly convex rational polyhedral cone. Let p1,...,p, be the rays of o,
so 0¥ =Ni_,p;. Intersecting oV gives S, = 0¥ N M =NI_,S,,, which in turn implies C[S,] = Ni_;C[S,,].
By exercise 4b) of week 1, C[S,| is normal if each C[S,,] is normal, so it suffices to show that C[S,] is
normal for a rational ray p C Ngr. Let u, be the ray generator of p. As u, is primitive, %up ¢ N for all
k > 1. Then there exists a basis {e1,...,e,} of N with e; = u,, so we may assume that p = Cone(e;). The
C[S,] = Clz1, 25", ..., 2;7Y]. This is the localization C[z1, ..., %y]s,. »,, which is normal by Exercise as
Clx1, ..., 2y is normal. O

Example 5.7. Consider again the rational normal cone C’d C C%*1. As we have seen earlier, this is the
affine toric variety of a strongly convex rational polyhedral cone, and hence normal. Looking at the d = 2
case, we have ® 4(s,t) = (s2, st,d?) for A ={(2,0),(1,1),(0,2)} and ¢V = Cone(ey, e2). In Figure (a) the
semigroup generated by A does not seem to be saturated: for example 2-(1,1) € NA but (1,1) € NA while
(1,1) € ¢¥. However, recall that we have to use the lattice Z.A, plotted in white in Figure 5] (b), from which
we see that A is saturated in this lattice, which is what we expected as C5 is normal.

5.3 Normalization of affine toric varieties

Let V = Spec(C[S]) for an affine semigroup S with character lattice M = ZS. By Theorem V will not
be normal when S is not saturated, in which case we may want to normalize V. For affine toric varieties,
normalization has a particularly simple description. Let Cone(S) denote the cone of a finite generating set
of S, and set ¢ = Cone(S)Y C Ng. Then we have that

Proposition 5.8. The cone 0 = Cone(S)Y is a strongly conver rational polyhedral cone in Ng, and the
inclusion C[S] < Cle¥ N M| induces a morphism U, — V that is the normalization map of V.
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Example 5.9. Let A = {(4,0),(3,1),(1,3),(0,4)} C Z2. Then ®4(s,t) = (s s3%,5t3,t1) is a
parametrization of the surface Y4 C C. Observe that 2 - (2,2) = (4,0) + (0,4) € NA but (2,2) ¢ NA.
However (3,1) — (1,3) + (0,4) = (2,2) € ZA, so NA is not saturated, and hence Y, is not normal.
However, using the above proposition, we can normalize by taking the cone of S = NA, which gives the
same cone as considering A" = {(4,0), (3,1),(2,2), (1, 3),(0,4)}, corresponding to the rational normal cone
Cu. Hence, Cy is the normalization of Y4, with the normalization map being the projection C> — C*.

5.4 Smooth affine toric varieties

Next, we study when affine toric varieties are smooth. Recall that smoothness implies normality, so it suffices
to consider toric varieties U, coming from strongly convex rational polyhedral cones

Definition 5.10. The set H = {m € S, | m is irreducible} is the Hilbert basis of the cone o.

When o C Ny is strongly convex and of maximal dimension, the Hilbert basis H of S, is finite, minimally
generates S, and contains the ray generators of o".

Now, let o C Ng be a strongly convex rational polyhedral cone of maximal dimenstion and U, = Spec(C[S,])
the corresponding affine toric variety. By the torus action has a unique fixed point p, € U,. In this case
we can relate the dimension of the Zariski tangent space of U, at p, as follows.

Lemma 5.11. Let 0,U, and p, as above, and let H be the Hilbert basis of Sy. Then dimT, (U,) = [H]|.

Proof. By the maximal ideal corresponding to p, is given by m = (x"™ | m € S, \ {0}). As these
characters form a basis of C[S,], we have

m:@(CXm:( @ Cx™) & ( @ me):(@((:xm)@m2.

m#0 m irreducible m reducible meH

Quotienting out by m? we see that dimm/m? = |#|. Mapping to the local ring Oy, ,,, with maximal ideal
my, p, gives an isomorphism

m/m? = ng,pa/szg,pU-

As dim Ty, (U, ) is the dual of the Oy, ,, /My, p,-Vector space my, p, /mg . we see that dim T, (U,) =
|H]. O

Remark 5.12. The Hilbert basis H gives an embedding of U, as Y3 C C?®, where s = |H|. If U, — C! is
an embedding, we always have dim T, (U,) < for all points p € U,, so the cardinality of the Hilbert basis
gives a lower bound on the dimension of the affine space we are embedding our variety in. The above lemma
shows that we get the most efficient embedding in terms of dimension using the Hilbert basis of S, when o
is a strongly convex rational polyhedral cone of maximal dimension.
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Recall that a rational polyhedral cone is smooth if it has a generating set which is a subset of a basis of the
lattice.

Theorem 5.13. A strongly convex rational polyhedral cone o C Ng is smooth if and only if U, is smooth.
Furthermore, all smooth affine toric varieties are of this form.

Proof. As we saw in the previous lecture, if o is smooth, then U, ~ C" x (C*)"~", which shows one direction.
For the converse, we first consider the case when o has dimension n. Recall that dim 7}, (U,) = |H| for the
Hilbert basis H of S,. We have n = |H| > |{edges p C 0" }| > n, where the first inequality follows from the
fact that each edge p C ¢ contains an element of H (o is strongly convex and of maximal dimension, so
‘H contains the ray generators of ¢V), and the second inequality holds as dim oV = n. Hence o has n edges,
and as M = 7ZS,, the ray generators of oV generate M, and hence form a basis. Thus ¢V is smooth, so
(V)Y = o is smooth.

Next, we prove the case where n > dimo = r by reducing to the above case. Let N; C N be the smallest
saturated sublattice containing the generators of o. Then N/Nj is torsion free, which implies that there
exists a sublattice Ny such that N = N; @ No. This induces a decomposition of M = M; @ My and
semigroups S, n, € My and S, v € M respectively, which in turn implies that S,y = S, N, @ M>. For the
corresponding semigroup algebras we get

C[So,n] = C[So,m,] ), CIM2]-

The right-hand side is the coordinate ring of U, n, X Tin,, s0 Uy n =~ U, N, X Tn, and hence U, y =~
Us Ny, X (C)"" C Uy N, x C* 7. By assumption U,y is smooth, so U, n, X C*~" is smooth at any point
(p,q) € Uy n, X (C*)"~". The variety Uy, N, will be smooth at any p where (p, ¢) is smooth in Uy n, x (C*)"™",
and choosing p = p, € U, n, gives, by the previous case, that ¢ is smooth in Ny, as dim o = dim(Ny)g = 7.
Hence o is also smooth in Ny @ No = N, as a subset of a basis of N is a subset of a basis of N. O

5.5 Exercises

Exercise 5.1. Consider the affine toric variety Y4 = Spec(C[S]) where A = {mq,...,ms} and S = NA. Let
v : 8 — C be a semigroup homomorphism. In class we mentioned that p = (y(m1), ..., 7(ms)) lies in Y4.

(i) Prove that the maximal ideal {f € C[S] : f(p) = 0} is the kernel of the C-algebra homomorphism
C[S] — C induced by 7.

(ii) The torus Ty of Y4 has character lattice M = ZA and fix t € Ty. Prove that the semigroup
homomorphism m +— x™(¢)v(m) corresponds to the point

(X)X (1) - ((v(ma), ooy v(ms)))
coming from the action of t € Ty C (C*)* onp € Y4 C C*.

Exercise 5.2. Let 0 C Ny be a strongly convex polyhedral cone. Then the torus action on U, has a fixed
point if and only if dim o = dim Ng, in which case the fixed point is unique and is given by the maximal
ideal

(X™ ['m e S:\{0}) € C[S,],

where as usual S, = ¢V N M.

Exercise 5.3. In an example, we saw that the rational normal cone Cy4 C €41 s the toric variety associated
to o = cone(de; — ea, e3) C R2.

Compute the Hilbert basis of the semigroup S, .

What is the smallest affine space in which we can embed C4? (Use Lemma 1.0.6 from [CLS])

Exercise 5.4. Let A C M be a finite set.

(i) Prove that the semigroup NA is saturated in M if and only if NA = Cone(A) N M.
Hint: Apply eq. (1.2.2), page 29 [CLS], to Cone(A) C Mxg.
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Chapter 6. Toric morphisms and projective varieties

Chapter written by Emma Billet after the talk of Coppin and Schuller

6.1 Toric maps

Definition 6.1. Let V3 = Spec(C[S1]), Vo = Spec(C[Ss]) for Si, Sy affine semigroups. A morphism ¢ :
Vi — V4 is called toric if the corresponding ¢* : C[S3] — C[S;] is induced by a semigroup homomorphism
¢ : Sy — S1. In other words, this means that ¢*(x™) = x?(™ for all m € Ss.

Example 6.2. The map ¢ : C — C,t — t? is a toric morphism as ¢* : C[X] — C[X], X + X? is induced
by ¢ : N — N: 1~ 2 which is a well defined semi-group homomorphism. We also have as a counter-example
p:C—>C:t—t+1, we may see it is in fact not toric using the following proposition.

Proposition 6.3. Let T,,Tn, be the tori of the affine toric varieties Vi, Va respectively.
(a) A morphism ¢ : Vi — Va is toric if and only if ¢(Tn,) C Tn, and <p‘T : Ty, — T, is a group
N1

homomorphism.
(b) p: Vi —= Vais toric = VYt € Tn,,p € Vi :p(t-p) =) o). Such a morphism is called equivariant.

Proof: We can write V3 = Spec(C[S1]), Va = Spec(C[Ss]) for some affine semigroups S1, Sa
(a)” =7 Suppose ¢ : V; — V5 comes from ¢ : Sy — Si, it thus can be extended to ¢ : My — My, where
M, =75, is the character lattice of Ty, for ¢ = 1,2 and this gives the following diagram

C[Ss] —2— C[S1]

| |

From which, applying Spec we obtain the following one:

Vo 24—V

[

TN2 — TN1

This proves o(Tn,) C Ty, and we are left to prove the group homomorphism statement. In order to do

this we assume Ms = Z™ and Ty, is embedded in C™ then ¢ : My — M, is determined by ¢(e;) = m;

Vi=1,.,n = ¢ : C[My] = C[M] : x — "™ = ¢ oSt (X)X (E)) is a group
Ny

homomorphism as desired.
7 <" Suppose ¢(Tn,) C Ty, and <p|T is a group homomorphism. Then we have the same diagram:
Ny

Vo +—2— 1,

[

TN2 — TN1

which induces

C[Ss] —— 8]

| |
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where the bottom map is ¢* : C[Ma] = C[M],x™ — x™ o ¢. So ¢* sends characters to characters —
it comes from a group homomorphism ¢ : My — M;. Using this together with the fact that ¢*(C[Ss]) C
C[S1] = ¢(S2) € S;. This finishes part (a).
(b) Denote by ¢ : T, x Vi — V; the action of T, on Vi, similarly for @9 on V5. Then we define

TN1 X V1

Vi Va

P1

TN1XV1WTN2X‘/ZT>‘/2

It suffices to prove that these compositions of morphisms are equal in order to prove that ¢ is equivariant.
But using that ¢ T is a group homomorphism, these are equal on T, x T, which is a Zariski dense
N1

subset of T, x Vi so they agree everywhere and we proved the equivariance. O
Note that on lattices Ny, Na, @ : N1 — Ny gives a group morphism ¢ : Ty, — T, by tensoring, since
Ty, 2 N; ®z C* i = 1,2, we could also tensor with R to obtain ¢g : (N1)g = (N2)r.

Proposition 6.4. Let 01,02 be strongly convex rational polyhedral cones and ¢ : Ny — Na. Then ¢ : T, —
T, extends to a morphism of affine toric varieties ¢ : Uy, — U, if and only if pr(o1) C o2.

Proof: Exercise 0

6.2 Faces of cones and affine open subsets

Consider as usual, ¢ C Ng a strongly convex rational polyhedral cone in some vector space, and 7 < o a
face of this cone, then recall that by definition of a face 7 = H,, N o where o C H,, for some m € ¢¥ N M.
This allow us to relate semigroup algebras of o and 7 as follows.

Recall that a face of a cone being itself a cone, it allows us to talk about S; =7V N M

Proposition 6.5. The semigroup algebra C[S;] is the localization of C[S,] at x™ € C[S,].

Proof:

7Co = S, CS;, but for the m defined above we have (m,u) = 0.

Vuer = +tmer’ = S,+7Zm C S, ,if we prove the reverse inclusion we have C[S,] = C[S,,x ™| =
C[S5]ym. The proof of the other inclusion is left to the reader (see also page 43 of [CLS]). O

Example 6.6.

e Consider 0 = Cone(er,e3) C Ng = R? and 7 = Cone(ez) a face of 0. Then 7V = Cone(=+ey, ez) and
we have the following S, = N> = CJ[S,] = C[X,Y] and U, = C2 On another hand using the
previous proposition S, = N{#ej,es} = C[S,] = C[X*,Y] = C[X,Y]x and U, = C\V(X).

o U, = Spec(C[S,]) = Spec(C[Sy]yn) = Spec(C[S,])n = (Us)ym 2 Us.
e Using the last point, for two cones o, 0’, that meet along a common face 7 that is o No' =7 =
UG‘ g UT 2 UU’~
6.3 Projective varieties

6.3.1 Background notions

Definition 6.7. The n-dimensional projective space is P* = (C"*1\{0})/C* and a point in P" is denoted
as [z ¢ ...t 2.

Definition 6.8. V' C P™ is a projective variety if
V=Vu(fi,..fr)={lzo:...:xn) € P" | fi(zo,...,2n) =0 Vie{1,...,7}}

where f1, ..., f, are some homogeneous polynomials in C[Xy, ..., X,].
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Definition 6.9. The homogeneous coordinate ring of V is C[V] = C[Xy,..., X,;]/I(V) where I(V) is the
ideal generated by

{f € C[Xo,....,X,] | f homogeneous, f(v)=0 Yve V}

Remark 6.10. C[V]; = C[Xy, ..., X5]a/I(V )4, that is to say the coordinate ring inherits a grading from the
grading on C[Xj, ..., X,,] where C[Xj, ..., X,,]q is the vector space of homogeneous polynomials of degree d.

Definition 6.11. For a projective variety V' C P", we can define its corresponding affine cone
V=V, (I(V)) € C**! which has the following properties: V' = (V\{0})/C* (equality as sets for now); and
C[V]=C[V].

Example 6.12.

o Consider the ideal I = ({X;X;41 — X;11X;/0 < i < j < d—1}) C C[Xy,...,Xq]. I being an
homogeneous ideal, it defines a projective variety Cyq = V,(I) C P? which is the image of the following
map @ : P! — P9 [s:t] > [s?: 58 e stdT gl
Also the corresponding affine cone is V,(I) = C’d that we discussed several times. Moreover Cy is a
curve (via @) called the rational normal curve.

o V:=V, (XY — ZW) C C* is the affine cone of the projective variety V = V,(XY — ZW) C P?. In
addition V = P! x P!,

Remark 6.13. Note that we're still working with the Zariski topology, that is for V' a projective variety
the closed sets of V' are subvarieties (i.e. projective varieties of P contained in V).

Consider f,g € C[Xo, ..., X,,] homogeneous, g # 0, such that deg(g)=deg(f)= m. We motivate the next
definition with the following formula which proves that we could have a well-defined notion of ”functions”
on P" (under some conditions).

fQz) A" f(x)

g(x) — Amg(x)

Definition 6.14. Let f,g € C[Xy, ..., X;,] homogeneous of the same degree such that g # 0. Then 5 :
P™"\V(g) — C is well defined and called a rational function on P". More generally consider V an irreducible
projective variety, f,g € C[V] homogeneous of same degree such that g # 0, and recall a proprety of affine
cones that C[V] = C[V]. Then f, g define functions on the affine cone V and therefore an elementg e C(V).
Then we can define

AeC*:

C(V) = {g e C(V)|f,g € C[V] homogeneous of same degree, g # 0},

this set is also denoted as (C(V))o = (C(V))o because it corresponds to degree 0 elements of C(V). In
addition it induces g : V --» C, where the dashed arrow means that it is define on some open of V.

Proposition 6.15. We define U; := P"\V,(X;) to be the affine charts of P". Then {U;}i>1 is an open
cover of P™. Furthermore U; = C™.

Proof:
The affine variety isomorphism is given by
a1 ai—1 Gi41 Ay,
0:U; = C"ag:...:an] = (—, .y , —
a; a; a; a;
and
—1
© :C" — Ui, (al, ...,an) — [a1 D@11 [0 T an].

O

Let V' C P™ be a projective variety, {V N U,;};>1 covers V and it maps via the previous map to the affine
variety in C™ defined by the equation f(z1,...,1,...,2,) = 0 for all f homogeneous polynomials in I(V).
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Lemma 6.16. C[V NU;] = (C[V]x,)o-

Proof:

ClV]x, = w since localization is exact. Taking elements of degree 0 we have
€Vl = e

Also (C[Xog,...,Xn]lx,)0 = C[);f,...,x;'(:l,X;;:l,...,)}((—";]. Let f € I(V) homogeneous of degree k
= ka = f(%, . X)Zl, , X;;;l ey %) € (I(V)x,)o. But using the equation defining V N U; we see that
(I(V) Xl)o maps to I(V N U;). Finally we prove this map is surjective, so consider an element
g())go, ,X;( ! “:1, ,)}((—) e (VNU;). It exists k& >> 0 clearing the denominators such that

ng = h(Xo, ..., Xn) is homogeneous of degree k. Then looking at X;h we note that it vanishes on V N U;
because of g and it vanishes on  the complementary  of U; because  of
X; = X;h e (V) = Jir € (I(V)x;,)o and this maps to g. O

6.3.2 Product of projective spaces

Definition 6.17. A polynomial f € C[Xy,..., Xy, Yo, ..., Ys,] is called homogeneous of bidegree (a,d) if it is
homogeneous of degree a in (C[Yp, ..., Y;,])[Xo, .., X,] and vice versa.

Definition 6.18. A variety V' C P™ xP™ is the vanishing locus of finitely many bihomogeneous polynomials.

Definition 6.19.
Onm P X P — prmtntm

Ssnilsg)s

is called the Segree embedding and is in fact an embeddmg.
On,m (P x P™) = V(I) where I = ({221 — zazi;]0 < i,k <n,0 < 4,1 <m}]).

Remark 6.20. These two definitions give a priori two different notions of the product of two projective
varieties. The following proposition shows that they in fact agree.

Proposition 6.21. For V . C P* W C P™ subvarieties, V. x W C P™ x P™ is a projective variety i.e.
onm(V x W) is a projective subvariety of Prm+ntm,

Proof: Exercise [6.4] O

6.4 Exercises

Exercise 6.1. Suppose we have strongly convex rational polyhedral cones o1 C (N1)gr and o2 C (Na)g,
and a homomorphism @ : Ny — N5. Recall that by tensoring with C* this gives a group homomorphism
¢ : Ty, = T, of tori and by tensoring with R it gives a map @ : (N1)r — (Na2)r. Prove that ¢ : T, — T,
extends to a map of affine toric varieties ¢ : Uy, — Uy, if and only if Pg(01) C 02. Also argue that in that
case, the extended ¢ is a toric morphism.

Exercise 6.2. (Maps to projective space) Let V' C P™ a projective variety and f,..., fi, be polynomials
of degree d such that VNV (f1,..., frn) = 0. Show that the map

(agy---yan) — (fi(ao,...,an)y ..y fmlao,...,an))
induces a well-defined map V' — P™.

Exercise 6.3. Show that the Segre embedding oy, ,,, : P™ x P™ — P +™ defined by ([a;], [b;]) — [a;bj]
is indeed an embedding. Furthermore, show that oy, ., (P™ x P™) = V(I) where [ is the ideal generated by

{zijzi — zuzi; |0 < i,k <mn; 0<jl<m}.

Exercise 6.4. Let V C P" x P™ defined by f;(x,y) = 0 where f; is bihomogeneous of bidegree (a;,b;) for
1 =0,...,s. The goal of this exercise is to show that V' can be viewed as a projective variety of Prm+n+m
via the Segre embedding.
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(i) For each I, consider d; > max(as,b;) and g = fi(x,y) [[, ; xf’fa’y;l”b’. Show that V is the vanishing
locus of the g;’s.

(ii) Deduce from (a) that oy, ,, (V') is a projective subvariety of Pm*n+m,
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Chapter 7. Projective toric varieties

Chapter written by Julia Morin after the talk of Julie Bannwart and Louis Gognia
Definition 7.1. A projective irreducible variety X over C is called toric if :

e there exists T C X with T' ~ (C*)"

e T is open in X

e the action of T" on itself extends to X
Proposition 7.2. P" is toric with torus Tpn :=P" \ V,(20...25).

Proof. Tpn :=P" \ Vy(zg...xp) = {[ag : ... 1an] €P" |a; 0} ={[1:6a1: ... : ap] € P" | G; # 0} ~ (C*)™.
Tpr is Zariski open in P™ and its action on itself clearly extends to an action on P™. O

Remark 7.3. There is a short exact sequence of tori
15C— (C)" 5 T — 1
which induces a s.e.s of character lattices (Exercise[7.1]) :

0— 7 &2 7" v H, +— 0

As this sequence is exact .#, is the kernel of the map (ao, ..., a,) — >_ a; thus ., = {(ag,...,a,) € Z"1 |
>~ a; = 0}. If we dualize again we get

0—Z =2 — A, — 0
and the lattice of one-parameter subgroups .4;, is the quotient
Ny =771, ).

Question 1. How can we construct new projective varieties ¢

7.1 Lattice points and projective toric varieties

Let Ty be a torus with lattices M and N as usual. Let & = {mq,...,ms} C M, and with
(I)(Qg : TN — C*
t (XM (), X (1)

we have Yy := clgs (im @ /). Let us consider the composition:

Tody Ty — C 5Pt

te X)X ()
Now we define X := clps—1 (im(m o & o))
Proposition 7.4. X is toric, with torus Tx , = X NTps-1.

Proof. The image im(7 o @) of the group homomorphism 7o @, is a torus that is closed in Tps-1, let call
it Tx_,. It follows that Tx_, is Zariski open in X/, and the action of Tx_, extends to X, (arguments are
the same as in the affine case, see Proposition [3.4)). The inclusion Tx_, C X N Tps—1 is trivial. Now

Xy NTps—1 = clps—1 (TX!J) NTps—1 = C1TH)571 (TX!J) = TX!J
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Remark 7.5. In the following examples, since M = Z™ and & = {m1,...,ms} C M, we will see & as an
n x s matrix A so that m; = col;(A).

Example 7.6. Let M = Z2 Ty = (C*)? and
d d-1 - 1 0
A:(o 1 d-1 d)

Recall that the rational normal curve Cy is the image of the map ® : P! — P, [s : t] = [s
st4=1 . ¢4]. This map corresponds to the map 7 o ®,. It means that Cy is a projective toric variety.

d . ogd=ly . .

Let us now understand the link between the affines and projective toric varieties Y, and X, .

7.2 Affine cones and projective toric varieties

Recall the short exact sequence of character lattices :

0> L7 24 M (2)

where fi{@f(ei) = m; is the map induced on character lattices by @, with & = {my,...,ms}. L = ker @
and we proved that the toric ideal I,(Y,,) = I, = (z® —2” | a, 3 € N® and a — 8 € L) (see Proposition.
Then we have the following result:

Proposition 7.7. Given Yy, Xy and I, as above, the following are equivalent:
(i) Xy = Yoy
(i1) I =1, (Xy).

(#ii) Ip, is homogeneous.

(iv) There isu € N and k > 0 in N such that (m;,u) =k fori=1,...,s (i.e A lies in an affine hyperplane
of Mg not containing 0).

Proof.
o . = 2.
L(Xy)=1(Xy) =1.(Yy) = I

e 2. = 3. by definition

e 3 = 4.
Assume that I, is homogeneous and take 2® — z% € Ir. If 2® and 2® had different degrees, then 2
and z” would lie in I, = I, (Y.y) i.e would vanish on Y,, but this is impossible since (1,...,1) € Y.

Hence 2 and z” have same degree.
Given £ = (¢1,...,04s) € L, set

€+ = Z Eiei and - =— Z Zlez

£;>0 £;<0

Note that ¢ = ¢, — /_ and that £,,¢_ € N*. z'+ — 2°~ € I} therefore > e,s0ti = D4 <o ti which
implies ¢ - (1,...,1) =0, V¢ € L.

Now we tensor (1) above with Q and take Homg(—, Q) to obtain an exact sequence
No % Q° 2 Homg(L © Q,Q) — 0

where a(a) = ((m;,@)); and B(ry,...,7s) = ((L® s) — s> ir;) (Exercise [7.1]).
Therefore, (1,...,1) € Q® is sent to 0 and 3& € Ng such that (m;, @) =1 for all 1 <i <s.
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e 4. = 1. We already have that Y, C Xﬂ and since )/(:M is irreducible, if we show )/(:d N(C*)* CYy it
will follow that X, C Y,,. So we just need to show this first inclusion, let p € X, N (C*)*.

Then 7(p) € Xy NTps-1 = Tx_,. Therefore 3p € C* and t € Ty such that p = p- (x™ (£), ..., x™ (1)).
Let uw € N be as in the hypothesis 4. This gives a oneparameter subgroup of T, which we write as
T+ A%(7) for 7 € C*. Then

Do (A (7)t) = (X™ (N*(7)t), -, X (A(7)1))
= (rlmowymy ) mewyme (1)) = R (™), L ™ (1))

Using k > 0, we can choose 7 so that p = @ (A\“(7)t) € Yoy and then we have p € im P C Yyy.

7.3 The affine cone of X,
Example 7.8. In Example [7.6] we worked with

d d—1 --- 1 0
A= < 0 1 e d—1 d )
and found X, = Cy. Let us check the conditions of Proposition 1.8. I = (z;2j41 — zip1z; | 0 < i <

j <d—1). We saw that I;, = I, (X.) and I, is homogeneous. Concerning point 4., notice that the affine
hyperplane of Z? containing . consists of all points (a,b) such that a + b = d. Therefore, taking u = (1, 1)

—

and k = d we have that (m;,u) = d, Vi. Therefore Y, = Cy.

Example 7.9. Let M =Z and
B=(0 1 -~ d=1 d)

For all t in C, we have mo ®g(t) = [1:t: ...t = [s?: 97 st : ... 2 s9(st))] = mo @y (s,t) with £ = st.
Therefore X = X = Cy. However X # Yg because I(Yg) € Clzg, ..., z,] is not homogeneous. For
example x93 — 22 € I(Yy) (because it vanishes at (1,t,...,t471 %) for all t € C*) but 2o ¢ I(Y) because
(1, ey 1) €Yy

Question 2. We can ask ourselves how to change </ so that )?:Qg stays the same, but the conditions of
Propositz'on are met. This means we want to construct &' from o such that X,y = X0 and Xy =Yy

We claim that we can use &’ = & x {1}. Indeed, Vt € Ty, p € C*, we then have :
T o Royqay(tp) = DX (Op st X ()] = XTH(E) X ()] = T o Ry ()
= Xog = Xgx)
Since X /{1y lies in an affine hyperplane not containing the origin, )?Qg = )?ﬂx{l} = Yy 1) by Proposition

i

7.4 Torus and character lattice of X,

Let Ty be a torus with character lattice M as usual, and again set & = {my,...,ms} C M.

Definition 7.10. Z's/ = {}°]_,aim; € Zo/ | a; € Z i,y ;. _;a; =0}

Proposition 7.11. (i) 7'/ is the character lattice of the torus of X o, in particular dim X o = rank Z' o7 .
(i) The dimension of X is the dimension of the smallest affine subspace of My containing &/ and

rankZe/ —1 if Ju € N,k € N* s.t (my,u) =k Vi < s,

rank Z' o/ =
rank Z.o/ else.
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Proof. Use Exercise [7.2] to show 2.
Now for part 1., let M’ denote the character lattice of T'x_,, and consider the following commutative diagram:

Ty — Tps—1 — P51

ey |
Tx,,

Dualizing, we obtain (Exercise :

where M,y = {(a1,...,as) € Z° | Y.;_,a; = 0}. 6 is induced by b, : Z° — M, e; — m;. Then
M =im¢ ~imf={>;_am; €L | ;_,a; =0}
O]

Example 7.12. Let &7 = {e1, e, €1 + 2e2,2¢1 + ea} C Z2. Since Z2 = Zey + Zey C 7.9/ we have Zo/ = 72.
7 = {(a,b) € Z* |a+b=0mod 2}. Thus [Z& : Z'«/] = 2. This means that Y,, # X.; and that the
map of tori

Tyd — TXM

is two-to-one, i.e its kernel has order 2.

7.5 Affine pieces and semi-groups

We know that P*~1 = J, U;, where the affine open set U; = P*~'\'V (z;). Moreover X, = |J, Xy NU;. We
have the following result:

Proposition 7.13. X, NU; is an affine toric variety.

Proof.
TX‘Q{ = X'Q{ m T]ps—l g T]va—l g U’L

Since X = clps—1(Tx_, ), it follows that X NU; = cly,(Tx,, ). Therefore, X, NU; is an affine toric variety.
O

Given & = {m1,...,ms} C Mg, let us determine the affine semigroup associated to X NU;.
Using that the isomorphism U; ~ C*~! is given by

(ah...,as) — (al/ai,...,ai,l/ai,ai+1/ai7...,as/ai).
we can see that X NU; is the Zariski closure of the image of the map
Ty — TX,d — U, ~ (Cs_l

t—r (™), X T ), X T, L, X T (L)
If we set o7, = o/ —m; = {m; —m; | j # i}, it follows that

X NU; >~ Yy, = Spec (C[Ngz]) .

Remark 7.14. Later on in the course, we will be interested to determine what is X, NU; NU;, when i # j.
For now, let us notice that U; N U; consists of points of X N U; where x;/z; # 0. Thus

X NU;NUj = Yo, \ Vo(x™ ™) = Spec (C[N]) m;—m;

= Spec ((C [NM]XW-W) .
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Remark 7.15. The set of vertices of a polytope is its minimal generating set. This means that if &/ =
{my,...,ms} C M, P=Conv(&) C Mg, and V is the set of vertices of P, then P = Conv(V) and V C &/
is minimal with this property.

Proposition 7.16. Let & = {my,...,ms} C M, P = Conv(&/) C Mg and J = {1<j<s |m; is a
vertex of P}. Then
Xy = UX%ﬂUj.
jed

Proof. We will prove that if ¢ € {1,...,s}, then Xy NU; C X NU; for some j € J.
Remark 1.15 above implies that V 1 < i < s, there are A; € Q* such that

jeJ jeJ
Now for all j € J, write A\; = % with p; € N, ¢; € N*. Multiplying (2) by Hje] g; we have :
Z k‘jmj = k:ml
jeJ

with all k; and k being integers, and > ._; k; = k. Thus we can rewrite this as:

ij(mj 77774‘) =0

jeJ

jeJ

Now fix j € J, we have:

mi—my =Y ki(mi—m;) + (ky — 1)(m; —m)
1€ J,1#]

which shows that m; — m; € Na7. Therefore ™~ € C[N#] is invertible, so C [N] m;-m, = C[N&].
We then have X, N U; NU; = Spec (C[No7]) = X N U;, showing that X, NU; € Xy NU;. O

7.6 Exercises

Let T be a torus with character lattice M, and consider a finite subset

o ={mq,...,ms} C M.

Exercise 7.1.

(i) Let 0 — T — T/ — T"” — 0 be an exact sequence of tori and algebraic group homomorphisms.
Show that it induces an exact sequence of their character lattices, by showing in particular that an
injection, respectively a surjection, of tori induces a surjection, respectively an injection, of their
character lattices.

Hint: Show that, given the following diagram of algebraic group homomorphisms, with « injective, x
extends to (C*)™:

C*

To do this, you can represent the map « by a matrix.
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(ii) Prove the claim used during the lecture that the exact sequence

0—L—27Z°—M
€, ——r my;

induces, by tensoring with Q and taking duals, an exact sequence:

NQ — @S — HOIHQ(LQ,@) —0

Exercise 7.2. Prove the claims we used during the course about

7 of = {Zaimi a; € Z Vi< s, Zaizo}:
i=1 i=1

(i) Z'« is a lattice.
(ii) Its rank is the dimension of the smallest affine subspace of Mg containing <.

k Zo/ —1 if 3 N,k e N* nu) =k Vi <s,
(i) rank Z'of = ran if Ju e N,k € N*, (m;,u) 1<s
rank Zo/ else.
Exercise 7.3. Given m € M, let & + m ={m'+ m | m' € &}.
(i) Prove that & and &/ + m give rise to the same projective toric variety: X = Xoym.

(ii) Show by an example that they do not necessarily give rise to the same affine toric variety in general:
Yo 7£ Yﬂf+m~

Exercise 7.4. Let M = Z3*3 be the lattice of 3 x 3 integer matrices and let &5 be the set of the six 3 x 3
permutation matrices, i.e.
P3 ={(0j=0(1))ij | 0 € 83} C 2%

Also let P5 have homogeneous coordinates x;;;, indexed by triples such that (1 2 2) is a permutation in
Ss.

(i) Prove that three of the permutation matrices sum to the other three and use this to explain why
T123%2317312 — T1323217213 € I(Xg%,)-

(ii) Show that dim X g, = 4 by computing Z' Zs.

(111) Conclude that I(Xg&s) = <1‘123$231$312 — $132$3211‘213>.
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Chapter 8. Polytopes

Chapter written by Louis Gogniat after the talk of Matthew Dupraz and Zichen Gao

8.1 Definitions and basic properties of polytopes

Let us recall that a polytope P C My is the convex hull of a finite set S C Mg, that is, P = Conv(S) =
D mes Amm | Am >0, > o Ay = 1}. Following this, we provide some elementary definitions regarding
polytopes.

Definition 8.1. The dimension of a polytope P C My is the dimension of the smallest affine subspace of
Mpg containing P. It is then said that P has full dimension if dim P = dimg Mg.

Definition 8.2. Let u € Ng\0, and a € R. We denote H, , as the affine hyperplane defined by H,, o := {m €
Mg | (m,u) = a}. Similarly, H., , represents the closed half-space defined by H.f , := {m € Mg | (m,u) > a}.

Definition 8.3. Let P be a polytope. We say that Q C P is a face of P, denoted as () < P, if there exists
an affine hyperplane H,, , such that Q = PN H, , and Q C Hj"a. In this case, H, q is called a supporting
affine hyperplane.

By convention, P is considered as its own face, i.e., P < P, even if it may not necessarily satisfy the
condition of Definition [8.3]

It is not difficult to observe that any face of a polytope is still a polytope. In fact, if P = Conv(S) and
Q = P with a supporting affine hyperplane H, then @ = Conv(S N H). In particular, each face Q) possesses
a dimension as defined in Definition If P is a polytope of dimension n, we refer to vertices, edges, and
facets to denote a face Q <X P of dimension 0, 1, and n — 1 respectively.

Below is an example provided for illustration.

Figure 6: A polytope P C R? with its four supporting hyperplanes. The points A, B,C, and D are the
four vertices of P, while the segments AB, BC,CD, and DA are the edges, which are also facets of P (in
dimension 2).

We now state without proof some useful results about polytopes that will be helpful for what follows.

Proposition 8.4. Let P = Conv(S) C Mg be a polytope. Then:

(i) P = Conv({v € P | v is a vertex}), which means that P is the convex hull of its vertices.
(i) FEvery vertex of P belongs to S.

(i4i) The relation < among the faces of P is transitive.
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(iv) If Q@ < P is a proper face of P, then Q = ﬂFE}-Q F, where Fg is the set of all facets of P containing
Q.

It is worth noting, moreover, that any polytope P can be obtained as the finite intersection of closed half-
spaces. Furthermore, when P is full-dimensional, each facet F' < P is contained in a unique hyperplane
Hr = Hy, —qp with (up,—ap) € Nr X R, unique up to multiplication by a positive real number (see
Exercise . In this case, we can represent P as follows:

P: ﬂ H;p,—a;:? (4)
FeF

where F denotes the the set of all facets of P.

Remark 8.5. Note that conversely, if P C My is bounded with P = 02:1 Hj' for some closed half-sapces
H j‘ , then P is a polytope. In other words, any bounded finite intersection of closed half-spaces is a polytope.

We now introduce various types of specific polytopes.
Definition 8.6. Let P C Mg be a polytope of dimension d.
(i) P is called a (d-)simplex if it has exactly d + 1 vertices.

(ii) In R™, the standard n-simplex is the polytope A, = Conv(0,ey,...,e,), where the ¢;’s denote the
canonical vectors basis of R"”.

(iii) P is said to be simplicial if each of its facets is a simplex.

(iv) P is called simple if each vertex of P lies in exactly d facets of P.

o el i

ey V J SR T

A

X

Figure 7: From left to right: The standard 3-simplex in R?, an octahedron (simplicial), and a cube (simple).

Definition 8.7. Two polytopes P, Q C My are said to be combinatorially equivalent if there exists a bijection
between the set of faces of P and that of () that preserves intersections, the inclusion relations <, and the
dimensions of the faces.

It is not difficult to see that every simplex of dimension d is combinatorially equivalent to the standard
d-simplex. Similarly, every convex polygon with n > 3 vertices are combinatorially equivalent to the
regular convex n-gone.

We now introduce some ”algebraic” operations on polytopes.

Definition 8.8. For A;, As C Mg two finite subsets, the Minkowski sum of A; and A, is defined to be
A+ Ay = {(11 + as | a; € Al, as € Ag}

Definition 8.9. Let P; = Conv(A;), P» = Conv(As) be two polytopes, and r € R>g. We then define new
polytopes:
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(i) r- P, := Conv(r- Ay),
(11) P+ P = COHV(Al + AQ)

For r,s € R>g and P C Mg a polytope, note that the operations defined above satisfy rP + sP = (r + s)P.

Definition 8.10. For A C Mg, we define the dual of A, denoted by A°, as

A°={ue Ng | (mu) > -1, Yme A} = ﬂ Hy .
meA

From this definition, we observe that for any A C Mg, we have A° = Conv(A)°. In particular, for a polytope
P = Conv(S) where S C My is finite, we have

P° = Conv(S)° = 5° = (] H ;.
meS

Thus, the dual of a polytope is a finite intersection of closed half-spaces, and according to Remark we
conclude that P° is a polytope if and only if (), g H,t’_l is bounded. It is not difficult to see that this last
condition is satisfied if and only if 0 is an interior point of P. Therefore, for any (full-dimensional) polytope
P containing 0 as an interior point, we conclude that the dual of P is also a polytope.

The dual of a polytope P has the following additional properties.

Proposition 8.11. A full-dimensional polytope P C My containing the origin as an interior point satisfies:
(i) P° = Conv(;tup | F € is a facet), if P =\pe Hil, oy
(ii) (P°)° =P,

(#ii) if P is simplicial, then P° is simple and vice versa.

Proof. See Exercise [8.2 O

Below is an example of a polytope in R? and its dual.

Figure 8: The polytope P = Conv(2e; + 2e5,2e; — 2e, —2e1 + 2e5, —2e1 — 2e5) in blue and its dual P° in
green represented in the same space Mr = Ny = R2.

8.2 Lattice, normal and very ample polytopes
Now, consider M and N as two dual lattices with associated vector spaces My and Ng.

Definition 8.12. A lattice polytope is a polytope P = Conv(S), where S C M is a set of lattice points.
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€«tez+ 3L,

ez

€.

b ¢4

Figure 9: The lattice polytope P = Conv(0, e1, ez, €1 + ez + 3ez) C R3.

For example, the standard simplices as well as the square illustrated in Figure [8] are lattice polytopes.

When P C My is full-dimensional, let us recall that by , we have a decomposition P = (. HJ'F,_GF
where F is the set of facets of P, and where the pairs (up, —ar) are unique up to multiplication by positive
real number. When P is moreover a lattice polytope, each up defines a rational ray, and we may choose in
the above decomposition ugr to be the ray generator of this ray. The decomposition then becomes
unique, and in that case the coefficients ap are integers since for any vertices v of the facet F' < P, we have

—ar = (v,up) € Z.

A new example of a lattice polytope is provided to illustrate this decomposition.

Example 8.13. The 3-simplex P = Conv(0, ey, e2,e; + ez + 3e3) C R3 is a lattice polytope (see Figure E[)
The decomposition of P as an intersection of closed half-spaces, given by the above comment, is then

_ gt + + +
P - Heg,o N H3€17€3,0 N H3€2783,O N H73€17382+€3,73’

However, notice that %P has a similar decomposition with integer coefficients but is not a lattice polytope.

Indeed, we have

1
— + + + +
7P - H 0 N H3 1—es3,0 N H3€2—€3,0 N H—381—362+€3,—17

3 €3, €

but it is not a lattice polytope since %P = Conv (0, %el, %62, %el + %62 + 63).

Later on, we will see how to construct toric varieties Xpnys from a polytope P. We will observe that this
construction works quite well when the polytope in question has ”sufficiently” many lattice points. In the
following, we introduce two types of polytopes that fulfill this role, namely, normal and very ample polytopes.

Definition 8.14. A lattice polytope P C My is said to be normal if for any k,l € N we have
(kPOM)+(PNM)=(k+1)PNM.
Note that equivalently, P is normal if

PNM+---+PNM=kPNM for all k€ N.

k times

We remark additionally, that in both cases, the left-to-right inclusion is always satisfied.
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Example 8.15. The standard n-simplex A, = Conv(0,eq,...,e,) C R™ is normal. Indeed, for any k € N,
note that

kAn:{)\oo—FE )\,61| E i =k, )\120}
=1 =0
Thus, if x € kA, NZ"™, we get

T = )\0-04—2)\1'61', where \; € N, Z)\i = k.
i=1 i=0
We can then rewrite z as follows:

z=0+--+0+---+e,+---F+e, €A, NZ"+---+A,NZ".
———

Ao times Ap times k times

Example 8.16. The 3-simplex P = Conv(0,e1,ea,e1 + €2 + 3e3) from Example is a nmon-normal
lattice polytope. Indeed, it is not difficult to observe that its only lattice points are its vertices, i.e., PNZ3 =
{0,e1,ea,e1+e2+3e3}. Thus, e; +e5+e3 does not belong to PNZ3+PnNZ3. However, e +ey+e3 € 2PNZ3
since

1 1 1 1

e1+ex+e3 = *'O—I—*-2614—*'262-{-*'(261+2€2+6€3).
6 3 3 6

Below is presented a theorem on normality.

Theorem 8.17. Let P C My be a full-dimensional lattice polytope of dimensions n > 2. Then kP is normal
forallk >n—1.

Proof. We will prove this theorem in four parts.
Step 1: Let us assume initially that P satisfies

(k+1)PNM CEPNM+PNM Vk>n-—1. (%)
Then, for any integer | > 2, we have

IkPNnMC(k—1)PNM+PNMC---CkPNM+PNM+---+PNM,

(I-1)k times

k times

where we have successively used the inclusion given by (ﬁ) Since clearly we have PONM +---+ PN M C

kP N M, we then find that

IkPNMCEPNM+EPNM+---+kPNM=kPNM+---+kPNM.

(I—1) times I times

Therefore, in this case, we conclude that kP is normal for all K > n — 1. Thus, to prove the theorem, it is
sufficient to verify that P satisfies the condition (ED

Step 2: Let us now assume that P decomposes into a union of polytopes P = U?Zl P; such that each
polytope P; satisfies (ED For any k > n — 1, we then have

(k:+1)PmM:((k+1)OR-)mM:O((k+1)PmM)

i=1 i=1

n
C U(kPmM+PmM)ngmM+PmM,
=1

where the first inclusion follows from the assumption that (ED holds for each P;. Consequently, we observe
in this case that P also satisfies the condition (ED Thus, to prove the theorem, it suffices to find a
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decomposition of P into a union of polytopes for which @ is verified.

Step 3: We now demonstrate that every lattice polytope of dimension n decomposes into a finite union of
n-dimensional lattice simplices without interior lattice points. To accomplish this, let us recall the following

theorem

Theorem 8.18 (Carathéodory). For a finite set A C Mg, the convex hull of A can be decomposed as

Conv(A4) = Uézl Conv(B;), where B; C A are subsets of A such that Card(B;) = dim Conv(A)+1 and
dim Conv(B;) = dim Conv(A).

For P = Conv(S), full-dimensional of dimension n, Carathéodory’s Theorem implies that
P = Ui'=1 Conv(B;), where Conv(B;) is an n-simplex for all i. Furthermore, note that any n-simplex Q
with interior lattice point can be decomposed into a union of n-simplices without interior lattice points.
Specifically, if @ = Conv(wy,...,w,) with an interior lattice point v, then @Q = U?:o Q;, where
Q; = Conv(wy,...,W;,...,wy,v). Each Q; is then an n-simplex with fewer lattice points, and as @ is
bounded, we can repeat the same argument until obtaining the desired decomposition (see Figure . By
combining Carathéodory’s Theorem with the above argument, we conclude that every polytope P can be
decomposed into a finite union of n-simplices without interior points.

Figure 10: Decomposition of the 2-simplex P = Conv(0, 4e;, 3e1 + 2e2) (containing the interior lattice points
u and v) into smaller 2-simplices that do not contain any interior lattice points.

Step 4: By combining the results from Step 2 and Step 3, we note that it suffices to demonstrate that @
holds for simplices without interior lattice points.

So let us consider P = Conv(my,...,m;), where m; € M and P has no interior lattice points. Let
m € (k+1)PN M. Then,

where each p; > 0 and Z?:o w; = 1. Setting \; = (k 4+ 1)u;, we have

m=> Am;, with X; >0, and » A=k + 1.
i=0 =0

We distinguish two cases:

(i) If there exists a A; > 1, we easily observe that m — m; € kP N M. Therefore, m = (m —m;) +m; €
kKPNM+PNnM.

4For a proof of this theorem, see, for example, Prop. 1.1.15 in ”Lectures On Polytopes” by Ziegler, Giinter M.
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ii) If, on the other hand, \; < 1 for all indices 4, then Y . , < n 4+ 1. Since by hypothesis k > n — 1, we
=0
obtain in that case that

k+1=) N<n+1<k+2
i=0
and therefore n = k + 1. We then define m = mg + - - - + m,, — m, and observe that

=0 =0

=0

Since Y ((1=X\;) = (n+1)—n =1 and mg+-+m, —m € M, we find that i € PN M. Furthermore,
noting that 1 > 1—X\; > 0 for all ¢, we see that m is an interior lattice point of P. Since, by assumption,
P does not have any interior lattice points, we conclude that this second case cannot occur.

We conclude that only the first case is possible, and consequently, that P satisfies the condition (E[) This
completes the proof.
O

For a lattice polytope P, its cone is defined as C(P) = Cone(P x {1}) € Mg x R. Explicitly, we have
C(P) ={(rx,r) | r > 0,z € P}, and we will think of the parameter r > 0 as a height.

|
\
|

L
/
//
/// L\e,aal :2

P
C(P) A\ o b -

Figure 11: The cone C(P) of the polytope P sliced at heights 1 and 2.

The following lemma allows us to interpret the normality of a polytope in terms of its cone.

Lemma 8.19. Let P C Mg be a lattice polytope. Then, P is normal if and only if (PN M) x {1} generates
the semigroup C(P)N (M x Z).

Proof. Exercise 8.3 O

The lemma above allows for another proof of the fact that the polytope P = Conv(0, e1,e2,e1 + e + 3es)
from Example cannot be normal. Indeed, it can be shown that the Hilbert basis of C(P) N (M x Z)
contains elements of height 2 (see Exercise[8.4)), and thus, by Lemma[8.19] we conclude that P is not normal.

Definition 8.20. A lattice polytope P C My is called very ample if for every vertex m € P, the semigroup
Spm =N(PN M —m) is saturated in M.

Proposition 8.21. A normal polytope P is very ample.

Proof. Let mg be a vertex of P and m € M such that km € Sp,,, for some integer k£ > 1. Then we have

km = Z A (M — M) = Z A — Z Aprmo, a, € N.

m’'ePNM m’'ePNM m’'e PNM
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Take d € N such that kd > ", prps G, then

km 4 kdmo = > agm/ +(kd— > am)mo € kdP.
m’ePNM m’e PNM

Dividing the above equation by k gives

1 1
m+ dmg = Z kam/m’—l—(d—k Z am/>m06dP.

m’'ePNM m’'ePNM

Due to the normality of P, we therefore have m + dmg = Zle m;, for some m; € PN M. Consequently,

d d
m = (Zmz> — dmo = Z(mz - mO) S SP,moa
i=1

i=1
as desired. O
By combining Theorem with Proposition [8.21] we obtain the following corollary.

Corollary 8.22. Let P C Mg = R"™ be a full-dimensional lattice polytope. Then, kP is very ample for all
k>n-—1.

Note that a very ample polytope need not to be normal, so the converse of the previous corollary does not
necessarily hold.

8.3 Exercises

Exercise 8.1. Let P be a polytope. Show that each facet of P has a unique supporting affine hyperplane
if and only if P is of maximal dimension.

Exercise 8.2. Let P C My be a polytope of maximal dimension d with the origin as an interior point.

(i) Write P = {m € Mg | (m,up) > —ar for all facets F'}. Prove that ap > 0 for all F' and that
P° =Conv((l/ap)up | F is a facet)ﬂ Deduce that (P°)° = P.

(ii) Show there is a bijective, inclusion reversing correspondence between the faces of P and the faces of
P°, through which the faces of dimension n correspond to faces of dimension d —n — 1. Deduce that
the dual of a simplicial polytope is simple and vice versa.

(iii) Show that (rP)° = (1/r)P° for all » > 0. Use this to construct an example of a lattice polytope whose
dual is not a lattice polytope.

Exercise 8.3. Let P C Mg be a lattice polytope. Prove that P is normal if and only if (P N M) x {1}
generates the semigroup C(P) N (M x Z).

Exercise 8.4. Let P = Conv(0, e1,e2,e1 + e3 + 3e3) C R3 be the simplex mentioned in the lecture.
(a) Show that the only lattice points of P are its vertices.
(b) Show that the toric variety X pnzs is P3.
(c) Show that the Hilbert basis of C(P) N (M x Z) is
(0,1), (e1,1), (e2,1),(e1 + €2 + 3es, 1), (e1 + ea + e3,2), (e1 + ea + 2e3, 2).

Combining with the previous exercise, show that P is not normal.

5You may use that if C C My is a convex subset, p € C a point, then p and C are separable by a hyperplane. In other
words, there exists some u € Ng and a € R, such that (u,p) < a and for all m € C, (u,m) > a.
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Chapter 9. Normal fans
Juan Felipe Celis after the talk of Clotilde Freydt and Julia Morin

Our goal is to define a projective toric variety from a lattice polytope.

9.1 Very ample polytopes

Consider the following setting. Let P C Mg be a full dimensional very ample lattice polytope with dim P = n,
PN M ={my,...,ms}. Recall that the toric variety Xpnps is the Zariski closure of the map

Tn = Pt ™) 0o ™= ()]

Now fix homogeneous coordinates x1,...,zs for P71, Then we have U; = P*~'\V(x;). We examine the

variety X pnas. Remember that
S :N(Pﬂ]\/[fmi)

and that
Xpam NU; = Spec(C[Sy]),
Xpam = Ui—1 Xpam NU;,
since (U;);_, form an affine open cover of PS~1.
Theorem 9.1. Let P C My be a full dimensional very ample lattice polytope with dim P = n. Then
(i) For all m; € PN M we have
Xpam NU; = Uy, = Spec(Clo;]Y N M)
where o; C Ny is the strongly convex rational dual cone of Cone(P N M —m;), and dimo; = n.
(ii) The torus of Xpanr s T .

Proof. (i) Let C; = Cone(P N M —m;) and observe that o; = C}. Take H, , a supporting hyperplane of
m,; such that P C HY and PN Hy.o = {m;}. Now we use Exercise 9.1 which says the that H, ¢ is a

u,a

supporting hyperplane of 0 € C; and dim C; = dim P.

This already proves that dim o; = n. Observe we have the inclusion
SigCiﬂM:aiVﬂM

where both S; and ¢ N M are generated by PN M —m,;. As P is very ample S; is saturated so this
inclusion is in fact an equality. See Exercise 1.3.4 in [CLS]. This concludes the proof as

Xpry NU; = Uy, = Spec(C[S;]) = Spec(Clo;]¥Y N M).

(ii) Notice that for all ¢ € {1,...,s} we have
I'n CUs; = Xpam NU; € Xpaum-

Then Ty is the torus of X pnjs as it is an open subset, thus dense, of Xpnys.
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9.2 Normal fans
For P C My we denote facets by F, faces by @ and vertices by v. Recall from previous sections that
P={me Mr|{m,ur) > —ap VF < P facet}
and from a vertex v € P we can define cones
C, = Cone(PNM —v) C Mg

and
Oy = Cq\}/ g N]R.
We can see there is a bijective correspondence between faces of P containing v and faces of C,. More
explicitly,
{ve@ P} {R=C}
Q— Q, = Cone(QN M —v)
(R+v)NP <+ R.

To have some intuition on this bijection we can rely on fig. [I2] as a small example.

Figure 12: Bijective correspondence of faces
Notice that
Cy={m e Mg |(m,ur) > 0VEF = v}
and by duality
o, = Cone(up | F ¥ v)
og = Cone(up | F = Q).
Observe that op = {0} because there are no facets containing P.
Theorem 9.2. Let P C My be a full dimensional lattice polytope and set
p={og|Q@ =P}
Then:
(i) For all og € Xp, each face of g is also in Xp.
(i1) For any two faces Q, Q" < P, the intersection og Nog: in Xp is a face of each.

Definition 9.3 (Fan). A collection of strongly convex rational polyhedral cones satisfying (i) and (ii) is
called a fan. Moreover if this collection comes from a polytope P as in the theorem we say that it is the
normal fan of P.
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To prove this theorem we will first state and prove some useful lemmas and propositions. Then the theorem
will follow as a consequence of these.

Lemma 9.4. Let Q =< P and let H,, be a supporting hyperplane of P. Then u € g iff @ C H,, N P.
Proof. Left as an exercise to the reader. To see the full proof see Lemma 2.3.3 in [CLS], page 77. O
Corollary 9.5. If Q X P and F X P is a facet. Then ur € 0g iff Q X F.

Proof. Assume ) = F' then by definition of o it is clear that up € og.
Now suppose that urp € 0g. Then by our lemma H,, _q, is a supporting hyperplane of F' such that its
intersection with P contains (). Moreover

QC Hyp,—ap NP =F,
which finishes the proof. O
Proposition 9.6. Let Q, Q' be faces of a full dimensional polytope P C My. Then:
() QCQ iff gy C oo
(i1) If Q@ C Q' then og is a face of og and all faces of og are of this form.
(i1i) We have g Nog = oo where Q" is the smallest face of P containing both Q and @Q'.
Proof. (i) First suppose that @ C @’. Then by definition of oo and oo we get oo C 0g because all

facets containing @)’ also contain Q.

Now suppose o € 0. Then for all F' = Q" we have up € o¢g/ C ¢ using the previous corollary. So
F = @. We can conclude

Q=) F20Q
FrQ’

(ii) Let v € P be a vertex such that v € Q. Then recall that Q} := o, N Qr is a face of C)Y = 7,. And

Qy=CynQy
=0, NQy
={m € o, |{mu) =0Vu € Q,}
= Cone(ur | F 3 v,Qy C Hy,0)

SoforveQ, Qu C Hypoiff Q C Hyp —qp iff Q C F. Then

Qi = Cone(up |F30v,Q CF)=o0¢

Thus o¢ is a face of o,,. Moreover if Q C @', og' C og we have oo = 0,.
Now if 7 < 0 < 0¢ then 7 = o~ for Q" < P.

(iii) Let @Q” be the smallest face of P containing ) and Q'. Then by part (i) we have ogr C 0o and
ogr Cog. Thus ogr CogNog .
Now we consider two cases. If cgNog: = {0} = op then Q" = P. Otherwise thereis u € (cgNog/)\{0}
and define
b = min{(v,u) |v € P vertex}.

Then P C qu,b so H, is a supporting hyperplane of P. Moreover Q C H,, NP and Q' C H,, N P
thus H,, N P is a face containing @, and Q’. Then Q” C H,;, N P and it follows that u € og~. This
concludes the proof.

O

Remark 9.7. This proposition proves the theorem. Indeed parts (i) and (ii) from this proposition imply
(i) from the theorem, and part (iii) of the proposition implies part (ii) of the theorem.
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Figure 13: Cone C, for a vertex v € P

Example 9.8. In fig. [13| we can see a polytope P with a vertex v and its cone C),.
Proposition 9.9. Let P C Mg be a full dimensional lattice polytope of dimension n. Then:

(i) For all faces Q of P, og € Lp and
dimog +dim @ = n.

(i) Moreover

Proof. (i) For v € Q) we have
dim @ +dimog = dimQ, + dim Q;, = n.

(ii) Let u € Ng be non-zero. Take
b = min{(v,u) |v € P vertex}.

Then H,; is a supporting hyperplane of P. There is at least one v € P such that v € H, ;. Thus
U € oy.
O

Proposition 9.10. Let P C Mg be a full dimensional lattice polytope. For all lattice points m € M, and
any integer k > 1, m + P and kP have the same normal fan as P.

Proof. Exercise [9.2 O
Example 9.11 (Normal fan). In fig. [14 we see a lattice hexagon with its normal fan.

Example 9.12. In fig. we can see a cube P and its dual an octahedron. Here want to understand the
relation between the dual polytope P° and the normal fan X p. Notice that the cone of a face of P° is an
element of X p. For more details in this correspondence see Exercise [9.3
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Figure 14: Lattice hexagon P with its normal fan

9.3 Toric variety of a polytope
Now consider
XPﬂM N Uv n Uw
and let PN M = {mq,...,ms}. If v € PN M, there is some i € {1,...,s} such that v = m; and
U, =XpamuNU; ~ SpeC(C[Sl])

Proposition 9.13. Let P C Mg be a full dimensional very ample lattice polytope. Let v,w € P be two
distinct vertices, and Q =< P be the smallest face containing v and w. Then

Xprm NU,NU, = UgQ = SpeC(C[Jé n M])
Proof. We have

XPﬂM N Uv n Uw = SpeC((C[O':}/ N M])\Vp(xwiv)
= (Ua/u>xw*v

and similarly
XPmM n U»U n Uw = (UO'w)X"_“"

So it is enough to show that
(UO-U)Xw—'u - U

agQ -

Now observe that w —v € C, = ¢ thus 7 = H,,_, N0, < 0,. We get
(Us, ) yw— = Usr

so to prove the proposition it suffices to show 7 = 0. Equivalently we need to show that H,,_,No, = 0,Noy,
because theorem iii) yields 0g = 0, N oy.

Let u € Hy—y Noy. If w7 0 then there is a supporting hyperplane H, ; of P. Thus by 1emma@ veE Hyp
and as u € Hy,_, we deduce that w € Hy, and u € 0. Then Hyy_, N oy C 0y N Oy

Now let u € o, N oy, u # 0. Then there is a supporting hyperplane H,, ;, of P containing v and w. Again by
lemma we conclude that v € Hy,_,,. Whence H,,_, N o, = 0, N o, and the proposition follows. O]

Remark 9.14. This proposition alongside the theorem about normal fans prove that the normal fan Xp
completely determines X pqy.
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Figure 15: A cube and its dual octahedron

Now we can define a toric variety from a polytope.

Definition 9.15 (Toric variety associated to a polytope). Let P C Mg be a full dimensional lattice polytope.
Then we define the toric variety of P to be

Xp=Xuxp)nm

where k is any positive integer such that kP is very ample.

9.4 Exercises

Exercise 9.1. Let P C Mg, be a full dimensional very ample polytope.

(i) Let H, , be a supporting hyperplane of a vertex m € P. Prove that H, ¢ is a supporting hyperplane
of 0 € C = Cone (PN M —m).

(ii) Prove that dim C = dim P.

Exercise 9.2. Let P C My be a full dimensional lattice polytope. Then for any lattice point m € M and
any integer k > 1, the polytopes m + P and kP have the same normal fan as P.

Exercise 9.3. Let P C Mr ~ R” be an n-dimensional lattice polytope containing 0 as an interior point,
and let P° C Ng be its dual polytope. Prove that the normal fan X p consists of the cones over the faces of
P°. Hint: Use Exercise 2.2.1 of [CLS].

Exercise 9.4. (i) Let ey, ..., e, be the standard basis of R™. Prove that the normal fan of the standard n-
simplex consists of the cones Cone(S) for all proper subsets S C {eg,e1,...,e,}, whereeg = — 37" | €;.
Draw pictures of the normal fan for n = 1,2, 3.

(ii) For an integer k& > 1, show that the variety Xya, C P! is given by the map vy : P* —s Pss—1
defined using all monomials of total degree k in C [z, ..., 2p].
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Chapter 10. Smooth projective toric varieties and
abstract varieties

Isak Sundelius after the talk of Coppin and Schuller.

10.1 Projective toric varieties

Recall: Let P C Mg denote a full-dimensional and very ample lattice polytope. Denote by s = |P N M| the
number of lattice points. We then have the projective toric variety X pnas, given as a subvariety of P!, It
decomposes as the union

Xpam = U Xpam NU,

v vertex
with
Xpay NU, = Uy, = Spec(Cloy N M]).

Let v # w be vertices and @ the smallest edge containing them. Then
Xpamu NU,NU, = UUQ.

Furthermore,
Udu > XpmNU,NnU, C an

and in particular
Uo',v 2 (Uav)xw*“ =U.

7Q

= (UO'w)XU*w g Ua'w

by which we conclude that the normal fan ¥p determines Xpnpy.

10.1.1 The toric variety of a polytope

Definition 10.1. Let P C Mg be a full-dimensional lattice polytope. The toric variety of P denoted by
Xp is defined as X(xpynns, where k > 1 is chosen such that kP is very ample.

Remark 10.2.
e Such a k as in definition [10.1] exists and satisfies k > n — 1.
e If £ and ¢ are two such integers, kP and ¢P have the same normal fan.

Example 10.3. Let A C R"™ be the standard n-simplex given by Cone(0,e1,...,e,). If kK > 1 we denote
by s = (”Zk) the number of lattice points in kA,,, which are given by monomials in C[ty,...,%,] of total
degree < k. Then there is an embedding

XAW g IP)Skfl
In the case of k = 1 we clearly only have the lattice points
A, NZ"={0,e1,...,en}.

Then XA, =P™.
For general k£ > 1 we get the embedding
Ve 1 P — port

with image defined by using the monomials in C[zy,...,z,] of degree k. Setting n = 1 and k = 2 we get
that this is the Veronese embedding
Vo i Pt — P?

[xo : 1] = [22 @ zozy : 23]
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10.1.2 Normality
Definition 10.4. A projective variety embedded in P™ is projectively normal if its affine cone is normal.

Remark 10.5. We will later see that a variety X is defined to be normal if it is irreducible and the local
rings Ox,, are normal for all p € X.

Recall:

e If o is a strongly convex rational polyhedral cone then the affine toric variety U, = Spec(C[S,]) is
normal.

e The affine toric variety Spec(C[S]) is normal if and only if S is saturated.
Theorem 10.6. Let P C My be a full-dimensional lattice polytope. We then have the following:
(a) Xp is normal;
(b) Xp is projectively normal under the embedding given by kP if and only if kP is normal.

Proof. (a) Xp is toric, hence irreducible. The affine pieces are given by U, , and since these are normal
X p is normal.

(b) Note that
Xwpynm = X(kP)nM)x{1}-
The right hand side may be viewed as the closure of the image of
D (kpynnnyx {1yt ) = X @p XM O] = [XTE) 2 X))
The affine cone of X(,pyns is Ya, with A = ((kP) N M) x {1}. In particular,
Y4 = Spec(C[S])

where S = NA. The affine cone Y4 is normal if and only if S is saturated. We see that A generates the
cone C'(kP) := Cone((kP) x {1}). We then have that S is saturated if and only if C(kP) N (M x Z)
is generated by A, which in turn is the case if and only if kP is normal.

O

10.1.3 Smoothness

Definition 10.7. Let P C Mg be a lattice polytope and let v be a vertex of P. Let E be an edge of P
containing v and denote by wg the first lattice point encountered when moving along E beginning at v, not
equal to v. Then we define P to be smooth if for every vertex v € P the set

{wg —v | v € E C P edge and wg the lattice point given by v and E}
forms a subset of a Z-basis of M.
Recall: A cone is smooth if its ray generators form a subset of a Z-basis of M.
Theorem 10.8. Let P C My be a full-dimensional lattice polytope. The following are equivalent:
(a) Xp is a smooth projective variety;
(b) Xp is a smooth fan, i.e., every o € Xp is smooth;
(c) P is a smooth polytope.

Proof. (a) <= (b) Smoothness is a local condition, so Xp is smooth if and only if all of its affine pieces are
smooth. Since the affine pieces are given by U, , and these are smooth if and only if o, are smooth cones,
we have that this is satisfied if and only if X p is smooth.

(b) <= (c) For a vertex v the cone o, is smooth if and only if ¢ = C, := Cone(P N M — v) is. The ray
generators of the cone C), are wg — v. With this we conclude that ¢, is smooth for every vertex v € P if
and only if P is smooth. O
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Proposition 10.9. Every smooth full-dimensional lattice polytope is very ample.

Proof. As usual, we let P denote a lattice polytope such as in the statement of the proposition and let v € P
denote a vertex, fixed throughout the proof. We want to show that S, = N(P N M — v) is saturated.

Since P is smooth we have, by definition, that the wg — v, for varying E > v, constitute a subset of a basis
for M. Due to P being full-dimensional we have that the wg — v, for varying E 3 v, in fact constitute a
basis for M.

This furthermore gives us that {wg —v | F 2 v} generates S,, since this is a subset of S, generating M.
Let us now take km € S, for k£ > 1 and a lattice point m. Since the wg — v constitute a basis we can write

m uniquely as
m = Z Ap(wg —v)
E edge

where Ag € Z for all E. In a similar way we may write
km = Z we(wg —v)
E edge

for unique ug € N, since km is assumed to belong to S,. Then, since the ug and Ag are unique, we have
equality ug/k = A\g for every edge E containing v and so since k € N, by assumption, we get that A\g € N.
This means that

m = Z )\E(’LUE—’U) €S,

E edge

since S, = N(P N M — v), so we are done. O

Remark 10.10. A natural question to ask is whether every smooth polytope is normal. However, this is
still an open problem.

Example 10.11.

e The standard n-simplex A,, = Cone(0,ey,...,e,) is smooth, since {e; —0,...,e, — 0} constitutes a
basis for M = 7Z".

e Let P = Conv(0,2e1,e3). Then Xp = Xpnze is given by the image of the morphism
(C*)? — P?
(5,8) = [1:5:8%: 1]

so Xp = V(yoy2 —y?) C P2. Then the intersection with the affine chart Xp NUz = V(yoy2 —y3) C C3,
but the point (0,0, 0) corresponds to the point [0:0: 0 : 1] € P3, which is singular.

We also see that the cone spanned by the basis {e1, —2e2 — €1} is not smooth.

>

Left: The polytope P; Right: The normal fan Xp of P with its three cones, the bottom one, the span
of {e1,—2es — ey}, being nonsmooth/singular.

10.2 Abstract varieties

We want to study varieties, regardless of if they are affine or projective.
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10.2.1 What is a sheaf

Let X be a topological space.

Definition 10.12. A presheaf F of abelian groups (or rings or C-algebras etc.) on X consists of the data
(i) for every open subset U C X an abelian group F(U);

(ii) for every inclusion of open subsets V C U C X a group homomorphism
puy : F(U) = F(V)

subject to
(iii) for every open subset U C X, pyv = Idzu);

(iv) for every triple of inclusions of open subsets W CV C U C X|
PUW = PV,W © PU,V -

Remark 10.13. A presheaf constitutes a functor

F : Open(X)?? — AbGrp.
For s € F(U) with V C U C X open subsets, we denote by s |v:= py,v (s) the restriction of s to V.
Definition 10.14. A presheaf F is said to be a sheaf if it satisfies

(i) for U C X an open subset with open cover {U,}q, and s € F(U), then s |,= 0 for all o implies that
s =0;

(ii) for U C X an open subset with open cover {Uy,}, and given sections s, € F(Uy) for every « satisfying
Sa |UanUs= 58 |U.nu, for all pairs a, 3 there exists a section (unique, by (i)) t € F(U) such that
t |u,= sq for all a.

Definition 10.15. Let F be a presheaf of abelian groups on X. The stalk F, of F at x € X is defined as
the direct limit

Fp = liﬁ}]:(U) ={(U,s) | = € U open subset of X,s € F(U)}/ ~,
Usx

where (U, s) ~ (V,t) if there exists an open neighbourhood W of x such that W C U NV and
slw=t|w .
Example 10.16. An example of a sheaf is the sheaf of holomorphic functions on C,
Okl () = {f | f holomorphic on U}.
10.2.2 Sheaf of regular functions
Let V = Spec(R) be an affine variety.
Proposition 10.17. (i) For every f € R, V; :=V \ V(f) = Spec(Ry);
(ii) For every open subset U CV, U = ;e Vy for a finite subset S C R.

Definition 10.18. Let U C V be open. A map ¢ : U — C is said to be regular on U if for every point
p € U, there exists an f, € R, p € Vy, C U an open neighbourhood, such that ¢ |pr € Ry,. We set

Oy(U)={¢:U—C | pregular on U}.
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Proposition 10.19. (i) Oy (V) = R;
(it) For all f € R we have that Oy (Vy) = Ry.

Theorem 10.20. The sheaf Oy : U — Oy (U) is a sheaf of C-algebras on V. It is called the structure sheaf
onV:
If V is irreducible, the stalk (Ov), is actually isomorphic to Oy,y,.

Definition 10.21. Let Vi, V5 be affine varieties and U; C V; open subsets for ¢ = 1,2. A map ® : U; — U,
is a morphism of varieties if
(1)# : OVQ(UQ) — OVl (Ul)

fr=fod
is a homomorphism of C-algebras.

Remark 10.22. There is a 1:1-correspondence
Ur— Uz Ov, (U2)—Ov, (U1)
{morphism} < ¢ C-algebra homomorphism

where U; and U, are affine varieties. We say that a morphism ® is an isomorphism if it is bijective and its
inverse @~ ! : Uy — U is also a morphism.
10.2.3 Abstract varieties

Definition 10.23. Let {V,}, be a finite collection of affine varieties such that for every a, 3, there exist
open subsets Vo3 C V,, and V3, C V3 and an isomorphism gag : Vag —+ V3o that verify

(i) 9o = (9ap) s
(i) gap(Vap N Vsa) = Via N Vag;
(iii) gay = gpy © gap for every o, 3,7.
We define
V= |Va/~
where a ~ b if there exist a, 8 such that a € V,,, b € Vg and gop(a) = b. We introduce
ha : Vo = Uy :={[a] | a€V,}.

This procedure can be illustrated by the following:
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The topology on Y is induced by that of the open cover {U,}o. And abstract variety is determined by the
above data.

Remark 10.24. To show that a topological space X is an abstract variety we need to be able to construct
an open cover X = U, with U, = V,, affine varieties for all a. We also require that the intersections are
not dependent on inside which subset they appear, up to isomorphism, i.e.,

(Ui NU2)u, = (U1 NU2)us,
where the subscripts denote the intersection as viewed in U; and Us; respectively.
Example 10.25.
(i) An affine variety V' is an abstract variety.

(ii) Projective n-space P™ constitutes an abstract variety;
P = Ui =[P\ V(i)
where U; :=P™ \ V(z;) = C". Now for 1, j,
(UZ)? = (UJ>IL =U;N Uj.

We define
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x T T T
gi:@{l,...,n] %C{l,...,n}
xj T ] 4

T, T T (mi)_l N
zj ;' X x; Z;
(ili) Projective varieties are abstract varieties: We have a canonical decomposition V' = (J, V N U; where
V N U; is affine for all 7.
(iv) We have that P™ x C™ is an abstract variety:
Pick the open cover {U; x C™},, i.e., so that U; x C™ = C"*t™.
Note that this variety is neither affine nor projective.
Definition 10.26. Let X be an abstract variety:
(i) A closed subset of X is called a subvariety;
(ii) We say that X is érreducible if it cannot be written as the union of two proper subvarieties.

Remark 10.27. One can show that an abstract variety X admits a decomposition X = (Jg ;. Y5 where Y;
are irreducible subvarieties of X, called irreducible components of X.

10.3 Exercises
Exercise 10.1. Consider the polytope P = (n+ 1)A,, — (1,...,1).

(i) Determine the facet presentation of P, show that P is smooth and show that P° = Conv(eg, €1, ..., €,)
where eg = —e1; — ... — €.

(ii) Determine the facet presentation of P° and show that o., = Cone(vy, ..., v,) where v; = eg+ (n+ 1)e;.
Hint: you know the vertices of P.

(iii) Show that P° is not smooth for n > 2.
Exercise 10.2. Let V' = Spec(R) be an affine variety.

(i) Show that every ideal I C R can be written in the form I = (f1,..., fs), where f; € R. (This is the
Hilbert Basis Theorem in R.)

(ii) Let W C V be a subvariety. Show that the complement of W in V' can be written as a union of a finite
collection of open affine sets of the form V.

(iii) Deduce that every open cover of V' (in the Zariski topology) has a finite subcover. (This says hat affine
varieties are quasicompact in the Zariski topology.)

Exercise 10.3. Let X be an irreducible abstract variety.

(i) Let f, g be rational functions on X. Show that f ~ ¢ if f|y = g|y for some nonempty open set U C X
is an equivalence relation.

(ii) Show that the set of equivalence classes of the relation in part (a) is a field.
(iii) Show that if U C X is a nonempty open subset of X, then C(U) = C(X).

Exercise 10.4. In this exercise, we will study the blowup of C" at the origin. Write the homogeneous
coordinates on P! as xg,...,,, and the affine coordinates on C™ as ¥, ..., y,. Consider

W = BIO(C") = V(.’biflyj —ZTj-1Y; | 1<i<y < n) - ]P;TL—I x C".
Let U;, i =1,...,n be the standard affine opens in P*~! :
Ui—l = ]Pm_l \ V(l‘i_l).

So the {U;_1 x C"},; is an open cover of P"~! x C".
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(i) Show that for each ¢, W;_; = W N (U;—; x C™) is isomorphic to

Spec((C{ 0 ey n ,yl]>
Ti—1 Ti-1

(i) Give the gluing data for identifying the subset W;_q \ V(z;_1) and W;_1 \ V(2;_1).
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Chapter 11. Toric varieties from abstract fans

Matthew Dupraz after the talk of Julie Bannwart and Louis Gogniat

Recall that an abstract variety is the data of
e a finite collection of affine varieties {V,,}
e Zariski open subsets Vg, C V,, for all «, 3
e isomorphisms gga : Vga —+ Vag such that:

— gaB = gﬁ_; for all o, 8
— the cocycle condition is satisfied, i.e.

gﬁa(vﬁa N V’ya) = Vaﬁ N V’YB

and
Gva = 9vB © JBa
on Vo N V4, for all o, 5,7.

The underlying subspace is the gluing of these affine pieces via the maps g,g, more precisely,
X=||Va/~
(0%

where the equivalence relation ~ is induced by
a ~ gpa(a) for all o, B and a € V,

The topology on this space is the quotient topolgy induced from the Zariski topology on the affine pieces.
Recall that in this course we consider only affine varieties of finite type over C, so they may be embedded in
some C", which leads us to the following definition

Definition 11.1. Let X be an abstract variety as above. The classical topology on X is the quotient
topology obtained by considering the V,, C C™ with the Euclidean topology.

Example 11.2. Consider C? = Spec(C[z,y]) and P! with homogeneous coordinates [x¢ : z1]. The blowup
of C? at the origin is the variety
V = V(xoy — x12) C C* x PL.

We can cover C? x P! with the affine pieces
C? x Uy = Spec(Clz, y, z1/x0))

and
C? x Uy = Spec(C[z, y, o/z1]).

If we denote s = x1/xo and ¢t = x¢/x1, we have that V' can be written as the gluing of the two affine pieces
VNC? x Uy =V(y — sx) C Spec(Clz, y, s])

and
VNC? x U; = V(ty — x) C Spec(Clz, y, 1]).
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11.1 Morphisms

Definition 11.3. Let X = J, U,y and Y = UB Vs be abstract varieties. A map ¢ : X — Y is a morphism
if it is Zariski continuous and for all o, 3,

@‘Uaﬂ¢*1(V5) :Ua N 90_1(‘/5) — Vs
is a morphism. If Y = C, ¢ is called a regular function.

Definition 11.4. Let X be an abstract variety. The structure sheaf Ox of X is the sheaf given by the data
Ox(U)={f:U— C| f is regular}
along with the usual restriction maps.

Definition 11.5. The local ring at p € X is
Oxp ={f:U — C|U an open neighbourhood of p}/ ~,

where the equivalence relation ~ is given by (f : U — C) ~ (g : V — C) if and only if there exists
p €W CUNYV such that flw = glw

Definition 11.6. Let X be an irreducible variety. We define the function field to be
C(X) = {f: U — C|f is regular, U # 0}/ ~

where the equivalence relation ~ is given by (f : U — C) ~ (¢ : V — C) if and only if flynv = glunv. The
elements of C(X) are called rational functions.

11.2 Normality and smoothness

Definition 11.7. Let X be an irreducible variety. X is called normal if for all p € X, Ox ) is integrally
closed.

Proposition 11.8. X is normal if and only if for all o, V,, is normal.

Proof. For all p € X, there is some « such that p € V,,. We have that Ox , = Oy, , as for any [f : U —
C] € Ox p, we have that
[f : U—)(C] = [f|UmVa :UnNvV, —>(C],

which follows from Definition and so this shows that the natural inclusion Oy, , — Ox , is actually
an isomorphism. Exercise [[.4] implies that V,, is normal if and only if Oy, , is normal for all p € V,, and so
the statement follows O

Definition 11.9. Let X a variety, then p € X is a smooth point if dimT,(X) = dim, X. Here T),(X) =
T, (V) for some a such that p € V,, and dim, X = dim, V,,. The variety X is smooth if every p € X is a
smooth point. The fact that this is well-defined is shown in Exercise 11.1.

11.3 Products

Definition 11.10. Let X = {J, Us, Y = Uy V. Define the product X x Y as the abstract variety with
affine pieces given by {U, % Vs}a,g, where

(X X Y)(oc,ﬁ)(o/,ﬁ/) = Uaa’ X VﬂBI

and the glueing maps are given by
9(a,B)(e,8") = Jaa! X 9B’
for all a,a’, 3, 8'.

62



Proposition 11.11. The product of two varieties satisfies the universal property of the product, that is for
all X1 <~ W 225 X5, there exists a unique morphism p: W — X; x Xo, such that the diagram

W
i ®

X1<LX1XX2L>X2

®1 P2

commutes.

Example 11.12. As we have seen in Example the product C? x P! can be covered by the affine pieces
Uy = C? x Uy and U; = C? x Uy, where we have

[710 = Spec(C[x, Y, 8]3)
Uor = Spec(Clz, y, t];)
and the isomorphism g : 610 — (701 is induced by

T T, Yy te s L (5)

11.4 Separatedness
Recall that when X is a topological space, X is Hausdorff if and only if the image of the diagonal map

A X —-XxX
x— (z,x)

is closed in X x X endowed with the product topology.
Separatedness is a property of abstract varieties analogous to that of being Hausdorff for topological spaces.

Definition 11.13. A variety X is separated if the image of the diagonal map A : X — X x X is Zariski
closed in X x X.

In fact the analogy is not vacuous as we have the following theorem.

Theorem 11.14. A wvariety is separated if and only if it is Hausdorff when endowed with the classical
topology.

Separatedness is a desirable condition as we have for example the following proposition.
Proposition 11.15. Suppose X is a separated variety.

(i) If f,g:Y — X are two morphisms, then the set

{yeY | fly) =9}
is Zariski closed in V.
(is) If U,V C X are open affine subsets, then U NV is affine too.

Example 11.16. Any affine variety V' C C" is separated. Indeed, Ay C V x V is closed because Ay =
(VxV)NAcn, V xVisclosed in C" x C" and we have that

A(Cn = V(:L‘l — Y1y s — yn)>
so being the intersection of two closed subspaces, Ay is closed.

We will now give an example of a variety that is not separated.
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Example 11.17. Let U = Spec(Clz]) = C and V = Spec(C[y]) = C glued along U, C U and V,, C V with
the map U, — V,, induced by

Clyly = Clz].
Yy

Let X be the resulting variety, X is called the line with two origins. We will denote the two origins Oy and
Oy to distinguish them. This is a standard example for a topological space which is not Hausdorff. To see
that X is not separated without using the Theorem notice that X x X is covered by the affine pieces
UxU,UxV,V xUandV x V. The space X x X may be seen as the plane with doubled axes and four
origins. In order for Ax to be closed in X x X, it has to be closed in all of those affine pieces, but we have
that

Ax N (U x V) = V(@ —y)\ {00, 00)},

and this is not a Zariski closed subspace of U x V = C2.

11.5 Fans

Definition 11.18. A fan X is a collection of strongly convex rational polyhedral cones ¢ C Ng such that
e Forall c € 3, if 7 <o then 7 € 3.
e For all 01,00 € ¥, 01 N0y X0, fori =1,2.

Recall that if o C Ny is a strongly convex rational cone, then U, = Spec(C[S,]), where S, = oV N M. If
T =< 0 is a face, then there is some m € ¥ N M such that 7 = 0N H,, and ¢ C H,. In this case we get that
S; = So +Zm and U, = (Uy)ym as in ([CLS]], Proposition 1.3.16).

Proposition 11.19 (Separation Lemma). Let 01,09 € ¥ and 7 = 01 N o2, then
Sr =85, + 5,

Proof. We have that 7V = (01 No3)¥ = 0y + 0y and hence this implies the inclusion S; 2 Sy, +S,,. By
(Cox, Lemma 1.2.13) we know that there exists some m € oy N (—o2)Y N M such that

ooNH, =0c0NH, =T

Then from the decomposition S; = S,, + Zm we get that for any p € S;, there is some [ € Z such that
p = g+ lm, but then clearly p € S,, + S,,. O

Given a fan ¥ in Nk, we may associate to each o € ¥ its corresponding affine toric variety U,. We can glue
these varieties on their intersections as follows. Given 01,09 € ¥, and 7 = 01 N0y, we know from above that

Us, 2 (Ual)x’" =U, = (UUQ)x*m € Us,

So we just take
Gosoq ¢ (U01)X"" — (U02)x*m

the idenitity on U,. This yields an abstract variety Xs.
Theorem 11.20. For a fan X, the associated variety X, is toric, normal and separated.
Proof. For all o € X, we have that {0} is a face of o and hence Uy C U,. We have that
T := Uyoy = Spec(C[M]) = (C*)"
which is a torus. These tori are all identified in Xy, so we may see Ty as a torus in Xy, which is independent

of the chosen o. To show Ty is dense in Xy, if C' is the closure of T in Xy, then for all 0 € 3, U, N C'is
closed in U,. But since Ty is also the torus of the toric variety U,, it is dense in U, and so C D U,. Since
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o was arbitrary, C = Xy and hence Ty is dense in Xyx. This implies that Xy, is irreducible, as it contains
an irreducible torus as a dense subset.

For all o, Ty acts on U, and these actions coincide on intersections, since the glueing map is the identity.
So this action extends to all of Xyx. This action is algebraic since it is so on every affine piece.

Since every cone ¢ € X is strongly convex, the affine piece U, is normal and so Proposition
.2limplies that Xy is normal.

‘Xg is separated ‘ We want to show that A : Xy — Xy X Xy has Zariski closed image, so it suffices to show
that for every 1,09 € 3, and 7 = 01 N o9,

A|UT : UT — U'L-,1 X UO’2

has Zariski closed image. This is because im A is closed in the product only if it’s closed in every affine piece
covering the product and as we have seen these are exactly the U,, x U,,. Furthermore, by noticing that
U, =AY U,, xU,,), we get that imANU,, x Uy, =imA|y, . The map Aly, comes from the C-algebra
homomorphism

A" : C[Ss,] ®c C[S,,] — C[S;]

m—+n

X" @x" = x
Now, the separation lemma implies that the map is surjective and so A* induces the isomorphism
C[S;] = C[S,,] ®c C[Ss,]/ ker A*,
which implies that U = V(ker A*) C U,, x U,,, which is closed in Uy, x Uy, O

Remark 11.21. We have seen that for every normal affine toric variety X, there exists a strongly convex
rational polyhedral cone o C Ny, such that X = U,. If we write (o) to be the smallest fan containing o (so
the fan containg precisely o and all its faces), then in fact Xy = X.

We also have the following result.

Proposition 11.22. If P C My is a full-dimensional lattice polytope, then we have that Xp = Xy, where
Y.p is the normal fan of P.

One may also show that the converse of Theorem [11.20] holds.
Theorem 11.23. If X is separated normal and toric with torus Ty, then X = Xy, for some fan ¥ in Ng.

Example 11.24. Let X be a 1-dimensional separated normal toric variety, then X is isomorphic to either
C*, C or P

Indeed, in this case Ty = C*, N = Z and Ng = R. Then 7 = {0}, 01 = [0, +00) and o3 = (—00, 0] are the
only strongly convex polyhedral cones. Then the only possibilities up to exchanging o1 with oy are

e ¥ = {7}, in which case Xy, = U, = Spec(C[Z]) = C*.
* £ ={r,01}, then X5 = Us, = Spec(C[N]) = Spec(Cla])) = C.

e ¥ = {7,01,02}, in which case we may take 1 € ) N (—02)¥ NZ = N, and so we get that the affine
pieces U,, = C and U,, = C glue along the map induced by

: Clz], — Clz™ Y,

T+— T

*
go’10’2

We see then that Xy, =2 P! via the identification x + z/x1, where [zq : z1] are the coordinates in P!.

Proposition 11.25. Let 31 be a fan in (N1)r and X3 a fan in (No)g, then 1 X X9 = {01 X 03|0; € £;} is
a fan in (N1 X No)r and we have
X21><22 = le X XEQ
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Figure 16: Fan ¥ in R? corresponding to P! x C*

Example 11.26. Consider the fan ¥; = {7, 01, 02} from Example|11.24|and the fan 35 = {7}. Then the fan
¥ =¥ x Xy is a fan in R? made of the cones 7 x 7 = {0}, o1 x 7 = Cone((1,0)) and o2 x 7 = Cone((—1,0)).
The toric variety corresponding to ¥ is P! x CX.

Example 11.27. Consider the cones o3 = Cone(ey,e; +e2) and g = Cone(es, e1 +¢e2). Let ¥ = (07, 02) be
the smallest fan in R? containing the two cones. Then Xy is isomorphic to the blowup of C? at the origin.
Indeed, we have

Soy =N(eg —e3) + Nea and S, = N(ea —e1) + Ney

and so we have that
Uy, = Spec(Clzy~',y]) and U,, = Spec(C[yz*, 2]).

The glueing map is given by the identity on Uy, no,, s0 it’s induced from the map

(C[acy_l,y],;y_l — (C[yx_l,x]yz—l
e (T
y e (ya ')z

It should be clear now that this coincides with the description of the blowup in Example

11.6 Exercises
Exercise 11.1. Prove the following claims about local rings and smoothness:

(i) If p € X lies in the intersection of two affine open sets Uy, Ug, then Ty, ;, and Ty, , are isomorphic as
C-vector spaces.

(ii) The local dimension dim, X is a well-defined integer.
(iii) Smoothness is well-defined for abstract varieties.

Exercise 11.2. Prove the following properties of separated varieties (proposition 3.0.18): let X be a
separated abstract variety, then:

(i) If f,g: Y — X are morphisms, then {y € Y | f(y) = g(y)} is Zariski closed in Y.
(ii) If U and V are affine open subsets of X, then U NV is affine. Hz'mﬁ.

(iii) Without proving all details, give counterexamples to the two above statements when X is not separated.
Hinl"]

6Show first that U NV can be identified with A(X) N (U x V) C X x X.
"Recall the example of non separated variety discussed in class.
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Figure 17: Fan ¥ in R? corresponding to the blowup of C? at the origin
Exercise 11.3. In Ng = R?, consider the fan ¥ with cones {0}, Cone(e;) and Cone(—e;). Show that
Xy ~ P! x C*.
Exercise 11.4. Suppose we have fans ¥; in (N7)g and s in (N3)g. Prove that
Y1 xYo={o1 X092 |0y €%}
is a fan in (N1)g X (N2)g = (N1 X Na)g and

X21><22 ~ Xgl X X22.
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Chapter 12. The orbit-cone correspondance

Mazence Coppin after the talk of Emma Billet and Juan Rojas
In this section, we will study the orbits of the action of Ty on a the toric variety Xs;.
Recall that a 1-parameter subgroup is the data of a homomorphism

At Cf — Tn
t o (th,.. 1)

where u = (by,...,b,) € Z" = N.
Example 12.1. Take Xa, = P2 Its torus is Ty = {[1: 2 : y] | z,y # 0} and we have
Ty = (C*)? — P2

Let u = (a,b) € Z?2, then \“(t) = [1,t%,t*] for t € C*. Now, let’s study its limit when ¢ goes to zero in two
cases :

o If u = (a,b) € Z%, we have

lim A\%(t) = lim [1:¢%:¢*]=[1:0:0].

t—0 t—0

o If u=(a,a) € Z%,, we have

%gr(l))\ (t):th_r%[lzt:t]:th_%[t :1:1]=[0:1:1].

What are the Orbits of the action T ~ P2. The action is given on U; by
((5,0), 1 y]) — [1: s sty
We have that
e Forp=1[1:0:0], 0, ={[1:0:0]}.
e Forg=1[0:0:1], Oy ={[0: 21 :22] | 21,22 # 0} > ¢.

Doing this for all orbits and finding all possible limits of A*, we have a correspondence between cones o and
orbits O by
o corresponds to O & %iH(l) A4(t) € O, Yu € Relint(o)
—

Using the affine toric variety structure of U, for a given cone o, recall that we have 1-1 correspondence
between

(i) Maximal ideals of C[S,].
(ii) Points p € U,.
(iii) Semi-group homomorphism ~ : S, — C.
Where 2 — 3 is given by p — v,(m) = A" (p).

Definition 12.2. Consider v : S, — C defined by v(m) = 1 if m € o N M and y(m) = 0 otherwise. It
corresponds to a point 7, € U, called the distinguished point of o.
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12.1 Limits of 1-parameter subgroup

Proposition 12.3. Let 0 C Ny be a strongly convex rational polyhedral cone and uw € N. Then
(i) u € o if and only if limy_o \*(¢) exists and lies in U,.

(i1) If u € Relint(o), then lim;_o A“(t) = 7,-.

Proof. (i) We have the follwong equivalences :

lim;_,0 A“(t) exists and is in U, <= lim;_o x™(A%(t)) exists in C, Vm € S,
— t{m) exists in C, Vm € S,

= (m,u) >0, Yme oV N M
e

ue (av)V
where the first equivalence is proved in the exercise 12.2.

(i) Suppose that u € Relint(c). Then (m,u) > 0 for all m € S, \ o and (m,u) = 0 for all m € S, N o+
by definition of the relative interior. Now, for m € S, we have

X" (limg—y0 A¥(1))
= limg 0 x™ (A" (2))
= limy_,q t (™

1 ifmeoctnM
{ 0 ortherwise

Yu(m)

12.2 Torus Orbits

Lemma 12.4. Let 0 C Ny be a strongly convex rational polyhedral cone. Consider N, = (c " N) < N and
N(o) = N/N,. Then there exists a perfect pairing

()i (ot NM)x N(o) > Z
Induced by the usual pairing M x N — Z. Furthermore, it induces isomorphisms
Homy (ot N M,C*) 2 Ty (,) = N(0) ®z C*
Proof. Omitted. O
Definition 12.5. Any cone o € X corresponds to a distinguished point v, € U, C Xx. Consider the set
O(o) =Ty 7o C X5.

We know that a point p € U, corresponds to a semi-group homomorphism v : S, — C. Now, for t € Ty,
the point t - p given by the action Ty ~ U, corresponds to the semi-group homomorphism ~; defined by

m = X" (t) (1)

Lemma 12.6. Let 0 C Ny be a strongly convex rational polyhedral cone. Then

O@) L {y:5, = C|y(m)£0 & meotnM}

(2)
= Homz(al NM,C*) = Tn(o)

Proof. Denote by O’ the set {v:S, = C|~y(m)#0 < me€otnM}.
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(2) The subspace o of My is the largest contained in ¢V, hence o+ N M < S,. Let v € O', then 7|, A
induces 7 : - N M — C*. In the other way, let ¥ € Homgz(c- N M,C*), then we can extend it to
7 : Sy — C taking y(m) = ¥(m) if m € o-NM and v(m) = 0 otherwise. These two maps are obviously
inverse, thus O’ = Homg (o N M, C*).

(1) We have a short exact sequence

0 N, N N(o) 0

By tensoring with C*, we get a surjection
N ®z C* =Tn — Tn(y) = N(0) ®z C* = Homg (o N M,C*) 2 O'.

The bijections Ty (s) = Homgz(o+ N M,C*) = O’ are compatibles with the Ty-action, hence T acts
transitively on O'. That is, 7, € O implies that O’ = T - v, = O(o) by definition of O(o).

O

Example 12.7. Take the affine toric variety V(zy — zw) C C*. We know that V = Spec(C[S,]) where o
is Cone(ey, e2, e3,e1 + ez — e3). We have that Ty = (C*)? — V defined by (t1,t2,t3) (tl,tQ,tg,tthtgl).
Let u = (a,b,c) € N = Z3, then \“(t) = (t%,°,°) is mapped to (t%,*,#°,#+b=¢) in V. Suppose that
a,b,c >0 and a + b > ¢, then for o = Cone(ey, e, e1 + e3,e2 + e3), we have v, = (0,0,0,0).

12.3 The Orbit-Cone Correspondence Theorem

Here comes the most important theorem of this section.
Theorem 12.8. Let ¥ be a fan with associated toric variety Xs,. Then

(i) We have the 1-1 correspondance :

{c €X} «— {Tn —orbitsin X5}
o — O(o)

(#) let n = dim Ng. We have dim O(c) = n — dimo.

(iii) For o € X, the affine variety U, is the union of orbits

(iv) For T € ¥, we have

where O(T) denotes the closure in both classical topology and Zariski topology.

Proof. (i) Consider the open affine cover {U, },ex of Xx which are all Ti-invariants. Furthermore we
know that Uy, NUy, = Uy, ne,. Thus for O C X5 a Tiv-orbit, there is a unique ¢ € ¥ minimal such
that O C U,.

We claim that O = O(0). Let v € O and consider the set {m € S, | v(m) # 0 which is contained in
oV N1t NM for 7 X o (see Exercise 12.3). Then, v € U, and using the minimality of o we get 7 = 0.
Therefore v € O(o) and we get the equality by transitivity of the action.

(ii) Immediate from Lemma indeed we have that O(c) = Ty, and the latter have dimension
n — dim(o) as N(o) = N/N,.
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(iii) The affine variety U, is Ty-invariant, so it is a union of orbits. Suppose that 7 < o, then O(r) C U, C
U,. Hence 7 must be a face of o, it yields that each orbit composing U, corresponds to an O(7) for
T<Xo0.

(iv) First, we are doing it with the classicle topology.

From Exercise 12.3, we know that O(7) is Ty-invariant. Suppose that O(c) C O(7). Then O(r) C U,,
otherwise their intersection must be empty since we work with the classical topology and this is
impossible since both contain O(o). Thus 7 < ¢ using the previous part.

Suppose that 7 < o, it is enough to show that o N O(7) # 0. Consider 7, the distinguished point of 7.
Let u € Relint(o) and t € C*, we define v(t) = A\“(¢) - v» € U, by T-invariance of U,. Now for any
m € M we have

V() (m) = X" (N (1)) -y (m) = ¢ 5 (m).

But (m,u) > 0if m € ¢V \ ot and (m,u) = 0 if m € o. Thus, by taking the limit in the sense of
the classical topology, we have (0) = lim;_,o y(¢) it exists and lies in O(o) by Proposition hence
7(0) € O(e)NO(7) # 0. Furthermore we have O(1) = |, O(0”) coming from the classical topology.

Now, for the Zariski topology. Let 7/ € X, then we have

ornU, = |J oF)=vI) U,

! ’
TO'XT

where I = (x™ | m € 7N (7')V N M) C C[S,+]. Then O(7) is also the closure of O(7) in the sense of
the Zariski topology.
O

12.4 Closure of a Ty-orbit

Let ¥ be a fan with associated toric variety Xx. For a given 7 € 3, we denote V(1) := O(7) which is a toric
variety with torus Ty ;). Consider also the set

Star(r) :={g € N(1)r | T g 0 € £}
where @ corresponds to the image of o via the quotient map N — N (7).
Proposition 12.9. For any 7 € X, V(7) = Xgpar(r)-
Proof. Omitted. O

Remark 12.10. If P is a full-dimensional lattice polytope, we have a toric variety Xp = Xsx, where
Yp={0q | Q< P}. Thus V(oq) = Xq = X5, (Q is full-dimensional in its fan).

Proposition 12.11. V(og) = Xg.
Proof. Here is a sketch. Take a facet presentation of P as P is full-dimensional
P={me Mg | (m,ur) > —ap, YF < P facet}.

By doing a translation of the polytope, we may assume that the origin is in Q. If Q < F < P, we get that
ap = 0. Thus 05 = Span(Q). And then, N(og) is the dual to Span(Q) N M.
Now, take V(0g) = V(og,p) as before, we have

{E S N(O’QJD)R | oQpxX0E Ep}

= {og P € N(og,P)r|ogpr <0oq.p€Xp}
{eag P e N(ogrr | Q' < Q}

- So.

Star(og,p)
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12.5 Exercises
Exercise 12.1. See the first example given in class or equivalently Example 3.2.1 of [CLS]:
(i) Compute the remaining limits of one parameter subgroups of P?
(ii) Compute the remaining (C*)%—orbits in P2
(iii) Show that the limit point equals the distinguished point +, of the corresponding cone in each case.

Exercise 12.2. Let ¢ C Ny be a strongly convex rational polyhedral cone . This exercise will consider
lim; ¢ f(t) where f: C* — Ty is an arbitrary function.

(i) Prove that lim;_,¢ f(¢) exists in U, if and only if lim;_,o x™(f(t)) exists in C ¥Ym € S,.
Hint: Consider a finite set of characters A such that S, = NA.

(ii) When lim;_,q f(t) exists in Uy, prove that the limit is given by the following semigroup homomorphism
So = C,m > limg0 X™ (f (1))

Exercise 12.3. This exercise is concerned with the proof of the theorem of Orbit-Cone correspondence.

(i) Let v : S, — C be a semigroup homomorphism giving a point in U, using the bijection seen many
times. Prove that {m € S, | v(m) # 0} = 7N M for some face 7 < o".

(ii) Show that O(7) is invariant under the action of Ty .

(iii) Prove that O(7) NU, is the variety of the ideal
I=(x"|mertn()VNM)CS,.

Exercise 12.4. The objective of this exercise is to show that any normal separated toric variety can be
obtained from a fan.

(i) Use Theorem 3.1.7 from the book to show that any normal separated toric variety X has an open
cover consisting of affine toric varieties U; = U,, for some collection of cones ¢;. Show that for all 4, 7,
U; N Uj is also affine. Hint: Use that X is separated.

ii) Show that U; NU; is the affine toric variety corresponding to the cone 7 = o; N 0.
J j
iii) If 7 = 0; N o; show that 7 is a face of both ¢; and ;. Hint: You may use Exercise 3.2.10 [CLS].
J J

(iv) Deduce that X = Xy where ¥ is the fan consisting of all the o; and all their faces.
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Chapter 13. Singular (co)homology
Clotilde Freydt after the talk of Joel Hakavuori, Isak Sundelius
This section is based on the book Algebraic Topology by Allen Hatcher.

Let X be a topological space. A singular n-simplex in X is a continuous map ¢ from the standard n-simplex
A™ to X. The singular n-chain group A, (X) is the free abelian group generated by the singular n- simplices
in X. Its elements are called singular n-chains in X. The inclusion A”~! <+ A" induces the following sequence
called chain complex:

o A () I AL (X)) D A (X)

such that d,+10d, =0
And the n-th homology group is defined as

H,(X;Z) :=ker(dy,)/Im(d,+1)

The dualization of the chain complex induces the sequence

dn+1

o ALY AT (X) < ATTH(X)
the n-th cohomology group is defined as
H™(X;Z) := ker(d™)/Im(d"™")

We say that ¢ € A™(X) has compact support if supp(yp) is compact in X.
We define the subcomplex

AN(X) :={p € A™(X) : supp(p)is compact in X}
And the associated cohomology group
H(X;Z) = ker(dy)/Im(dy™")
We recall the three following results:
e (Kiinneth formula) Let X,Y topological space, the following sequence
0— @D HY(X;Z) @z HU(Y;Z) » H'(X xY;2) » €D Torj(HP(X;Z), H(Y;Z)) — 0
ptg=n ptg=n—1
is a short exact sequence.

e (Poincaré duality) Let R be a ring and M be a closed orientable n-manifold, the following holds:
H"*(M; R) = Hy(M; R)
for all 0 < k < n.

e (Relative cohomology groups) Let A C X be a subspace. The n-th relative cohomology group is defined

as follows:
H"(X,A):=H"(X)/H"(A)
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13.1 Spectral sequences

Definition 13.1. A (cohomology) spectral sequence is a collection of abelian groups EP¢ and
homomorphisms dP'¢ with the following structure and properties:

(i) The groups are EP'? are indexed by integers p,q,r. Fixing r, we obtain one sheet of the spectral
sequence, which is visualized as a diagram of groups indexed by integer lattice point in the plane.

(ii) In the rth sheet, there are homomorphisms
q . ) hg—r+1
dP9 ; EP9 — EPTaTt

such that dPT9=7+1 o dP9 = ( for all p,q,r: In other words, the rth sheet splits up into a collection of
cochain complexes in which the differentials are all mappings of bidegree (r,1 — r) for the indexing by

b, q.
(iii) The (r+1)st sheet is the cohomology of (EP-?, dP7) i.e.

Ef,”q — ker(df’q . Ef’q N quﬁr,qﬂﬂrl)/im(dzr)fr,qurfl . Efzzfanrrfl N Ef’q)

Remarks: - We will only work with first quadrant spectral sequences, for which E?*? = 0 when p < 0 or
q < 0. Thus, in each sheet, the nonvanishing terms lie in the quadrant where p,q > 0.

- For a first quadrant spectral sequence, the differentials mapping to EP*¢ and from EP? for fixed p, g vanish
when r is sufficiently large. It follows that for each p, ¢, there exists some r such that

P — pPd — P
T r+1 r42
This common value is defined to be E2:9.

Definition 13.2. A first quadrant spectral sequence (EP-9,dP-?) converges to a sequence of abelian groups
H* k> 0 if there is a filtration

0=F1Hk C gk Cc FF-'HF C ... Cc F'H" C F°H* = gH*

of H* by subgroups such that
EP1 ~ FpHp+q/Fp+1Hp+q

For an E; or F5 spectral sequence we write this as

EY? = HP9 or EY? = HP1

respectively.

Definition 13.3. We say that a spectral sequence degenerates at the E, sheet if the differential d2'¢ = 0
for all p,q and all s > r

Note that degeneration at E, implies that E?:¢ ~ EP-? for all p, q so we have a strong form of convergence
in this case.

13.2 Singular Cohomology of Toric Varieties

In this section we focus on the singular cohomology groups of a toric variety Xy. We will describe them
using, firstly, the singular cohomology of the toric varieties U, for a cone o € ¥,,4,. Secondly, using the
singular cohomology of the torus orbits O(o) for o € X.. The spectral sequences will establish the connection
between these two approaches.

Proposition 13.4. Let 0 C Ny be a cone. Then
o (1) . o (1) o m
H*(Uy,;Z) ~ H (TN(U);Z) ~ N*Z
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Proof. First, note that O(c) ~ Ty () is a deformation retract of U, (see Proposition 12.1.9 in Toric Varieties
by Cox, Little and Schenck), so the first isomorphism (i) follows by excision.

We compute the cohomology group of the torus. The torus (C*)" contains the real torus (S})” as a
deformation retract via (¢, ...,t,) — (¢1/|t1], -, tn/|tn]). Hence

H*((C*™Z) ~ H*((SH™Z) ~ A*Z"
and (ii) follows from the duality of N — N(o) and M(c) C M O

Example 13.5. Let 0 = Cone(e;) then the dual oV = Cone(er, —ey,e2). U, = Spec(Clz, 271, y]) = C* xC
that deformation retracts to C*. We have that N (o) = Z, so that

H*(Us;Z) ~ H*(Tn(0); Z)

13.2.1 The spectral sequence of a filtered topological space

Let X be a topological space and consider the filtration

@Z:X_l gXogxngn =X

Theorem 13.6. Let X as above and R a ring. Then there is a spectral sequence (EP1, dP%) with E}? =
HPT(X, X, 1;R) = HPT4(X; R) where the filtration is given by

FPHP*I(X; R) = ker(H?T9(X; R) — H"*9(X,; R)),
the kernel of the map induced by the inclusion X, — X.

Remark: Note that this theorem still holds for cohomology with compact support.

13.3 A family of complexes

The aim is now to compute the cohomology groups of a toric variety.

We consider a fan ¥ and the associated toric variety Xs. We begin by discussing a notion of orientation for
a pair of cones 0 < 7 with dimt = dimo + 1. First for each cone o we may pick an orientation of the linear
subspace (N, )r by choosing a basis. Now let v € 7 be any vector not contained in o. Then v together with
a basis of (N, )gr together with v form a basis of (N, )r and defines an orientation.

Definition 13.7. The orientation coefficient related to the cones o, 7 as above is defined as follows:
1 if the orientation of 7 determined by ¢ agrees with the chosen one

Cor = —1 if not
0 if o is not a face of 7

Fix an integer ¢, 0 < ¢ < n and consider the abelian groups and maps:
C*(3Z,NT) = {CP(X,N),6P)|p € Z}

defined as follows: first we take
CP(s, A = @ AT M(r)

TEX(n—p)

where M(7) = 71 N M as usual. This is a free abelian group with
rankCP(2,N\1) = (i])) [X(n —p)|
Then 67 : CP(X, A7) — CPTL(X, A) is the map defined on the components corresponding to the cones (o, 7)

in the two direct sums as

14
Ca'vTZO',T
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where ¢, - are the orientation coefficient and i . : AYM (1) — AYM (o) is induced by the inclusion 7+ C o+
In other words the component of 7 in the summand for the cone o in CPT1(X, A9) is given by

§ :CU»TZg,‘r

o<T

Lemma 13.8. C*(3,A9) is a cochain complex i.e. 6?7 o 8P =0 for all p.

Proof. Exercise O
Example 13.9. Consider the fan defining P2: Denote p; =Cone(u;) where ug = —e; — ez and u; = e; for
i=1,2.

The following diagram represents the complex C*(X, A?) for ¢ = 0,1,2:

q=2: 0—0—0—Z—0— ...
g=1: 0—0-—7 %72 0 ..
¢=0: 0—73 27 By o ..

Recall that
U, = | JO(0), Xs=JUs

T<0 ocCx%

And the closure

We define a filtration of Xy, by X, = U V(o) = L O(1).
oC¥(n—p) TCE(),I>n—p

When working with general Y, where Xy may not be compact we will consider cohomology with compact
support (cf first section): We have that EV'? = HPY4(X,, X,_1;Z) = HPT9(Xx; Z).
Proposition 13.10. For p,q > 0, we have
Epi~ @ AYM(7)=CP(Z,A)
TES(n—p)
Moreover the differentials d : EP9 — EPTY9 agree with the coboundary maps in the complex C*(3, A7) so

that
EYT = HP(X,A9)

Proof. By the excision property of cohomology with compact supports, we have

Eff~ @ H"(O(r),2))

TEX(n—p)
Furthermore the homeomorphism O(7) 2 RY ; x S ~N(r) and the Kiinneth formula imply that
H§+q(O(T)aZ)) = @ Hf(RI;mZ) Qz H(l'(SN(T)aZ)
k+i=p+q

Ziftk=p
0 otherwise
By Proposition 3.1, for each cone 7 of dimension n — p,

By the Poincaré duality H*(R?

>OaZ) =

HZT(O(7),Z)) ~ H(Sn(r), Z)) =~ NTM (1)

Hence EV'? = CP(3, A9) as desired.
The second part of the proof is left as an exercise. O
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Example 13.11. We compute the E, sheet of the spectral sequence arising from the fan for P2. By a
direct computation the ¢ = 0 row is ES’O =7, E21’O =0, E§’0 = 0. On the second row the kernel of C is
1—dimensional and the image of C is Z2. Hence E;"' ~ Z, and E3" = 0. Finally E3> = Z. Hence the E,
sheet of the spectral sequence is just:

0 0 E%?2~7
0 Ell~7 0
E%0 ~ 7 0 0

13.4 Rational coefficients

To avoid torsion in cohomology, we look at coefficient in Q instead of Z.
By the same argument as in Proposition 3.8

EP~ P A M(r)g (6)
TEX(n—p)

Proposition 13.12. The spectral sequence EY? = HPT1(X,, X}, 1;Q) = H!T1(Xx; Q) degenerates at Ey

Proof. We show that d2? = 0 for all » > 2 and all (p, ), so that F¥? = E2:9. For any positive integer [ the
multiplication map
a—l-a

is compatible with ¥ so there is a corresponding toric morphism ¢; : Xy — X5 whose restriction to Ty C Xy
is the group homomorphism

Ol Ty (s certn) > (Hh, s )

and similarly on each torus orbit. Because ¢; respects the orbit decomposition of Xy, it respects the filtration
of section 3.1 and induces homomorphisms

ot + EPY > P

for each r. These commute with the differentials since the spectral sequence is functorial with respect to

maps that preseves the filtration. One can use that E}" ~ @  HFT1(O(7),Z)) to show that ¢ acts on
TEX(n—p)

E7? by multiplication by 17: Then the same holds for all r since E}}, is a quotient of subspaces of EP7.

Let 8 € EP4 for r > 2. Since d??(8) € EPT™97"F1 we have

Tz )
= ¢ (@2(9))
(

Since we use coefficients in Q, this implies that d2?(3) = 0 for all §. O

One has the following result for complete simplicial toric varieties:
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Theorem 13.13. If Xy is complete and simplicial, then Eiq = 0 when p # q in the spectral sequence .
In particular,

(i) H***1(X5;Q) = 0 for all k.
(i) H*(X5;Q) ~ E} ;. for all k.
Proof. See Theorem 12.3.11 in Toric Varieties by Cox, Little and Schenck 0

There are interesting combinatorial consequences of this theorem on relations between the numbers of cones
of various dimensions in simplicial fans and the Betti numbers of the corresponding toric varieties.

Theorem 13.14. Let X be a complete simplicial fan in Ng ~ R™. Then the Betti numbers of Xy are given
by

n

b (Xs) = S0 (1) 12 )

and satisfy
bar(Xx) = ban—21(Xx)

Proof. The E5'? terms of the spectral sequence EV'? = HPVYI(X, X, 1;Q) = HP'I(Xy;Q) are the
cohomology of the EY*? terms, and we also have E}*? = 0 for p < ¢ by.
Since EY? = 0 unless p = ¢ by theorem 3.10, it follows that

0— E§’k — Efk — Ef“’k — ..

is an exact sequence. Hence

b (Xs) = dimES* = 3 (1) HaimEL = 301 () 500 - )

i=k i=k

where the last equality holds by [6]
The second assertion follows from Poincaré duality. O

13.5 Exercises

Exercise 13.1. Show that the family of complexes (C*(X,A),d) constructed during the lectures forms a
chain complex, i.e., 6* 0 §?~1 = 0. See Lemma 12.3.3 [CLS] for hints.

Exercise 13.2.
(i) Construct the family of complexes (C*(%, A),d) for the fan of P? (generated by e1, ez and —e; — ez in
72).
(ii) Use this to compute the cohomology of P2.
Exercise 13.3. Let ¥ C N =X Z" be a fan. Consider the multiplication map @, : N — N, @y : a — £ - a for
£ > 0. The map @, is compatible with the fan 3, so there is a corresponding toric morphism ¢y : Xy — Xx

(Theorem 3.3.4). Show that ¢y restricted to the torus of Xs acts by ¢g |1yt (t1,. .. t0) = (t, ... th).
Deduce that for any 7 € X(n — p) the induced map ¢ on HI(O(7), Q) is multiplication by ¢9.

Exercise 13.4.

(i) Suppose EV? = HPt4 is a first-quadrant spectral sequence with the property that E5'? = 0 for p # q.
Show that EX* =~ H2k,

(i) Consider the spectral sequence (with Z-coefficients) EY"? = HP™(Xy,7Z) associated to the orbit
filtration of Xy,. Define

X(Ey) = Z (—1)PT9rank EP1.
D,qEL

Show that x(E,) = x(Er41) for r > 1.
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(iii) The Euler characteristic x of Xy is given by

2n

X(Xy) =Y dim H} (X5, Z).
=0

Show that x(Xx) = x(Fx) and that x(Xx) = |3(n)|, where n is the rank of N D X. Here X is not
necessarily complete.

Note: this shows that even though we necessarily cannot find all the individual Betti numbers from the
combinatorics of ¥ when ¥ is not a complete simplicial fan, we can still compute the Euler characteristic
of X5, from the structure of X.
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Chapter 14. The McMullen conjecture

Elsa Maneval after the talk of Zichen Gao and Matthew Dupraz

14.1 The statement of McMullen’s condition
We fix the following set of data :

e P is a convex polytope of dimension d

o f; = #{faces of P of dimension i}

o f= (fo,- -, fa) is called the f-vector of P.
o We define

d—j i
hi = Z (d _ z) (1) fjm
7=0
where f_1 = 1.
o io=(hg,..., hq) is called the h-vector of P.
Proposition 14.1 (Dehn-Sommerville equations). For any simplicial polytope P of dimension d,

V0<i<d, hi = ha—;

Remark 14.2. When ¢ = 0, hg = hg computes the Euler-Poincaré characteristic of the boundary of the
simplicial polytope :

X(0P) =1 - (-1)?

We now turn to the definition of M-vectors. For k, ¢ natural numbers, there exists a unique decomposition

of the following type
()= () =+ ()
) 1 —1 7
where 1 <j<n; <---<n—1 <n;.
n;+1 ni_1+1 nj—|—l
(i)« () (0)

We can define
Definition 14.3 (M-vector). Let k = (ko, ..., kq). k is an M-vector if ko = 1 and for all 1 <i < d,
ki1 < ki(z)

kG

and 09 := 0.

Theorem 14.4 (McMullen’s condition). The following are equivalent :
(i) There exists a simplicial polytope P with f-vector f
(ii) (ho,h1 — ho, .. "hL%J — h[%j—l) is an M-vector and for all 0 < i <d, h; = hq_;.

McMullen stated the conjecture in 1971. The necessity was proved by Stanley in 1979 and the suffisance
was proved by Lee and Billera in 1981. The proof of suffisance was done by constructing a polytope. In this
lecture we focus on the proof of necessity which can be done using toric geometry.

Fix a simplicial polytope P. Dehn-Sommerville equations implies h; = hq—;. It suffices to prove that (hg, h1 —
hoyooos hL%J — h[%]—l) is a M-vector to prove the necessity of McMullen’s condition. We will sketch the
argument, which uses Macaulay criterion.
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14.2 Macaulay’s criterion for M-vectors

The fact that (ho, h1 — ho, ..., thJ - hL%J_l) is a M-vector can be deduced from the existence of a certain
algebra. We do not prove this result here.

Theorem 14.5 (Macaulay, 1926). The following are equivalent :
(i) (ko,..., kq) is a M-vector

(ii) There exists a graded commutative algebra R = Ry @ ... Rq over the field K = Ry which is generated
by Ry and such that H(R,n) = dimgR,, = k,.

Remark 14.6. H(R,n) is called the Hilbert function.

We fix a simplicial polytope P of dimension d, f-vector f and h-vector h. Without lost of generality we
can embed P in R so that it is full dimensional. We can also assume that P is rational and 0 € int(P).
Let a <X P. 0, := cone(«). Define the complete simplicial fan ¥ := {o, : a X P}.

Recall from last lecture that the Betti numbers of X verifies :

bok+1(Xs) =0 (7)
d .
_ LY qNi—k i
bal25) = 30 () st ) ©)
bod—2k(X%) = bai(X5) 9)

Remark 14.7. The following fact indicate that H*(Xx;Q) could be useful to build an algebra R satisfying
Macaulay criterion :
bor(Xx) = hs,

Indeed, dim(c,) = dim(«) 4 1 so that |X(d — )| = f4—i—1, and then it suffices to change by i — d — i and
k — d — k in equation .

14.3 Cup-product

We use the cup-product to give H*(Xyx; Q) an algebra structure.

Definition 14.8 (cup-product). Let R be a ring, X a topological space. Let ¢ € C*(X; R), ¢ € C'(X; R).
Let o : AR X,

(o — ) () = 2(Tvo,...vn]) * V(OJfvr,.vna])

defines a (k + [)-cochain ¢ — ¢ € C*¥*(X; R).
We are implicitly using inclusions of faces AF «— AFH Al <5 AF+l and the map of cochain complexes
induced by the diagonal morphism X — X x X

Lemma 14.9. The cup-product has the following compatibility with the boundary map : 6(p — ) = dp —
U+ (-1)Fp — 5y

Thus the cup-product induces a map on cohomology. We still call it cup-product.
H*(X;R) x H(X;R) = H"(X;R)
For A, B C X it also induces a map in relative cohomology :
H*(X,A;R) x H(X, B; R) — H**'(X, AU B; R)

Proposition 14.10. Let X, Y be topological spaces, R a ring.
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(i) If f : X =Y continuous map, the induced map
f*: H(Y;R) —» H"(X;R)
is a ring morphism, i.e. f*(p — ) = f*(¢) — f*(¥).
(i) If R is commutative, the cup-product is skew-commutative :
p—y=(Dy —yp
(#ii) If R has a unit 1g, the 0-cochain
€ : Co(X)—R

E a;T; —r E a;
7 %

is the identity for the cup-product operation.
Thus, if R is commutative, the cup-product makes H*(X; R) a graded ring.
Example 14.11. The cohomology of a complex projective space is the following graded ring :
H*(CP";Q) = Q[ul /u™*
H*(CP>;Q) = Q[
where u € H2(CP™; Q).
Remark 14.12. In the case of H*(Xx;Q), there is no odd-degree cohomology so the ring is commutative.

Define _
A; == H*(X3;Q)

then
A:=@l A

is a graded commutative ring and H(A,n) = h,,.

14.4 The Hard Lefschetz theorem

We use Hard Lefschetz theorem and the algebra A to define an algebra R satisfying Macaulay criterion for
(ho, h1 — ho, ..., hL%J - h[%]—l)' The Hard Lefschetz theorem in intersection cohomology is a difficult result
that goes beyond the scope of this course.

Theorem 14.13 (Hard Lefschetz). Let X be a normal projective variety of dimension d. There ezists a
canonical Chern class w € H*(X;Q) inducing a map in intersection cohomology :

[H'(X;Q) — TH*(X; Q)
such that for all 0 < i < d, its composition i times is an isomorphism
[HT(X;Q) = TH™(X;Q)

In our case ¥ is complete and simplicial so Xy is a projective orbifold. It implies that singular cohomology
coincides with intersection cohomology :

H'(X5;Q) 2 IH'(X;Q)

Now, for 0 < i < L%J we have an isomorphism wi=2 . AP A4 g0 that w 2 AT — AT s injective.
We define I to be the ideal generated by w and A 4)41- We finally define the graded algebra

R:=A/I
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such that p
Rk = Ak/w(Akfl) if k S Lij

and Ry, = {0} otherwise. Using h_1 =0, for all 0 < k < | 4], we observe that
dimRk = hk - hk,1

Now it suffices to prove that R is generated by R; to use Macaulay criterion and deduce that (hg,h; —
ho, ..., hL%J — h[%]—l) is a M-vector. It is a corollary of the following.

Proposition 14.14. H*(Xx;Q) is generated by H*(Xs; Q)

The rest of lecture will be dedicated to sketch the proof of this proposition.

14.5 A presentation of H*(Xx;Q)

Definition 14.15 (Prime divisors and linear equivalence). Let X be an algebraic variety. A prime divisor
is a codimension-1 subvariety. Weil divisors are formal sums of prime divisors. Let D, E be Weil divisors.
If there exists f € C(X)* such that div(f) = D — E, we say that D and E are linearly equivalent and we
write D ~ E.

Proposition 14.16 (Some principal divisors). Let Xx be the toric variety of a fan X. For p € (1) a ray
denote the minimal generator u,. Let m € M, x™ € C(Xx)* its associated character.

div(x™) = Z (m,up)v,
peEX(1)

where v, is the closure of T-orbits of p, v, = O(p). It is a prime divisor.

We want to build a surjective ring morphism
P Q... 2] — HY(X5;Q)

such that the algebra generators x; are sent to H?(Xs; Q).

Refined cohomology. We use refined cohomology to define F. Let X be a complete rational smooth
variety. Let W C X be an irreducible subvariety of dimension k. It has a refined cohomology class

(W], € H** (X, X \ W;Q)
The image of [W], in H?>"~2¥(X;Q) is a cohomology class denoted [W].
Proposition 14.17. Let D, E be Weil divisors. If D ~ E then [D] = [E] € H*(X;Q).

Let ¥ be a complete simplicial fan. We write £(1) = {p1,...,pr} and u; minimal generator of p;. We can
define F :

F : Qlzy,...,z,] — H*(X5;Q)
Ti+— [Vpi}

We denote D; := [v,,] = [O(p;)] the image of x;. We now want to show that F' is surjective. We will first
explicit the kernel of F'.
If p;, + -+ pi, is not a cone in ¥ then D;, N---ND;, =0 so

[Di]r -0 [Di ] € HY(X, X \Nj_1D;;;Q) = H*(X, X \ X;Q)

which implies that
[Di,]N---N[D] =0€ H(X;Q)
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It is now clear that the following ideals I and J are in the kernel of F'.

I .= <£L’i1 o Ty

i1,...,1s distincts and p;, + -+ - + p;,is not a cone in )

T

J::<Z<m,ui>xi | me M)

=1

Indeed, note that the generators of J are sent to [div(x™)] = 0 by Proposition [14.16{and [14.17, We can now
consider :

F : Qxy,...,%)/T+J — H (Xs;Q)
Theorem 14.18. F is an isomorphism.

This theorem implies Proposition Its proof relies on the description of equivariant cohomology of
toric varieties. After introducing equivariant cohomology, we sketch the proof of Theorem [I4:18]in the last
section.

14.6 Equivariant cohomology
Proposition 14.19. Let G be a Lie group.

o There exists a contractible space EG with a free right G-action.
If G acts on X, then G acts on EGx X by g-(e,x) = (e-g~',g-x). We define EGxgX =ExX/G

e The homotopy type of EG xg X does not depend of the choice of EG.

Definition 14.20. Let R be a ring. The G-equivariant cohomology group of X is the usual cohomology of
EG xg X. We denote it
Hi:H(XGR) := H(EG xg X; R)

Example 14.21. For X = {x}, G Lie group. EG x¢g {*} = EG/G is the classifying space of G denoted
BG. We denote its cohomology ring by

Ag := Hi = H*(BG; R)
Remark 14.22. There is always a map X — {*}. It induces a map in cohomology
A¢ — HG(X;R)
which makes H}(X; R) a Ag-module.
Example 14.23. For G = Ty a torus, with M = Hom(N;Z) the equivariant cohomology of the point is
Ary = Symg(M )

The equivariant cohomology of toric varieties is of interest because of the following facts. Let Xy be a
complete simplicial toric variety and T' = T its torus.

H7(Xs;Q) = Ar ®g H*(X5; Q)

is an isomorphism of Ap-modules.
The inclusion map ix,, : Xy — EG x¢ X5 induces

iy ¢ Hp(Xs;Q) — H*(X5;Q)
e i is surjective

e its kernel is It H3(Xx; Q) where It := {positive degree elements in Ap}
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Now (equivariant) intersection theory provides a map
[~]r : {T-invariant divisors} C Div(Xy) — H2(Xx;Q)
Proposition 14.24. Let m € M. Recall that m € Ar. Denote 1 € H%(Xg;; Q) a generator. Then
(i) [div(x™)]z = —m 1.
(i) Moreover, the following diagram commutes :

{ T-invariant divisors} il H2(Xx;Q)

-] [

H?*(X5;Q)

14.7 Proof of Theorem (14.18

Recall that we want to prove that
F : Qlxy,... ,xr]/f+ J — H*(X%;Q)
is an isomorphism. We can reduce it to the following theorem in equivariant cohomology.

Theorem 14.25. There is a Ting isomorphism
G : Qlzy,...,z,]/T = Hp(Xx;Q)

given by z; — [D;]r € H7(Xx; Q).
Moreover

G(J)=IrH;(Xs;Q)

We denote Rg(X) := Q[zy,...,2,]/I + J and SRgy(X) := Q[z1,...,2,]/I. The reduction to Theorem [14.25
of the Theorem [14.18| relies on the following commutative diagram. The vertical maps are surjective and
Theorem [14.25| implies that G restrict to an isomorphism on their kernels.

SRy —%— Hi(X%;Q)

Ik

Rg —— H*(X5;Q)

Idea of the proof. The second part about G(J) comes from Proposition [14.24] Now for the first claim,
recall that SRy = Q[z1,...,2,]/I where xz; corresponds to a ray p; in ¥. For o € X, we define Qo] :=

Qlziy,y .-, xiy] with @, ..., x;, corresponding to the rays p;,,...,p; in 0. The map G fits into the following
diagram :
B
SRq = ® Qo] © Q]
seX(d) TEX(d-1)
I J4 |2

* % * Bl *
Hi(Xs;Q) —— @ Hi(Us;Q) —— @D Hi(Ur;Q)
oex(d) TEL(d—1)

e « is defined as follows : Vf € SRg, a(f) = (o, (f), ..., 00, (f)) where

0 if there is i; such that p;; ¢ o(1)
Tiy -0 Ty

aa(xil...x”):{
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e [ is defined as follows :

Vg =(91,---,9x) € @D Qlol, B(g) = (Br,(9);---Br,(g9)) where

ocex(d)
ﬂT(g) = Yi|z;=0 — gj|xj:0

where ¢ < j is such that o; = 7 + p;, 0; = 7 + p; are the cones in 3(d) containing 7 (recall that X is
simplicial).
Lemma 14.26. The first row of the diagram is exact.

We must finally prove that
e A and B are isomorphisms
e o/ is injective

For the first claim,
Hy(Us; Q) = Hp ({2} Q) = Ar

as U, deformation retracts to the torus fixed point z,.

Injectivity of « follows from the localisation theorem.

Theorem 14.27 (Localisation). Let X be a toric variety with torus T. Then the inclusion i : X7 — X
induces an isomorphism
Ip ' Hp(X;Q) —— I Hi (X5Q)
Ipter

We have the following diagram :
Hi(Xs;Q) ——— @D Hi(U:Q)

cex(d)
|
D Hi({z,}Q)

oex(d)
|

Hp(X55Q)
The Localisation theorem states that ¢ become an isomorphism after tensorisation with I ! It means that

the kernel of ¢ is torsion. But Hi(Xx; Q) is a free finitely generated Ap-module so it does not have torsion.
Thus, ¢ is injective and so o has to be.

O
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Chapter 15. Solutions to exercises

15.1 Solutions to Chapter 1

Solutions written by Sergej Monavari

Solution 1.1. Define the map
Vi = VI(V),zn419 — 1)

by sending (x1,...,z,) — (1,...,2Zn, m) This is well-defined since g is a lift of f and therefore
does not vanish on the tuple of points (x1,...,2,) € V; and is easily seen to be a bijection. Therefore we
have that

(C[l‘h

N P
W[f ] = C[V]y.

Solution 1.2. Let R be a UFD, and consider the inclusion R < K into its fraction field. Let x € K be any
non-zero element, satisfying an equation

2"+ ap_ 12" 4+ ag =0,

with a; € R. Since R is an UFD, we can write x = %, where p,q € R are elements with no common divisors.
Then the above equation implies that

P = —anoap" g = aoq" = g(—an—1p" T = = aoq”),

which implies that ¢|p and therefore p = 1 or ¢, and therefore x € R.

Solution 1.3. Consider the maps
C[V] <= R— C(V),

where R is the normalisation of C[V]. Surely, it has to contain the §/Z, since this element is integral over
C[V]. We claim now that C[V][g/Z] is normal. This will imply that then it is already the normalisation,
therefore R = C[V][y/Z]. To show this, consider the map

Clt] = ClVlly/=|

sending ¢t — 7/T. This is easily seen to be an isomorphism (by showing it is both surjective and injective!).
Therefore, C[V][y/z] = C[t], but the latter is a UFD, and therefore normal, by exercise 2.

Solution 1.4.
(i) Let S™'R — K be the inclusion and take z = £ € K. Take an integral expression
"+ ap 12" 4 ag =0,
with a; € ST1R. Take s € S such that a;|s for all i. Then we have
(52)™ 4 sa,_1(s2)" "1 4 + s"ag = 0,
which implies that s"~%a; € R and therefore sz € R, since R is normal.

(ii) Let R =();, R; — K and take a € K integral over R, i.e.
"+ ap_ 12" 4 g =0,

with a; € R. Then a; € R; for all ¢ € I, therefore z € R; for all ¢ and =z € R.
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15.2 Solutions to Chapter 2
Solutions written by Clotilde Freydt

Solution 2.1. Let V be an affine algebraic variety. Let p € V such that p is smooth. We know that the
minimal primes ideal of the local ring Oy, are in bijection with the irreducible components of V passing
through p. Furthermore by definition of p being smooth the local ring Oy, is regular, therefore a domain
by the indication.

Now as irreducible components are maximal irreducible closed subsets, they correspond to minimal prime
ideals. As a domain has a unique minimal prime, (0), if Oy, is a domain, p is on a unique irreducible
component of V.

Now suppose that V is a connected, smooth variety. By definition each p € V is smooth. Therefore each
point of the variety belongs to a unique irreducible component and as the variety is connected, each point
belongs to the same irreducible component that thus equals V, showing its irreducibility.

Solution 2.2.

(i) First by definition
Clz1, o Tn,y Y1, ey Yo
I(VxW)

where I(V x W) is the ideal corresponding to the product of the varieties V' and W respectively
embedded in A™ and A™.
We have the following:

C[V x W] =

IVxW)=IVxAT"NA" xW)=1(V xA™)+ I(A" x W) =I(V) + I(W)

Therefore we rewrite,
Clz1, o Tn, Y1, s Ym]  Cl1, T, Y1, ooy Y

I(V x W)  I(V)+ (W)

Now, on the other hand, using commutative algebra we have:

C[V] ®c C[W]

_ Clay, ...y @ Clyis e, Ym)

Ty Y Iw)

~ C[$17 xn] ®(C [yl; bR} ym]
I(V)+I(W)

o Clot, Ty Y1, s Yl
I(V)+I(W)

We can conclude C[V x W] = C[V] ®@¢ C[W]

(ii) We start by writing

Sxw=| () B|xW=| (] VU |xW

SCB SCB
B closed B closed

and

SxW= (] A= () VUa
SxWCA SxWCA
A closed A closed
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(iii)

Where Ig, I4 denote the ideal corresponding to the closed sets B and A, by defintion of closed sets in
the Zariski topology. Now we have

M VUs) | xW= () (VUs)xW)= (] (V(Is)xV((0)
SCB SCB SCB
B closed B closed B closed

This writing makes clear that S x W 2 S x W since V (Ig) x V((0) is closed in V x W.

On the other hand we consider the closed set V(I4) and we claim that it has the same form as in the
the above expression, namely V(14) = V(Ig) x V((0)) where B is a closed set containing S. This fact
will derive from the fact that 74 = I + (0) with B closed containing S.

‘We have
V(Ia) ={(a,b) e VX W |f(a,b) =0V f eI}

By (a), any polynomial f € I4 C C[V x W] = C[V] ®c C[W] can be written as ), _; g; ® h; for some
g; € C[V] and h; € C[W]. So that,

V(I4) ={(a,;b) €V x W |f(a,b) = gi(a) @ hi(b) =0V f € 14}

i€l

As A contains S x W, in particular the condition

> icr 9ila) ® hi(b) = 0 for all (a,b) € S x W is verified. Now fix a € S. One has C[W] > f(a,—) =
> icr 9ila) ® hi(—) = 0 on the whole W' and the only polynomial of C[W] that satisfies it is trivial.
It implies that the generators of I4 are all of the form g; ® 1 where g;’s are generators of B.

Therefore, I4 = I + (0) so that V(I4) = V(Ig) x V((0)) the claimed form, showing the reverse
inclusion.

We will use that any variety is irreducible if and only if its coordinate ring is a domain. As V and W
are irreducible C[V] and C[WW] are both domains. Now as C is algebraically closed the tensor product
C[V]®c C[W] is again a domain and therefore by (b), C[V x W] is a domain, thus V x W is irreducible.

Solution 2.3.

(i)

We will show that ®(C2?) = C4 = V(I)
The first inclusion Cq C V/(I) is straightforward as = = (s%,s% ¢, ...,t%) is a point of the vanishing
locus of z;xj41 — x;xiqq for any s,t € C2and 0<i<j<d-—1.

For the second inclusion V(I) C @d, we first observe that the generators of I are exactly the maximal
minors by i-th and j-th columns of the matrix

A(x) _: o L1 ... Td—1
’ X1 T2 ... Td
Therefore we have, x = (zg,...,xq) € V(I) if and only if all minors of A(x) vanish, if and only if
rank(A) < 1.

So now if x € V(I) there exists some p, ¢ € C (p,q) # (0,0) such that pA(x); — gA(x)2 = 0 (where
A(z); denotes the i-th row of A(xz)).

-When p = 0, A(z); = 0 and z is the image of (0,2'/¢) € C? Note that here we take the complex
d-th root of z, as this is not uniquely defined we choose the principal root. -When p # 0, we have

& = (0, q/pxo---, (q/p)* o).
By setting s = x0'/¢ (by taking again the principal d-th root) and t = %s we obtain
x = (s%, 971, ... t%). therefore V(I) C Cyq.

We have ®((C)?) = Cy4. The space C? is the product of irreducible sets and is therefore irreducible.
The set Cy is irreducible as the image of an irreducible set under the continuous map .
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15.3 Solutions to Chapter 3
Solutions written by Matthew Dupraz

Solution 3.1. Let I, J denote the left and right ideal in the above equality. It is clear that I C J as its set
of generators of I is contained in the set of generators of .J.
Let us show that I O J. Let 2* — 2% be an element in the set of generators of .J, i.e. a, 8 € N° are such that
a—p € L. Let l=a— . Then we have

Iy —l_=a-p.

Since I4 and [_ have disjoint supports, « > . Indeed, for any ¢ s.t. (I ); is non-zero, we have that (I_); =0
and so

(l+)i =y — f;.

So consider
a—ly=0—1_=~v€eN°

We get that
2 — 2P = (a2 — 2l e I

This implies that I O J and so we get the desired equality.

Solution 3.2.
(i) We have that for g € Clzy,...,z4], P*(g9) = go ® € C[V], so we have that

ker(®*) = {g € Clz1,...,25] : go ® =0}
= {g € Cl[z1,...,zs| : Vy € im(®), g(y) = 0}

But any polynomial g € Clzy,...,2,] which is zero on im(®) is also zero on the Zariski closure
im(®) =Y. So in fact we have that

ker(®*) = {g € Clz1,..., 7] : Yy € Y : g(y) = 0} = L(Y)

(ii) In the proof of the proposition which tells us that semigroup algebras give rise to affine toric varieties,
we start with a finite generating subset A = {my,...,ms} C S of a semigroup S C M. We apply the
exercise to the variety V = T, f; = x™, so that im ® = Y4. So we get by part 1 that I(Y4) = ker(®*),
which yields

ClY4] =Clz1,...,25)/I(Ya) = Clz1, ..., xs)/ ker(®*) = C[S],

and so shows that SpecC[S] = Y4, i.e. an affine toric variety.

Solution 3.3. Denote J the lattice ideal of L. Clearly, I C J as the generators correspond to
(2,0,0),(1,1,0),(0,1,1), which are all in L. So we just have to show I D J.
First, notice that in R = Clz, y, 2]/I,

so x —y € I. Similarly,

sox —z€l.
Now let f = x%2¢ — 2992/ a generator of J, i.e. (a —d,b—e,c— f) € L. We have that in R,

=d-ezf _ mat+btc _ £d+e+f

Since Z2 = 1, the exponent in R may be seen modulo 2, and since by definition of L, we get that a +b+c =
d+ e+ f mod 2, we conclude that in fact f =0, i.e. f € I.
Hence we conclude that I O J and so we get the desired equality.
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Solution 3.4. Identify M = Z" via a basis ej,...,e,. In fact ¢ is a Z-module isomorphism, so we may
represent it by an invertible matrix A = (a;;) € Z"*" (whose inverse has also coefficients in Z). Let
A={mq,...,ms}, so that B = {¢o(m1),...,p(ms)}. Consider

Dy T, — ((C*)q
t= (™), X (1))
and also
b T, — ((C*)S
t (P (1), .. P (1)

We have that Y4 is just the closure in C® of the image of ® 4 and Yz is im ®5. Notice that the image of a
map does not change if it’s precomposed with a surjective map, so let’s consider the map

YT, =T,
t— (tsﬂ(€1)7 o ttp(en)) — (tzg;l waei 7t2?:1 ainei)

This is actually a bijection of inverse
YT, = T,
t—s (12 (0 g (en))
Indeed,

Yoyl (t) = (TP, LT ()

<ﬁ taiwfl(ei)’ e f[tam<ﬂl(ei)>

i=1 i=1
= (tZ?:l 9071(%161,)’ i ‘Pil(ainei)>

(tso’lso(el)7 . ,tw*1¢(en))
t

This shows surjectivity of v, but the other direction is symmetric.
If we precompose ¥ 4 with ¢, we get:

Dyotp(t) = (X" (®(E)), ... X" ((1)))
K (tw(ei))’ e H o (ﬁp(&')))

3

Il
N N
=P

Xmuw(ez') (t), el H ani@(ei) (t))
i i=1

XZL w(muei)(t% o ,XZL w(mmei)(t)>

Il
_

N N

), (1)
B(t).

This shows that im®p = im® 4 and so in particular, this induces an isomorphism Y4 = Yz (as affine
varieties).

Since the tori associated to the affine toric varieties are just the tori im ® 4 and im ®5, which are equal as we
have just shown and their action is induced from the multiplication in (C*)*, we deduce that these actions
coincide. We conclude that the isomorphism Y4 = Yp is actually an isomorphism of of toric varieties.

|
o
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15.4 Solutions to Chapter 4

Solutions written by Louis Gogniat

Solution 4.1. We denote respectively i), 1), ii), and iv) as the four equivalent properties in the exercise
(from top to bottom). We then prove that i) — ) = i) = iii) = i).

e i) = 4v) : Suppose dimc" < n. Then there exists a hyperplane H C Mg containing ¢V, i.e., there
exists u € Ng \ 0 such that
oV CH,={me Mg | (m,u) =0}

In fact, the condition (m,u) = 0 for every w € oV implies that u € (¢V)¥ = o. Therefore, for any
w € oV, we have
u€oNH,={veo| (wuv) =0}

Given that u is non-zero, it leads us to the conclusion that {0} cannot be a face of o.

e v) = i) : Let us assume there exists a non-zero element v € ¢ N —o. Notice that if w € ¢, then
{(w,v) > 0 (by definition of o). Moreover, since —v € o, we also have (w, —v) > 0. By bilinearity of
the inner product, we conclude that (w,v) = 0 for every w € o, or equivalently

o CH,={me€ Mg | (m,v) = 0}.
Given that v is non-zero, H, is indeed a hyperplane, and we consequently deduce that dimo" < n —1.

e ii) = iii) : Suppose that o contains a positive-dimensional subspace of Ng. Then, it is clear that
—o also contains the same subspace, and thus o N —o # {0}.

e iii) = i) : For this implication, we show that o N —o is a face of o, and as a result, if o N —o = {0},
we conclude that {0} is a face of 0. Recall that if 7 is a face of a cone, then 7* = oV N 71 is a face
of the dual ¢ (see Proposition 1.2.10 in [CLS]). In particular, if we apply this proposition to the face
7 = o of the dual, we find that (¢¥)V N (¢V)* is a face of (¢)V. Since o = (¢)V, we then see that

()Nt ={uco| (wu)=0VYweo'}

is a face of 0. Let us show that this latter set is nothing other than ¢ —c¢. On one hand, if u € cN—0,
then for all w € 0¥ we have (w, +u) > 0, and thus (w,u) = 0. Conversely, if u € o satisfies (w,u) =0
for any w € oV, then —u also satisfies this property. Thus, we have +u € (¢V)¥ = o, from which we
conclude that v € o N —o.

In conclusion, we indeed have (¢¥)V N (aV)*

= 0 N —o, demonstrating that o N —o is a face of o.
Solution 4.2.

(i) First, let us note that o is strongly convex since it satisfies property iv) of the first exercise. Indeed,
the fact that o has maximal dimension implies that dim ¢ = dim(¢")¥ = n. This, in particular, means
that {0} is a face of ¢V, so that we can find some u € ¢ \ 0 with ¢¥ N H, = 0. Since o is a rational
cone, ¢ is also rational. Therefore, we may assume that u € 0 N N \ 0. We then have (m,u) € N,
with (m,u) = 0 if and only if m = 0 (since ¥ N H, = 0).

We now prove that H generates S,. Consider m € S,. If m is irreducible, then m € H. So we may
assume that m is not irreducible, which means that there exist m’, m” € S, \ 0 such that m = m’+m”.
We then observe that

(m,u)y = (m’,u) + (m”, u).

Since m’, m” are not zero, we have (m/, u) and (m”,u) > 0, hence

(m' u) < (m,u) and (m" u) < (m',u).
By induction on (m,u), we conclude that every element m € S, is a finite sum of elements from H,
meaning that H is a generating set for S,.

Additionally, according to Gordan’s lemma (Proposition 1.2.17 in [CLS]), S, is finitely generated.
Consequently, S, contains a finite number of irreducible elements, from which we conclude that H is
finite.
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(i)

(iii)

We first establish the following lemma (see Lemma 1.2.7 in [CLS]).

Lemma 4.1. Let T be a face of a polyhedral cone o. If v,w € 0 and v+ w € T, then v,w € T.

Proof. Since T is a face of o, there exists an element m € ¢V such that 7 = 0N H,,. Now, observe that
if u+v € 7, then
(myu+v) = (m,u) + (m,v) = 0.

(
Furthermore, as m € oV, we have (m,u) > 0 and (m,v) > 0. Consequently, we obtain that
v) =0,

(m,u) = (m,
meaning that both w and v are in 7. O

Now let p be an edge of ¥ and denote by m, the ray generator of ¥ N M. Let us assume for the

sake of contradiction that m, is not irreducible, meaning that there exist m’ and m” in S, \ 0 such
that m, = m’ +m”. Using the above lemma, we then deduce that both m’ and m” are in p. Since m,,
generates 0¥ N M, there exist &’ and £” in N\ 0 such that m’ = k'm, and m” = k""m,. Therefore we
obtain

m, =m'+m" =k'm, +k"'m, = (K + k" )m,.
This implies that & + &” = 1, which contradicts our initial choice of k' and k" as positive integers.
Thus, we conclude that m,, is irreducible, i.e. m, € H.

Let G be a generating set of S,. By contradiction, suppose that there exists h € H \ G. Since G
generates S,, there exist ¢1,...,9x € G and nq,...,n; € N\ 0 such that h = Y n;g;. However, this
contradicts the irredicibility of h. Therefore, H C G, and consequently, H is the minimal generating
set of S, with respect to the inclusion.

Solution 4.3.

(i)

First, note that if o = Cone(si,...,sk), then w € ¢¥ if and only if (w,s;) > 0 for all i = 1,...,k.
In fact, as any u € o can be expressed as a conical combination of the s;, i.e. u = Y \;s; for some
Ai € R>g, we have

(w, u) = (w, Z)\Z—SQ = Z)\i@u, si) >0,
as long as (w, s;) > 0 for all i.
For 0 = Cone(3e; — 2e3,€1), we obtain that w = xe; + yes € ¢ if and only if
z >0 and 3x —2y > 0.
We illustrate the cone o and its dual in Figure
According to Figure it is easily seen that
my = 2e1 + 3ea, mgy =e1 + eg, and m3 = —eg

are the only irreducible elements in S, = o¥ N Z?2. Hence, Exercise 2 implies that H = {my, ma, m3}
is the minimal generating set of .S, .

Since U, = Spec(C[S,]), and because S, = NH, we find that U, is precisely the affine toric variety
Y. Thus, the toric ideal associated with U, is obtained by considering the kernel L of the morphism
By 23 — 72 given by the matrix
2 1 0
(G15)

This kernel is precisely L = ker &5 = ((1,-2,1))z. Therefore, the toric ideal of U, is
I(Yn) = (x"* —x'= [le L) = (%" —y** | ke N) = (22 - ¢°),

where the last equality come from the fact that

k-1

(z2)F —y** = (22 — y2)(z y* (z2)*717%) for any ke N\ O.
i=0
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Solution 4.4.

(i)

Using the same argument as in exercise 3 part (a), we have that w = xe; + yea + ze3 € 0¥ =

Cone(eq, ez, €1 + 3 + 2e3)V if and only if
x>0, y>0, and x +y + 2z > 0.
We graphically represent the dual ¢¥ in Figure [I8b] To find generators of S,, we first decompose
S, =S, UStH,
where SF := {(x,y,2) € S, | £z > 0}. Note that, since R%, C ¢V, the three elements
my = ey, Mo = ea, and m3z = e3

belong to S, and clearly generate the subset S}. Let us turn our attention to S, . We claim that the
set
H™ = {ml, mao, My = 261 — €3, My = 262 —e3, Mg = €1 + €3 — 63}

generates S . For z € Z<p, we denote A, the set defined by the intersection of the line with equation
x4+ y+2z=0and S, (see Figure , explicitly, we have

A, ={(m,—2z—m,z) |m=0,...,—2z} for any z € Z<o.

With these notations, it is not difficult to see that if H~ generates A, for all z € Z<p, then H~
generates S, . By induction on z € Z<, let us verify that this is indeed the case.

If z=0, then A, = {(0,0,0)}, and the claim is satisfied. Similarly, if z = —1, then A, = {m4, ms, ms},
and the claim holds true as well. Now, assume the result is true for some z < —1, and let us show that
it is also true for z — 1. Note that for m = 0,...,—2z, we have

(m,=2(z—1)—m,z—1) = (m, -2z — m, z) + ms,
form=-2z+1,
(m,=2(z—=1)—m,z—1)=(-2z+1,1,2 - 1) = (—22,0, 2) + mg,
and for m = —2z + 2,
(m,—2(z—1)—m,z—1)=(-22+2,0,z — 1) = (—22,0, 2) + my.

Hence, we see that each element within A, 1 can be expressed as the sum of an element from A, along
with one element from H~. With this established, we obtain by applying the induction hypothesis,
that A~ generates A,_.

Since on one hand, {my,mg, m3} generates S, and on the other hand, H~ generates S, we then
deduce that
H - {m1;m27m37m47m57m6}

is a generating set for S, (in fact, it is a minimal generating set, as all the m; are irreducible).

We propose here a different method than the one presented in exercise 3 part (b) to compute the toric
ideal associated with U,. According to section 1.1 of [CLS], the affine toric variety U, is the Zariski
closure of the image of the map ® : (C*)? — C° defined by

(r,s,t) = (r,s,t,r2t " 2t rst ).
We claim that im® = V(I) where I is the ideal

I={(2u—2% z2v—19°% zw—uxy) CClz,y,z u,v,w.
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Figure 18

m

1 m2
3 i’} 44 [ 1 7
L4
-2
-3
(a) The blue surface represents the cone o, the green (b) The three green, blue, and red faces represent the
surface its dual oV. The vectors m1,ma, ms are the three faces of the dual convex cone oV.

irreducible elements that generate S, .

In what follows, we will assume without providing a proof that I is indeed a prime ideal. So in
particular, V(I) is irreducible. First, it is easily verified that im® C V(I). Conversely, suppose that
x = (2,9, z,u,v,w) € V(I). We then have that

2u =%, (10)
=, (11)
2w = zy. (12)

If 2 # 0, let us set 7 :== x, s :== y, and t := z. In this case, we observe that by (1), we have u = r?t~1,
by (2), v = s*~1, and by (3), w = rst~!. Therefore, we conclude that if x,y, z # 0, then x € im®, and
thus we have V(1) N (C*)? = im®. Note that since U := V(I) N (C*)? is an open (non-empty) subset of
V(I) and V(I) is irreducible, then U is also irreducible and dense in V(I). Taking the Zariski closure,
one obtains

U, —imd = U = V(I),

so that I is the toric ideal of U,.
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Figure 19

(a) Projection of ¥ onto the plane (b) Projection of ¢ onto the plane (c) Projection of o¥ onto the plane
with equation z = —1. The dark with equation z = —2. The 5 five with equation z = —3. The seven
blue points represent the set A_; = dark blue points represent the set dark blue points represent the set
{m4,m5,m5}. Afz. A73.

15.5 Solutions to Chapter 5

Solutions written by Isak Gustaf Salomon Sundelius

Solution 5.1.

(a)

The C-algebra homomorphism induced by = is given by
C[s]—=cC

f(1‘1,...,$s) — f(’}/(ml)v"'77(ms))

where the elements x; correspond to the characters x” and the multiplication is given by the semigroup
structure of S. With this it is clear that the kernel of this map must be f € C[S] such that

f(y(ma),...,v(mg)) =0

and since we in the exercise description get that p := (y(mq),...,v(ms)), this condition on f means
that f(p) =0, so we are done.

We want to show that the affine semigroup homomorphism m — x™(t)y(m) has induced semigroup
algebra homomorphism C[S] — C has kernel the maximal ideal corresponding to the point

X)X (1) - (v(ma), -y (ms)).

The corresponding homomorphism of semigroup algebras is given in the obvious way, so the kernel will
be precisely

{feClS]: fFX™ ()yv(ma),...,x™ (¢)y(ms)) = O}
It is clear that we have

XM )y (ma), XM () (me)) = (X (), X (1) - (v(ma), -,y (m))

The action by t € Ty on p € Y4 is given by multiplication, and the affine semigroup homomorphism
corresponding to a given point in Y4, for instance t € Ty C Yy, is given by

m— X" (t).
Then the semigroup homomorphism corresponding to the point ¢ - p is exactly
m = X" (t-p) = x"(t) - x"(p) = X" () - y(m).

by definition of p, and so we are done.
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Solution 5.2. We use the proposition preceding this corollary, from Chapter 5. Part (a) of this proposition
states that the torus action on an affine toric variety V' = Spec(C[S]) has a fixed point if and only if S is
pointed.

By definition, S, is pointed if and only if S, N (—S,) = {0}. By definition of S, this amounts to

{0y =(@"NnM)N(=(c"NM))=0c"N(-c")N M,
since M = —M. We proceed by proving the following lemma:

Lemma. Under the assumptions of the exercise description,
o' N(—=oc")NM = {0} <= o' n(-c")={0}.

Proof. The implication “ <=7 is trivial.

For the other direction, consider the generators of S,, given by a subset {ej,...,es} € M. In particular,
the Z-linear combinations of these elements constitute S,, while the R-linear combinations of these elements
constitute oV. An element of oV is given by

¢
m = E aze;, oy €ER.
i=1

By definition of the dual, m’ € ¢V N (—¢V) if and only if
(m',uy=0 VYué€o.
By choosing a set of generators f1,..., fs € N of o, this may be rephrased as
(m', f5) Vi

and so
¢

> lei f5) Vi

i=1
Since every (e;, fj) € Z we obtain a matrix {(e;, f;)}i,j, which has full rank since the e, and f; are linearly
independent by assumption. This gives us that the product of this matrix by the vector {«;}; equals zero,
which in turn implies that all a; are integers, up to some common multiple of some nonzero scalar r» € R.
With this we get that

This, together with the fact that

I
1
(m'ju)y =0 = <m,u> =—(m/,u) =0,
T T
gives us that mTI € S, N (—S,) which implies that m’/r = 0, so m’ = 0 and with this we are done. O

We have from Chapter 4, in particular by using it for the dual ¢V in place of o and vice versa (since
(V)Y = o), that

o' N(-0")={0} < dimo = dim Mg = dim Ng
so with this we have proven the first statement of the exercise description.

Furthermore, part (a) of the proposition referenced above states that in this case, where S, is pointed, the
unique fixed point of U, under the action of its torus is given by the affine semigroup homomorphism

v:8, = C
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We then want to calculate the kernel of the corresponding semigroup algebra homomorphism. To do this we
use exercise 1:

C[S]—C

1, if 0
Y if © eql-lals X
0, otherwise

With this description of the induced semigroup algebra homomorphism it becomes clear that the kernel is
given by
(x™ | meS, and m#0)=(x"|meS,\{0}),

so we are done.

Solution 5.3. The Hilbert basis is defined as
A ={m € S, : m irreducible}.

where m is irreducible if there exist no my,ms € S, \ {0} such that m; + mg = m.
We begin by calculating the dual oV:

[d}.m:o = dr—y=0 < dz=y,

e

s {3 ) s - )

With this we get that when intersecting with M we get

so=svone ([ [ [ [}

so it is clear that the smallest choice of irreducible elements spanning M are given by

R (ORs A}

For the next part, we have stated in Chapter 5 that dim 7, U, < ¢ if U, — C! is any embedding, where
Do is the unique fixed point of the torus action on U,. A more general version of this statement is given in
Lemma 1.0.6 of .

The last lemma of lecture states that dim 7T, U, = |#|. Since we already know that we can embed Cq4 into
C4*!, we then get that the minimal dimension ¢ of affine space in which we can embed Cy is |27 =d+ 1.

SO

Solution 5.4. An affine semigroup S C M is saturated by definition if for any k& € N\ {0} and any m € M,
km € S implies m € S.

For S = NA, and by the semigroup structure of any affine semigroup S, we see that S is saturated if and
only if for every point m € NA, the R>o-span of m inside Mg intersected with M occurs in NA. Since M is
a lattice and by definition of the cone Cone(A), we see that this is equivalent to

NA = Cone(A) N M,
since Cone(A) collects R>o-linear combinations of the elements of A and M only contains points with integer

coordinates (and additionally, since NA C M).
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15.6 Solutions to Chapter 6
Solutions written by Juan Felipe Celis Rojas

Solution 6.1. Let Vi, V5 be two affine toric varieties. Recall that we proved that an affine variety morphism
is toric iff the corresponding C-algebra homomorphism is induced by a semi-group homomorphism iff the
morphism can be restricted to the tori inside the varieties and this restriction is a group homomorphism.
First assume that the morphism ¢ : Ty, — Ty, extends to a toric morphism ¢ : U,, = U,,. We have the
following diagram.

]
TN1 —_— TN2

|

Now since Spec(—) is a contravariant functor the diagram above is equivalent to the diagram

[ [

where the map in the bottom C[S,,] — C[S,,] is induced by an affine semi-group homomorphism, because
Us, = Uy, is a toric morphism.

Then all the morphisms in this diagram are entirely determined by semi-group homomorphisms. Observe
that this is true only if U,, — U,, is toric. So this diagram is equivalent to

Observe that applying functor — ®z R gives us an equivalence of diagrams because S,, and S,, are always
saturated. Recall o; and oy are strongly convex rational polyhedral cones, and we have seen that this is
equivalent to U,,,U,, being normal, and equivalently S,,,S,, being saturated.

(My)g +—— (Ma)r

| |

01
Then we can dualize to get another equivalent diagram

(N —2 (N)g

| |

01 ——==---=% 02

yielding @g(01) C os.

First we denote the map
:C" 5 C™ e (fola), -, fn(a)

we want to show that it induces a map from V to P™. Let [a] = [ag : -+ - : ap] € V. Since

VﬂVp(anvfm):w

it follows that for any representative a € C" ! of [a] € V we get

®(a) #0
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because
(I)(Q) :Q — Qevp(f()w"afm)'

Therefore ®(a) defines an element [®(a)] € P™.
As the polynomials fo, ..., f,, are homogeneous the choice of representative a € C"*! of [a] € V does not
change the class of ®(a) in P™. Whence the map

O:V =P~ [fola) : - fm(a)]
is well defined.
Solution 6.2.

(i) To show that the Segre embedding is indeed an embedding we must show that it is injective, continuous
and closed. Observe that it is continuous because it is defined by polynomials. Moreover, exercise 4
implies that the Segre embedding is closed. It remains to show that it is injective.

Let ([a], [b]), ([a'], [t']) € P™ x P™ be such that
In,m(lal; [0]) = onm([a'], [0])
then there is A € C* such that
Aaibj = azb; V0 <i<n0<j<m.

Observe that there must exist 0 < k < n,0 <! < m such that a}, # 0 and b} # 0. Then we get

Ab
agz—,lai Vo<i<n
b
!
A
by ==k Vo<j<m.
k
Therefore [a] = [@'] and [b] = [V']. In other words o, ,, is injective.
(ii) Now let I be the ideal generated by
{zijzkl—zilzkj | OSZS’I’L,OSJSTR}

We denote
U, = PH\VP(QTZ) cp?
Vj = P"\V,(y;) C P™
Wij — Pnnl+7l+7n\vp(zij) C ]Pmm+n+m,

for all 0 < i <n,0 < j <m. Notice that {U;},{V;},{W;;} form open covers for P",P™ and P tn+m
respectively. We claim that

onm (Ui x Vj) = Vp(I) N Wi
Let ([a], [b]) € U; x Vj, then

on,m([a], [0])ij=a;b;0
and
(erzkl - zrlzks)([QL [Q]) = arbsarb; — arbjarbs = 0.

It follows that

Un,m(Ui X ‘/j) - VP(I) n le
Now let [z] € V(1) N W;;. Then define

ap =z; VY0<k<n

b=2% vo<i<m.
Zij
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Observe that this is well defined because z;; # 0. Moreover [a] € U; and [b] € V;. It remains to see
that it is a pre-image of [z] under the Segre embedding. Indeed

Z
on,m(lal, b))k = arb = ij;l, =21
]

because [z] € V,(I) implies
Zij Rkl — ZilZkj = 0.

Hence we have proven that o, ., (U; x V;) = V,(I) N W;;. Now it is enough to see the following:
Tnn (B X P™) = 0 | (Ui x V;
2]
= Uan,m(Ui X ‘/J)
.3
=UJvo()nWwy
657
=V,(I)N U Wi;
.3
— Vp(I) N ]Pm7n+n+’m
=V, ().

Solution 6.3. Let V' C P™ x P™ defined by fi(z,y) = 0 where f; is bihomogeneous of bidegree (a;, b;) for
1 =0,...,s. The goal of this exercise is to show that V can be viewed as a projective variety of P Tn+m yig
the Segre embedding.

(i) For each [, consider d; > max{a;,b;} and o = (v, ..., ) € N*, 8= (5o,...,B,) € N™ be such that

n
E a; =d; —a
i=0

> Bi=di—b.
=0

Define the bihomogeneous polynomial

ia,8(@y) = 2%y’ fi(z,y).
Note that this polynomial is bihomogeneaous of degree (d;,d;). We will show that
V=V,(g1asll€{0,...,s},a,8) = V"

It is clear that V is included in the vanishing locus of the g; o g’s by definition of these polynomials.
It remains to show the other inclusion. Let (p,q) € V’'. Since p € P" and ¢ € P™ there exist
0<i<n,0<j<msuch that p; # 0 and g; # 0. Moreover

9i0.8(p-q) =0

for all choices of [, «, 8. In particular it is true for o and 8 with o; = d; — a; and B; = d; — b;. Thus
we have

P fi(poq) = 0
which implies that
fl (pv q) =0

for all I € {0,...,s}. Whence
V=V



(i)

We want to show that o, (V) is a projective sub-variety of Prm+n+m,

Let us use part (a). Observe that the polynomials g; o g are bihomogeneous of bidegree (d;,d;). So we
can view them as follows:
gi,o,8 € ((C[Zov cee 7an+n+m])2dl .

Then we have
Onm(V) =Vyu(g1,0,81€1{0,...,s}, 0, 5).

It follows that oy, (V) is indeed a closed sub-variety of P +7+™ In particular the Segre embedding
is a closed map.

15.7 Solutions to Chapter 7

Solutions written by Zichen Gao

Solution 7.1.

(a)

(b)

First of all, in any abelian category &/, and an object M in <, the functor Hom(-, M) is a left exact
functor. In other words, if
Ny — Ny = N3 —0

is exact, then
0 — Hom(Ns3, M) — Hom(Ny, M) — Hom(Ny, M)

is exact. The category of abelian affine group schemes over C is abelian, so here we can apply the
above result to the exact sequence T — T" — T” — 0, and M = C*. Now we only need to prove
that for an injective morphism « : (C*)" — (C*)™, it induces a surjection o* : Hom((C*)™, C*) —
Hom((C*)™, C*).

Recall that (C*)™ ~ Spec(C[Z"]) and (C*)™ ~ Spec(C[Z™]). So the morphism « : (C*)* — (C*)™
induces a map «" : C[Z™] — C[Z"]. And since « is toric, o restricts to a morphism of lattices
Z"™ — Z", which corresponds to the homomorphism «* : Hom((C*)™,C*) — Hom((C*)",C*). So we
only need to show the surjectivity of C[Z™] — C[Z"]. In fact, since « is a morphism of tori, its image
is a close subgroup of the targeting torus, and « induces an isomorphism onto its image. In particular,
topologically, a is a homeomorphism onto a closed subset of the targeting space. Combining with the
fact that all the involved schemes are affine schemes, we know that « is a closed immersion of affine
schemes. Hence C[Z™] — C[Z"] is surjective.

For the first part, tensoring with Q is the same as localizing at Z \ {0}, and localization is an exact
functor. For the second part, taking dual is an exact functor in the category of Q-vector spaces.

Solution 7.2.

(a)
(b)

()

7' A is a subgroup of the lattice M, hence is still a lattice.

The smallest affine subspace containing A is the affine space H = my + > R(m; —my). It is also
easy to verify that Z'A = Y Z(m; — mq), since the sum of the coefficients of the m;’s is zero. So
dim H = dimg Y R(m; — m1) = dimg R ®7 Z' A = rank Z' A.

If u € N, k € N\ {0}, s.t. (m;,u) =k for each 4, then (> ;_; a;m;,u) = k(>_;_; a;), which gives us
the exact sequence

0 Z/A-—7ZA" 17— 0

Then k > 0 implies that rankZA — 1 = rank Z' A.

If there isn’t an u € N and k € N\ {0}, s.t. (m;,u) = k for each ¢, then by Proposition 2.1.4 of [CLS],
I1, is not homogeneous, where L is the kernel in the exact sequence

0—L—272°—7ZA
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where the last map sends e; to m;, and Iy, = (2 — 2°|a, 3 € N* and o — 3 € L). Since I, is not
homogeneous, some generator @ —x is not homogeneous, so that (a—p)-(1,...,1) #0,but a—p € L.
This implies that in the exact sequence

0— My —ze Lz g

the image of L C Z° is IZ C Z for some [ > 0. This gives a diagram

0 0
| |
0 —— LN M,_4 L

|

0 — My VA

|

0 ZA ZA
0 0

with exact rows and columns. The exactness of the columns and the first two rows is clear. The
exactness of the third row can be shown by five-lemma. Hence rank ZA = rank Z’' A.

— N+—N+—o

N
=
N
o

S

Solution 7.3.

(a) Suppose rank M = n, and A = {mq,...,ms}. Then the projective variety induced by A + m is the
closure in P*~! of the set

(™™ (b, t) et (b, )]t € CF)
but
XY™ (b tn) s X T ()]
:[Xml(tl,.. , n) X (th...,t )Z"'IXmS(tl,...,tn)'Xm(tl,...,tn)]
=[x (t1, ..., tn) : M (b1, ey tn)]

The closure of all these latter points is the projective toric variety induced by A, so A and A+ m
induce the same projective toric variety.

(b) Let A = {0,1} C Z. Then the affine toric variety induced by A is the Zariski closure in C? of the set
{(1,t)|t € C*}, hence is a copy of C. Let m = 2, then m + A = {2,3}, and the affine toric variety
induced by m + A is the curve y? — x3 = 0, which is not isomorphic to C, since it is not smooth, for
example.

Solution 7.4.

2 3
ik
why Mias + Mas1 + Ms1o = Mi3s + Msa1 + Mai3. For the three matrices Myo3, Mas; and Msqo, since
the corresponding permutations send ¢ to the three different elements , the place of the 1 in the i-th
rows of these matrices should be different. Hence the é-th row of their sum should be (1,1,1). More
concretely,

(a) For an element , let’s denote the assigned permutation matrix by M;;,. We explain here

1 00 01 0 0 01
Migzs=10 1 0),My33 =10 0 1], M3z12=(1 0 0],
0 01 1 00 010
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SO

1 1 1
Mios + Mog1 + Mo =11 1 1
1 1 1

The same is true for the other three matrices:
1 0 0 0 0 1 01 0
Mizga=(0 0 1) ,M3y=[0 1 O|,My3=1{1 0 0},
0 1 0 1 0 0 0 0 1

SO
1
1

1

—_ = =

1
Miga + M3zoqr + Moz = | 1
1

In sumimary, M123 + M231 + M312 = M132 + M321 + M213 Therefore,

XM123 . XM231 . XM312 _ XM123+]\4231+1V1312 _ XM132+M321+1\/1213 _ XM132 . X]\/[321 . XM213
This implies that 212372317312 — T13273217213 € I(Xp,).
(b) It is straightforward to compute that Z'Ps is generated over Z by
1 0 -1 0o 1 -1 0 0 O 0 O 0
o0 o, (o o o, [1 0o <1].,l0o 1 =1
-1 0 1 0 -1 1 -1 0 1 0o -1 1

And it’s clear that these generators are linearly independent, so rank Z'Ps = 4 = dim Xp,

(¢) By (a), Xp, C V(212322312312 — T132%321%213). The latter is an irreducible hypersurface, hence of
dimension 4. But Xp, is also an irreducible variety of dimension 4, so Xp, = V(z123%2312312 —
T132%321T213). In particular, I(Xp,) = (212372312312 — T1328321%213)-

15.8 Solutions to Chapter 8

Solutions written by Maxence Alexandre Coppin.

Solution 8.1. Let P be a polytope.

”=" Assume that P is not full dimensional. Let F' be a facet of P with a supporting hyperplane H, ,. Since
P is not full dimensional, there exists n € (Span(P)Y)*. Consider the hyperplane H, 1 y,q, We want to prove
that it is a suupporting hyperplane of F' different from H,, ,. We have

HyiwoNP={meP|{n+um)=a}t={meP]|{um)=a}

= u,amP:F,

where the second equality holds because (n,m) = 0 since n € (Span(P)")t. Now suppose that these define
the same supporting hyperplane, then for every m € M \ Span(P), we have (n + u,m) = a = (u, m), hence
(n,m) = 0 for any m. Since this paring is non-degenerate we must have n = 0, we get a contradiction.

7" Suppose that P is full dimensional. Let F' be a facet of P and H,, 4, H, 1 be two supporting hyperplane
of F. Since P is full dimensional, the facet F' is a polytope of dimension dim P — 1, by definition it means
that F' is contained in an affine subspace of dimension dim P — 1. But since H,, , NP = H,;, N P = F, the
intersection H, , N Hyp # 0 and it must have dimension at least dim P — 1, hence they must be equal.

Solution 8.2. Let P be a full dimensional polytope of dimension d with the origin as interior point.
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(i) Notice that since the origin is an interior point of P, we have that for any facet F of P, 0 = (up,0) >
—ap, hence ap > 0.

7 D7 Let m € P, then for any F' we have that
1
(up,m) > —ap & (—up,m) > —1.
ar

Thus 1/apup € P° for any facet F, then Conv(1l/apur | F facet of P) C P°.
” g ”

(ii) Since P is full-dimensional, each facet F' of P has a unique supporting hyperplane H, We have

UF,—aF "
a bijection between the set of facets of P and vertices of P° given by
1
F— —up
ap

This bijection induces a bijection between the set of faces of P and faces of P°. Indeed, for @ a facet of
two facets of F', F’ of P, the intersection of the two supporting hyperplanes associated to these facets
is exactly Span(Q), thus @ correponds uniquely to the edge between the points 1/apup and 1/apup:.
And we can pursuit this construction inductively to obtain the wanted bijection.

It is immediate by construction that a face of P with dimension n is send to a face of P° with dimension
d —n — 1 by this bijection and it is inclusion reversing.
(iii) Let r > 0, we want to prove that (rP)° =1/rP°.
(rP)° ={u € N | (rm,u) > —1 for all m € P}
={ue N |{(m,ru) > -1 for all m € P}
= {%u € N | (m,u) > —1for allm € P} = %PO.

Now if we take 2P where P = Conv(+e;, tes C R?, we have that (2P)° = 2 P° is well-defined, but it
is not a lattice polytope.
Solution 8.3. Let P be a polytope.
”=" Assume that P is normal. Let (m,k) € C(P)N (M x Z). Then k € Z and the element m has
height k, and by normality of P, we have that m = Ele m; for some m; € PN M. Thus we have that
(m,k) = Zle(mi, 1), hence (PN M) x {1} generates the semigroup C(P) N M x Z.
7<” Assume that (PNM)x {1} generates C(P)N(M xZ). We always have the inclusion PNM+...+PNM C
EP N M. Solet m € kPN M, notice that (m,k) € C(P) N (M x Z). By assumption we have that
(m,k) = Zle(mi,l) where m; € PN M, hence m = Zlemi ePNM+...+PNM.

Solution 8.4. Consider P = Conv(0, e1, ez, e1 + ez + 3ez) C R3.

(i) Let m € PNZ3, then m = ey + Bea+y(e1 +ea+3e3) = (a+7)er + (B+7)ez + 3yes where o, 3,7 > 0
and a+ S +v=1. If a=p =v=0, we have that m = 0 € P. Else, it yields three cases :
o If v =0, then m = aey; + Bes whith a+ f=1. If a« =0, then m =es. If 8 =0, then m = e;.
o If y=1, then a = =0, s0o m =e; + ey + 3es.
e If v =1/3, then o, 8 > 2/3. Since a + 3 = 2/3, we have that m cannot lies in Z3.

Thus the only lattice points of P are its vertices.

(i) We have that Tpnzs C P3 since P N Z3 has only four points. Furthermore dimTpnzs =
rk(Z'{0,e1, ea,€e1 + €2 + 3es}) = rk(Z{0, e1, €2, e1 + e2 + 3es}) = rk(Zey + Zey + Z(ey + €2 + 3e3)) =3
since 0 € PN Z3. Thus we have Tpnrzs = P? because dimP? = 3.

(iii) It is just some computation to show that it is indeed the Hilbert basis of C'(P). Since the Hilbert basis
of C(P) N (Z3 x Z) contains 6 elements, the set (PNZ3) x {1} cannot generates C(P) N (Z3 x Z) since
it has less elements than 6 (it would contradicts the minimality of the Hilbert basis).
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15.9 Solutions to Chapter 9

Solutions written by Emma Marie Billet

Solution 9.1. First P C Mg being very ample, it must be a lattice polytope so PN M = {mq,...,ms} are
the vertices of P, and we may assume m = m, without loss of generality.

(i)

(i)

Note that 0 is indeed in C' because m € PN M by very ampleness. To show that H, o is a supporting
hyperplane of 0 € C' is equivalent to prove that {0} = H, o NC and u € CV = oyy,.

”C” This inclusion is trivial because we just proved 0 € C' and clearly (u,0) = 0.
”2” Consider m' € CN Hy, o, then m’ € C

— m = 37 Ni(mi —m) where \; > 0,i € {1,..,s —1}. And m’' € H,o = (m/,u) =

ST A (my —m,u) = 0, but this is equivalent to

i)\i<mi,u) = i)\i<m,u> (13)

Now we can use the assumption that H, , is a supporting hyperplane of m € P which implies that
{m} = PNH,, and P C H, From these we obtain (m,u) = a, (m;,u) # a, (m;,u) > a so
(m,u) > a, Vi € {1,..s — 1}. Combining this with with (1) gives a contradiction, unless
Ai =0,Vi € {1,...,s — 1} or equivalently m’ = 0 as desired.

Finally we have to prove, u € o, which is equivalent to C' C H:' o- Consider >°7_, A\;(m; —m) € C for
some \; > 0V i€ {1,...,s}, denote 37, A; =t A > 0 unless we consider 0. Then z =37 | 3im; € P
which implies that we have x € H.f, = (377 Aimg,u) > a = Y771 Ni{mg,u) > Aa = A(m,u) by
hypothesis on m € P. This implies (3>°;_; X\i(m; —m),u) > 0 as desired. Remark that if we consider
0, clearly 0 € HJ)O. This finishes the proof of part (a).

Prove that dim(C) = dim(P) = n. Because P is full dimensional the only thing to prove is dim(C) >
dim(P), recall that the dimension of C, P is the dimension of the smallest subspace of Mg containing
C and P respectively. Thus it suffices to prove that C C H = P C H for any affine subspace
H C Mg. Assume C C H for some subspace H. Then if we show m; € H,Vi € {1,..., s}

= P = Conv(mli € {1,...,s}) C H.
But using that m; —m € C C H,i € {1,...,s — 1}, we are done if we prove m € H.

Claim: Wlog, m € C' = ()}, C H. This finishes the proof.
Proof of the claim: it always exists a translation of P under which m € C. The dimension of a full
dimension polytope is invariant under translation. O

Solution 9.2.

P and m + P have the same normal fan for m € M a lattice point. Note that P + m is still a full
dimensional lattice polytope as m is a lattice point and dimension is invariant under translation. We
clearly have a bijective correspondence ¢ between faces of P and faces of P + m, given by Q < P —
Q +m < P+ m. Note that ¢ preserved face inclusion. Let’s prove for @ < P, that 0g = 0(@)-

Using 0 = Cone(ur|Q < F' < P, F facet ), it suffices to prove up = uy,(p) for any facet F. Indeed
up, Uy(py are uniquely defined (up to multiplication by a positive real number) because, P and P +m
are full dimensional.

Let Fx P = PCH]

wpap = YmEP: (mur)> —ar.

Then consider some m € P+ m — m=n+m = (m,ur) = (n,up)+mp > —(ap —mp) =:
—api+m for mp == (m,up) and using n € P. This directly proves P + m C ij,famm' Moreover,
considering m € F + m makes all inequalities above being equalities, and this proves F +m =
Hyp —apy N (P + m). Indeed for the other inclusion we have (n + m,ur) = —(ar — mp) =—

(m,up) =—ar = me€ PNHy o =F.
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(ii) We basically use the same strategy, P and kP have the same normal fan for £ > 1 an integer. Note
that kP is still a full dimensional lattice polytope as k is an integer and dimension is invariant under
homothety. Indeed the basis of the subspace containing P will still generate kP since a generating set
allows multiplication by a scalar. We clearly have a bijective correspondence ¢ between faces of P and
faces of kP, given by @ < P — kQ < kP. Also note that ¢ preserved face inclusion. Let’s prove for
Q < P, that og = To(Q)-

Using 0g = Cone(ur|Q < F < P, F facet of P), it suffices to prove up = u,(ry. Indeed, in this case
they generate the same cone.

Let FXP — PCH' = VYmeP: (mur)>—ap.

Ufp,aF
Then consider some m € kP = m =k.m = (m,up) = (k.m,ur) = k(m,up) > —k.ap =: —agp
using m € P. This directly proves kP C HJFﬁakF. Moreover, considering m € kF' makes all
inequalities above being equalities, and this proves kF' = H,,, _q,, NEP.
Indeed for the other inclusion we have (k.m,ur) = —k.ap = (m,ur) = —ar = m € PNHy; op =
F.
This finishes the proof of exercise 2. O

Solution 9.3. The proof of this exercise is mostly based on exercise 8.2.b. This exercise tells us that it
exists a bijection between faces of the polytope and faces of the dual polytope. Since 0 is an interior point
of P, which is full dimensional, we have P = (1,00 HjFﬁa » Where the ar > 0 for all facets. This allows
us to characterize the dual polytope as P° = Conv(éu}r | F facet of P) so that the faces of P° are the
convex hull of some vertices {ﬁUF}. Hence the bijection is given by Com;(éu r | F' facet of P containing

Q) =< P° is associated to the face Q < P. Denote by ¢ this bijection.
Then, by definition the normal fan of the polytope P C Mg is Xp = {og |Q < P}.

Claim: og = Cone(Q') C Ngr where the latter means the cone generated by the vertices of @’ and
Q' = ¢(Q). This claim directly proves the statement of the exercise since ¢ is bijective and ¢(Q) < P°.

Proof of the claim: We have g = Cone(up|F facet containing @); and Cone(Q’) = Cone(iuﬂF
facet containing @), but we have an equality between both of them since more generally Cone(mi, ms) =
Cone(A1mq, Aama) for any Ar, A2 > 0. In fact this is a property of cones and you can clearly see this taking
the definition. O

Solution 9.4.

(i) We set {ey, ..., e, } canonical basis of R™ so that A,, = Conv(0, 1, ...,e,). We denote A = {0,e1,...,e,}
and eg = — >, e;. We need to prove the following second equality (the first is the definition of the
normal fan) :

n, ={o0|Q < An}={Cone(S)|S C {eo,....,en}}

For the sake of simplicity, we denote {eq,...,e,} =: E. Note that for any face
Q < An, Q = Conv(A\S) for S C {0,eq,...,en}, indeed any proper face of the n-simplex is the
convex hull of at most n vertices. Thus, any facet F' 5 A, is of the form F; = Conv(A\{e;}) for
i€{1,...,n} or Fy = Conv(A\{0}) since a facet is determine by n vertices.

Claim: up, =e; for i € {1,...,n} and up, = eq
Proof of the claim : First of all, ur is well defined since A, is full dimensional. In order to prove this

we distinguish the cases i € {1,...,n} or i = 0.

Case 1: We need to show F; = {m € A, |(m,e;) =0} and A,, C H;,(r Let i € {1,...,n}.
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7C” Consider m =37, Ajej € F; = Conv(A\{e;}) = N =0, and 37, A; <1, A\; >0, Vj. Then
by orthonormality of the canonical basis (m,e;) = \; =0 and m € A,as desired.

”2” Consider m € /A, = moo= 3 Nen oA < LA > 0V Clearly
(mye;)) =0 = A\, =0 = m € Conv(A\{e;}) = F,.
Lastly, consider m = Z?:l Nej € Ay, Z;.lzl A < 1, A > 0 Vj Then

(m,e;) =X >0 = me€ H;,0~ This finishes the proof of case 1.
Case 2: Analogously we need to show Fy = {m € A, |(m,ep) = —1} and A,, C H;;_fl.

7C” Consider m = Y7, Ajej € Fy = Conv(A\{0}) = so that 337, A\; = 1, and \; >0, Vj. Then
by orthonormality of the canonical basis (m,eq) = —> ;>0 Ajdi; = =30 A = —1 and
m € [\, as desired.

"D” Consider m € A, = mo= YU Nen oA < 1, A > 0, V). Clearly

(m,e0) = =1 = =3 " N\ =—-1 = m € Conv(e,...,e,) = Conv(A\{0}) = Fy.

Lastly, consider m = Z?:l Nej € Dy, Z;.lzl A < 1, A > 0 Vj Then
(myeg) =—=> 1" A\ >—-1 = mE¢€ H;r]’fl. This finishes the proof of case 2 and claim 1.

Finally, for any face Q < A,, we have the following equality o = Cone(ur |F facet containing Q).
Thus, for @ = Conv(A\S), Fi, i € {0,1,...,n} contains Q if and only if e; € S (or 0 € S). Hence, using
the claim 1, we obtain g = Cone(e; | e; € S or 0 € S). That is to say og = Cone(S) for S C E.

Moreover we have a bijection given by : ¢ : Conv(A\S) < Cone(S) which is induced by ¢ : A — E:
e; > e, for i € {1,...,n}; and 0 ~ eg. Note that ¢ is clearly a bijection. In fact $p(Conv(A\S)) =
Cone(p(S)).

Combining everything, we obtain {og |Q < A} = {Cone(S)|S C {eo,....en}} because og = ¢(Q).
This finishes the proof of part (a).

108



] A
ne (0 ¢)
% % Gﬂ- Sy
o A;L* N Z N
IO ’.MF‘ Mpfé N :X o' I ‘)
1 1
A= (enu(0 ¢, e, SIR

/

<

%

e,

3 q\: Cm\einpl,ﬂ@,ﬂ%\
Gaz (ove (»UFL( e M)
%3: ('hm( lel ,Jll:5 ,ij;\

RORIE LSS o 2 Lt
Rk T dda't really cras0 o &
eomes difiadk o 3 Neperenk cona

Qmnoniien 2 (the doawing twedld
be o fotad mem ).

Figure 20: Pictures of normal fans of the n-simplex for n=1,2,3

(ii) Consider k € N>q, and k4, C R™ whose underlying lattice is M = Z". Note that kA, is full
dimensional, and normal hence very ample for every such k. Suppose, kA, "M = {m,...,ms, }, then
the projective toric variety Xy, na is given by the projective closure of the image of the map ®:

T, 2 (C*)" = €% — P F= (ty, . tn) = [X™ (D), oo X™ (D).

We try to compute kA, NZ",
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m=(b,....;b,) EkA,NM = b € Z Vi€ {1,...,n}

and m € kA, = Conv(0,key,....,ke,) = m = Y. ja;.ke; (set eg = 0), and Y. ja; =1 <
m = >, be; where by,...,b, are the coefficients in the canonical basis with > " ; b; < k, using
b =a;.kVie{l,..,n} and by = ap.k € Z>

Hence

KDy V2" ={(b1, ... bn) € Z2 | > bi < k}
i=1

Therefore, this set can be rewritten as

n

{(bo, b1, ....b,) € Z?gl | Zbi =k}

=0

(to see the bijection you can take by =n — .., b; € Z>¢). The cardinality of the latter set is known

and equals (":k) =: s (number of ways to put n bars (space) among n+k bullets (sum of bullets

between 2 spaces gives the value of some b;).

Thus, XA, nar is the projective closure of
(@™ oo @] | T€ (C) [y = (b1, ba) €220 | 3 b1 <k} CP
i=1

where for m; = (by,...,b,) € Z" we have (£)™ =2 . ... tbn.

n

On another hand we have

ve(P™") = {[P1(Z) : .. : Po, (B)] | T = [w0 ¢ v 2] € P} C PoRE

where the P;(Xo,...,X,) € C[Xo,...,X,] are the s; := (”:k) monomials of total degree k. Such
polynomials are of the form P;(Xy, ..., X,) = X(l)’0 “ oot X2 where (bg, ..., b,) € Z" T and Y b = k.

Then, we prove that the two ways of seeing X, are equal or in other words we need to show

O((C)™) = v (P")

e Firstly we have the following commutative diagram:

]P)Skfl

Where @, v, have been defined previously, and v is the quotient map composed with the usual
injection.

Now consider some (t1,...,tn) € (C*)™, v o (tl,....tn) = vx([1 : ¢1 ¢ ... : £,]) but this is clearly
equal to ®(t1,...,t,) since each monomial P;(1,t1,...,t,) = lbotlil...tl;fb corresponds exactly to
X" (t1y ey tn) for my = (b1,...,by,) € Z™; > | b; < k . This shows the diagram commutes. And

in particular, it proves

((C*)") = vk o ((C)") € wi(P™),

we don’t have an equality here since v isn’t surjective.
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e Moreover we have that vy (P") C P+~ is closed since vy, is proper. The details of this are left to
the reader. This implies using the equality above that

O((C*)™) € wi(P™),

so we are left to prove v (P™) is in fact the Zariski closure.

e Also, since both P and (C*)™ are irreducible (cf. algebraic curves course). Their images under
continuous maps are also irreducible, and ®((C*)?) is also irreducible (being the closure of an
irreducible).

e Now, we argue on dimensions, you can verify that both ® and v are injective continuous maps.
Therefore n = dim((C*)" = dim(P") = dim(®((C*)™)) = dim(vx(P™)) = n, and since
®((C*)™) is an open in its closure dim(®((C*)?)) =n

e Finally the last argument is that ®((C*)") C v (P™) have the same dimension and if we we
supposed that the inclusion is strict it would give a contradiction with irreducibility.

= O((C*)") = v(P™)
This finishes the proof.

15.10 Solutions to Chapter 10

Solutions written by Joel Jeremias Hakavuori

Solution 10.1.

(i)

(i)

(iii)

The facet presentation of P is given by

{xiZ—l foralll1<i:<n

- Z?:l r; > —1.
The vertex corresponding to the origin of A, is shifted to (—1,...,—1), from which we see that we
require z; > —1, and the hyperplane connecting the vertices e; is given by — >, z; > —n, which
after shifting by (—1,...,—1) gives —> 1", z; > —1.

To show that P is smooth, observe that P and A, have the same normal fan, and as seen during
Chapter 10, A,, is smooth as the corresponding variety X, is P", which is smooth. Recall that X¢
is a smooth projective variety for a full dimensional lattice polytope @ < @ is a smooth polytope <
Y@ is a smooth fan. Hence we see that P is smooth.

Now that we have a facet presentation P = {m € Mg|(m,ur) > —ap, F facet of P}, we can use the
result stating that P° = Conv((é)ulr € Ng \ F facet of P), which shows that
P° = Conv(eg, e1,...,¢e,), where g = — > 1" €;.

With the facet presentation of P, the fact that P° = Conv((é)up € Ng | F facet of P), and that
(P°)° = P, we can read off the facet presentation of P° from the presentation of P as the convex hull
of the points (—1,...,—1),p1,...,pn, with p; having i** coordinate n and others —1. Thus P° has
facet presentation {m € Mg|(m,ur) > —ap, F facet of P} with all ap = 1 and the collection of up
consisting of the vector ug,(—1,...,—1) and up, = (—1,...,n,...,—1) with n as ¥ coordinate for
1=1,...n.

To show that P° is not smooth for n > 2, we again use the result stating that P is smooth if and
only if X5, is smooth. By exercise 9.3, the normal fan ¥ p. consists of the cones over the faces of
(P°)° = P. To show that P° is not smooth, it suffices to show that one of the affine pieces of X5, is
not smooth, i.e., that one of the cones of ¥ po is not smooth. Consider the cone corresponding to U,,

Spec(Cloy, N M]). This cone o, is the generated by the elements (n+1,1,...,1),...,(1,...,n+1).
Let a; be the element with n + 1 in the i** position. A cone is smooth if the minimal generators (the
ray generators of the edges) of 0 C N form part of a Z-basis of N. The minimal generators in this
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case are exactly the elements {ai,...,a,}. Observe that to generate the lattice points in oy NZ", we
require (at least) (1,...,1) € o) in addition to all {a;};-,, as (1,...,1) is in o), NZ". If an integer
linear combination >, k;a; of the elements {a1,...,a,} is on the diagonal, then k1 = ko = ... = k,.
As 3" s kai = k(>0 a;) = k(n+1)(1,...,1) # (1,...,1) for any nonzero integer k when n > 2, we
see that (1,...,1) is not generated as a Z-linear combination of {a,...,a,}. Hence we require at least
n + 1 elements to form a minimal generating set of ¢ , which is never a subset of a basis of Z". Thus
P° is not smooth, as X po has a cone which is not smooth.

Solution 10.2.

(i)

In the context of this course R is a finitely generated k-algebra R = k[z1,...,x,]/I, where k is a
field and 7 is an ideal in k[xi,...,x,]. We want to show that R is Noetherian, i.e., ideals I C R
are finitely generated. Observe that quotients of Noetherian rings are Noetherian: ideals of R/I
are the ideals of R containing I, so every ascending chain of ideals in R/I will stabilize, which is
an equivalent condition for a ring to be Noetherian. Hence it suffices to show that k[zq,...,x,] is
Noetherian. Furthermore, if we show that k[z] is Noetherian, then the result follows by induction, as
Elx1,...,2n] = k[z1,...,2n—1][zs]. A field k is obviously Noetherian, as (0) is the only proper ideal,
and the fact that k[x] is Noetherian follows from Hilberts basis theorem. Thus we get that every ideal
I C R is finitely generated.

Let W C V be a subvariety defined by the ideal I C R. By part (a), I = (f1,..., fr) for some f; € R,
and hence VAW =V \ (V({f1,..., fr))) = Ul_1D(f;), where D(f;) are the principal opens of each f;
in Spec(R). As D(f;) ~ Vy,, we get that V \ W ~ Ul_, Vy,.

Suppose we have an open cover U;c;U; =V of V, with U; = V' \ X, for some X; = V(I;). Then
V =Us;(V\Xj;) = (NsV(I;))°, and hence we have that 1 € 3, I;. The element 1 is generated by
finitely many elements chosen from the collection {I;};c s, and choosing the finitely many open sets
corresponding to these elements, we see that we get a finite subcover of V.

Solution 10.3.

(i)

(i)

(iii)

We need to show that ~ is reflexive, symmetric and transitive. Reflexivity is clear, as f|y ~ f|y for
all U C X, and similarly if f ~ g then g ~ f. To show transitivity, take f ~ g and g ~ h, so f|ly = glu
and gly = h|y for some U,V C X, and hence f|yny = hlunv. As X is irreducible, all open subsets
are dense, so U NV is a nonempty open subset of X. Thus f ~ h.

Let (U, f) be a representative of an equivalence class, i.e. (U, f) ~ (V] g) if there exists a nonempty open
W where f |w= g |w. As X is irreducible, any nonempty opens have nonempty intersection, and we
can turn the set of equivalence classes of part (a) into a ring by defining (U, )+ (V,g) = (UNV, f +g)
and similarly for multiplication. If f # 0 is a rational function which is regular on some nonempty
open U C X, then % is regular on D(f) # &, so (U, f) has a multiplicative inverse, and we see that
the set of equivalence classes form a field.

A rational function f € C(X) is a regular function f : U — C defined on some nonempty Zariski open
subset U C X, with f and g equivalent if they agree on some nonempty open subset of X. Now, let
U C X be a nonempty open subset of X. With this definition it clear that C(U) C C(X), as any
f € C(U) is regular on some nonempty V' C U C X. Conversely, if f € C(X), f is regular on some
nonempty open V' C X. As U is dense in X, U NV is a nonempty open subset of U, and f is regular
onUNV,so feC,).

Solution 10.4.

(i)

On W;_1 we have the relations R := {z;_1y; — zj_1y;} for 1 <i < j <n,soy; = % Hence, we
may simplify the coordinate ring of the affine open W;_; to get
Zo x X0 x
Spec(C| ooy~ Y1,...,Yn] / R) = Spec(C| e —— i),
Ti-1 Ti-1 Ti—1 Ti-1
as y; = fj': -y; for j # i in the quotient.
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(i)

We want to give the gluing data to identify W;_; \ V(z;_1) and W;_; \ V(x;_1). By the above, we
have the coordinate rings C[-%¢ ..,;f"l ,¥i]ei1 and C[-2e ...7w’?”l,yi]zi;1 for Wi—1 \ V(z;-1)
v zj_1 o Tj—1

Ti—1’" Ti_1’

and W;_1 \ V(z;_1) respectively. As in the case when gluing the affine pieces for projective space, the
gluing map @;j : Wi_1 \V(.Z’j_l) — Wj_l \V(xl_l) will send

Tk Tk Tj—1 .
ij — J(k#Fi-1),
Pij Ti1 («ijl)/(fifl) ( e )
and . .
( ]—1)_1 — 7/—17
Ti—1 Tj—1

which are well defined on the intersection. Due to the relations x;_1y; — x;-1y;, we have y; = ij: Y

Ti—1
Tj—1

and hence map ¢;; : y; y;, which is again well defined on the intersection. Observe that

Yij = gpj_il and ¢r; = @r; © @;j; wherever all three maps are defined.

15.11 Solutions to Chapter 11
Solutions written by Matthias Georges A Schuller
Solution 11.1.

(i)

(iii)

Since U, and Ug are open and both contain p, there is an open W C U, N Ug containing p. The local
ring is a local property thus Oy, , = Ow,, and similarly Oy, , = Ow,. This yields Oy, , = Oy, p-
The Zariski tangent space is a property defined from the local ring and isn’t changed by isomorphisms,
so we deduce the isomorphism Ty, , = Ty, p.

Suppose Uy, Ug are two affine open sets containing p. As previously there is an open W C U, NUg
containing p. Lets show dim, U, = dim, Ug.

We do this by finding for each irreducible component of U, containing p an irreducible component
of W containing p of the same dimension, and similarly the other way around. Then doing the same
between Ug and W, this will show dim, U, = dim, W = dim,, Ug.

Let p € A C U, be an irreducible component, then AN is an irreducible component of W containing
p. Furthermore A and A N W have the same dimension. To see this, let A = Spec(R) where R is an
integral domain. Since A N W is a nonempty open subset of A, there is a nonzero f € R such that
D(f) c ANW where D(f) ={q € A| f(q) # 0}. Thus we have dim D(f) < dim(AN W) < dim A.
Recall that for irreducible affine varieties the dimension is equal to the dimension of the coordinate
ring. Note that D(f) = SpecRy. The integral C-algebras R and Ry have the same fraction field and
hence the same transcendence degree over C. This implies dim D(f) = dim A, which gives the equality
dim(ANW) = dim A.

On the other hand, let p € B C W be an irreducible component. Then B C U, is an irreducible
component containing p and since B = BN W the above implies dim B = dim B.

This proves the announced result and shows that the local dimension dim, X is well defined.

Combining the two previous points shows that smoothness is well-defined for abstract varieties.

Solution 11.2.

(i)

Let V={y €Y | f(y) = g(y)} and
Fxg: {Y S X xX
y = (f(y),9())
Also consider the diagonal map A : X — X x X. Note that
V= (fxg) (fxg)(Y)NAX)).

Since X is separated, A(X) is closed in X x X, hence (f x ¢)(Y)NA(X) is closed in (f x ¢)(Y). The
map f X g:Y — (f x g)(Y) is a morphism so in particular Zariski continuous. Then V being the
inverse image of a closed set is closed itself in Y.
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(ii) Define
JUNV = (UxV)NA(X)
e~ ()

and

UxV)NAX)—->UNV
(p1,p2) = p1.

It is easy to see that f and ¢ are well defined and that they are polynomial maps when restricted
between open subsets of affine open sets, thus f and g are morphisms of varieties. Furthermore, the
two maps are inverses of each other, hence (U x V)NA(X)=UNV.

Note that U and V being affine implies that U x V is affine. Also A(X) is closed in X x X so
(U xV)NA(X) is closed in U x V. Being closed in an affine variety implies being affine, therefore
(U x V)N A(X) is affine, and thus the same is true for the isomorphic U NV.

(iii) For a counterexample of point (a), take X to be the line with two origins obtained by gluing U, V', two
copies of C. Then the identity morphisms f : C — U and g : C — V give morphisms f,g : C — X.
The set {y € C| f(y) = g(y)} is C*, which is not closed in C.

For a counterexample of point (b), imagine a construction of a plane with two origins. Take U,V two
copies of C? and glue them along their Zariski open subset C?\0 via the identity map, to form the
abstract variety X. Then U and V are affine open subsets of X, however U NV = C2\0 is not affine.

Solution 11.3. Let o9 = Cone(0), o3 = Cone(e;) and o5 = Cone(—ey). Let’s compute Uy, for i = 0,1, 2.
First compute the dual cones : ¢y = Cone(+e;, +es), 0y = Cone(ey, £ez) and oy = Cone(—eq, tea).
Then we get
Us, = Spec(Clz™, y*1)
= Spec(Clz™'] ® Cly™])
= Spec(C[z™]) x Spec(Cly*']),

Us, = Spec(Clz, y*'])
= Spec(C[z] ® Cly™1))
= Spec(Clz]) x Spec(C[y*"]),

Us, = Spec((C[m_l,yil])
= Spec(Clz™ '] ® Cly™))
— Spec(Cle™]) x Spec(Cly*']).

Uy, and U,, glue along U,,. All the U,, have the Spec(C[y*']) component in common, hence we have
X5 2 P x Spec(C[y*!]) = P x C*

where P is the variety obtained by gluing Spec(C[z]) and Spec(C[z~]) along Spec(C[z*!]) via the maps
Clz] = C[z*!] and C[z~'] < C[z*']. This glues to P!, therefore X5 = P x C* = P! x C*.

Solution 11.4. Let’s begin by showing that for o1 € X1, 09 € X5 we have (o1 X 02)Y =0y X 7y .
The point (m,m’) € (My)r x (M2)g is in (o1 X 02)" if and only if

0 < {((m,m"), (u,u')) = (m,u) + (m’,u)
for all (u,u’) € o1 X 02.

This implies directly the inclusion oy x oy C (01 X 02)".
For the other inclusion, take (m,m’) € (o1 X 02)¥. For all u € o1, (u,0) € 01 X g2 S0 we must have
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0 < ((m,m'), (u,0)) = (m,u), which implies m € oy'. Similarly we find m’ € 3. This proves the equality.
Then we have

So‘lxg.z = (0'1 X 0'2)\/ n (M1 X MQ) = (O’Y ﬁMl) X (0'5/ ﬂMQ) = So'l X SGQ
and
Usyxoy = Spec((C[Sgl on])
= SpeC((C[Sgl X 302])
= Spec((C[Sal] ® (C[S(Tz])
= Spec(Cl[S,]) x Spec(C[S,,])
=Uy, X Us,,.
To conclude that Xy, xx, & X5, X Xy, it remains to study how those affine pieces glue together. Take

01 X 09, 01 X 0 € X1 X Xg. The pieces Uy, xo, and Uy xoy glue together along U, where 7 = (o1 X 09) N
(o] x 04) = (o1 Noy) x (o2 Nah) =: 71 X To. The gluing maps are given by

(C[S01><U2] = C[Sﬂ'l] ® C[Sﬂz] — (C[Sﬂ] ® C[ST2] = (C[STl ><‘F2]

and similar for C[S,/ ], which is exactly what we would expect for Xs, X Xy, , therefore we have Xy, x5, =
Xg X ng.

1

15.12 Solutions to Chapter 12

Solutions written by Julia Michéle Marie Morin
Solution 12.1. (i) Let u = (a,b) € Z? and \“(t) : C* — Ty, t = [1 : t* : t*] be a one-parameter
subgroup. The book already deals with the limits A%(¢) as ¢ — 0 when a,b > 0 and a = b < 0.
] =[1:1:0]
e when a > 0,b =0 we have limy_,o [1:¢*: "] =[1:0:1].
tb] = lim;_g [t‘b sgeb 1] =[0:0:1] because —b >0

e when a =0,b > 0 we have limy_ [1:¢%:

o when a > b,b < 0 we have limy_,q [1:¢*:

and a —b > 0.
e when a < 0,b > a we have lim;_,q [1 A tb] = lim;_,o [t*“ 01 tb*“] =[0:1:0] because —a >0
andb—a >0

e when a = b =0 we have lim;_,g (l,t“,tb) =[1:1:1]

(ii) By the orbit-cone correspondence we know that there are 7 (C*)2-orbits in Xy, ~ P2, each corresponding
to a cone in the fan X, represented in the picture below :
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The correspondence associates to each cone o € ¥ the orbit O(c) = Ty - Vo = T - limy_,0 A (¢) when
u € Relint(c) by Proposition 3.2.2 of the book.

Recall that the action of (C*)? on P? is given by
(C*)2 % ]P>2

((trt2); Loz y]) = [1: taw = tay]
because the description of Xy ~ P? arising from the polytope A, gives the inclusion
((C*)z Q ]P)Q, (tl,tg) — [1 Tty tz}

Therefore, let us compute :

e Let us take u = (1,1) € Relint(og), then O(ag) = {(t1,t2) - limy_o[1: ¢ : 8] | (t1,t2) € (C*)?} =
[1:0:0]

o Let us take u = (—1,0) € Relint(oy1), then O(oy) = {(t1,t2) - limyyo [1:¢71: 1] | (t1,t2) €
(C*)2} =A{(t1,t2) -limeo [t : 1 : 8] | (t1,t2) € (C*)*} =[0:1:0]

o Let us take u = (1,—1) € Relint(oz), then O(o2) = {(t1,t2) - limyo [1:t:¢71] | (t1,62) €
(C*)2} = {(t1, t2) - limyyo [t 2 : 1] | (t1,82) € (C*)*} =[0:0:1]

e Let us take u = (1,0) € Relint(o3), then O(o3) = {(t1,t2) - limy o [1:¢: 1] | (t1,22) € (C*)?} =
{[1:0:t2] [ta #0} ={[x1:0: 23] | x1,23 # 0}

e Let us take u = (0,1) € Relint(oy), then O(c4) = {(t1,t2) - limy_o[1: 1:t] | (t1,t2) € (C*)?} =
{[1:t1:0]|t1 #0} = {[r1:22:0]| x1,22 # 0}

e Let us take u = (—1,—1) € Relint(os), then O(os) = {(t1,t2) - limy_o [L: t71 2 t71] | (t1,82) €
(C*)2} ={(t1,t2) -limeso [t : 1 1] | (t1,82) € (C*)2} = {[0: t1 : to] | t1, 2 # O}

e Let us take u = (0,0) € Relint(og), then O(o6) = {(t1,t2) - limy_o [1: 1: 1] | (t1,t2) € (C*)?} =
{[z1: @2 : z3] | 1, 22,23 # 0}

(iii) For our toric variety Xa, ~ P? coming from the polytope Ay = Conv(mg, m1, ms) where mg = (0,0),

my = (1,0), ma = (0,1) € R?, let us denote the homogeneous coordinates of P? as [z : 21 : 22]. Then

we have:
XA, NU; = Ugmi

i.e Xa, NU; is the affine toric variety of the cone o,,, in the normal fan of A,.

For simplicity we denote o,,, as ;. Let us describe the cases of one cone of each dimension, the other
cases as similar :

e The limit point corresponding to the cone o is [1 : 0 : 0]. The distinguished point vy, € Uy, is
given by the semi-group homomorphism:

Yo : S, = C

1 ifmeoinNM,
m )
0 otherwise.

We know this means that ~,, is the point (yo(m1),v0(m2)) = (0,0) € (C*)? where m; = (1,0)
and mg = (0,1) are the generators of the semi-group S,,. The isomorphism (C*)? = U, tells us
that this is indeed the point [1:0: 0] € U,, C P2.

e The limit point corresponding to the cone o3 is [1 : 0 : 1]. The distinguished point v,, € Uy, =
Xa, NUyNUs (see Proposition 0.13, week 5) is given by the semi-group homomorphism:

732503%((:

1 ifmeofnM,
m )
0 otherwise.
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By Proposition 1.1 of the notes of week 5, we know this means that ~,, is the point y3(m;) =
(0) € C* where m; = (1,0) is the generator of the semi-group S,;. The isomorphism C* 2 UyNU;
tells us that this is indeed the point [1:0: 1] € U,, C P2

e The limit point corresponding to the cone og is [1 : 1 : 1]. The distinguished point vy, € Uy, =
Xa, NUgNU; NU; can only be the point [1:1: 1] because Uy NU; NUy = [1:1: 1] € P2.

Solution 12.2. Suppose that f: C* — (C*)™ ~ T is induced by the map Z — Z™, 1 — u = (e1, ..., )
by tensoring with — ®7 C*, i.e f is given by

s (£°1, ., t0m)

(i) = Suppose that lim;_o(t%, ..., t°) exists in U,. From proposition 3.2.2 of the book this means that
u € 0. Now let m € S, then

limgox™ (f(t)) = li'”%—mt(m’u>
But m € ¢¥ N M, which means (m,v) > 0 Vv € o by definition of ¢V. Therefore (m,u) > 0 and

limy_ot{™% exists in C.

< Suppose that lim:—ox™(f(t)) exists in C for all m € S,. This implies that (m,u) > 0 for all
m € S,. Let A = {my,...,ms} be such that S, = NA. We have (m;,u) > 0 Vi € {1,...,s}.
Therefore w € Hf, N...N H}, = o and by proposition 3.2.2 of the book again lim,_of(t) € Us.

(ii) Suppose that lim_of(t) = limg_o(t°, ..., t™) exists in U,. Then it corresponds to the semi-group
homomorphism :

v:8, = C
m = X" (lime—o f(t))

Since the limit exists and x™ is a continuous function Vm, we have
X" (Lo (t°, ..y t9™) = X (limy o (E°1), ..., im0 (E°™)))
= limg_ox™ (..., %) = limox™ (f(1))
and we are done.

Solution 12.3. (i) Let o be a cone in the fan ¥, o is strongly convex rational polyhedral by definition of
a fan. Therefore, oV is rational too, let {mq,...,ms} C M be the finite set of its minimal generators.
Therefore S, = N with & = {mq,...,ms}.

Let p be the point associated to the given semi-group homomorphism v : S, — C. We know that
v(m) = x™(p) YVm € S,. Now let m € S,, then there exists ay, ..., as in N such that m = aym; + ... +
asms.

’y(m) — Xm<p) — Xa1m1+...+asm5 (p> 7& 0
S X(p) X (p) #0
S M@)o (X ()" #0

Suppose that (x™(p)) # 0 for all i. Then v(m) # 0Vm € S, and the set {m € S, | y(m) # 0} = 7NM

forr=0V.

Now suppose that there exists a non-empty indice set I C {1,...,s} such that (x"™i(p)) = 0 Vi € I.
Then
)™ - (X () A0
Sa; =0 Viel
Let us denote J = {j1,...,5n} = {1,...,8} \ I. Then the set {m € S, | y(m) #0} ={m € S, | m =
\%

> a;m; , for some a; € N, j € J} =7 N M where 7 = Cone(m;,,...,m;, ) < Cone(ms,...,ms) =0".
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(ii) Let T = (C*)® act on Xy, and let 7 € ¥. O(7) is invariant under the action of Ty by definition. Now
let p' = lim;—,0 A“(t) - p € O(7), for p € O(7) and a one-parameter subgroup A\* with u € Z*, u # 0.
Then let us take s # 1 € T such that the action of s on p’ is given by :

. i u . — 1 u . — u . — |1 u . .
s tlgr(l))\ t)-p sth_r}%)\ t)-p gl_r)r(l))\ (t)s-p th_r)r(l))\ t)-s-p

which is in O(7) since s -p € O(7)

(iii) Parts c¢) and d) of the Orbit-Cone correspondence theorem (Theorem 3.2.6 in the book) imply that

oM NU, = U O(0)

o is a face of ¢/ containing 7T

o~ U {y:8, = C|y(m)#0&meotNM}

TCo<0o’

First, notice that if 7 ¢ ¢’ then O(7) N Uy = & so let us assume that 7 C o’.

We claim that
U {V:Sg—>(C|'y(m)7é0<:>m€aLﬁM}

T7Co<o’

~{%: 8, N7+ = C |4 semi-group homomorphism }

where it is easy to verify that S,» N 71 is an affine semi-group.

First let v : S, — C be a semi-group homomorphism such that y(m) # 0 < m € ot N M with
7 C 0 < ¢'. Then we define
7:8.ntt = C

: L
mH{v(m) ifmeo-NS,,

0 otherwise.

which is well defined because o+ C 7+ and S, C S,. It is a semi-group homomorphism because v is.

Now let 7 : S,» N7+ — C be a semi-group homomorphism. Then ¢’ is a face of itself containing 7 by
assumption. We define

v Sy — C
~ . /L
s F(m) ifmed-nNM,
0 otherwise.

But this set corresponds exactly to the affine toric variety Spec(C[S, N7+]) = Spec(C[(c")V N M N71])
which is the variety of the ideal generated by the x™ with m € 7+ N (¢’)" N M.

Solution 12.4. (i) From Theorem 3.1.7 in the book, we know that every point p € X has a Ty-invariant
affine open neighboorhood, let call it U,. Then Vp € X, U, is normal (because Ox,, ~ Oy, , and X is
normal) and irreducible, as a non-empty open in an irreducible set. Therefore each U, is a normal affine
toric variety and from Theorem 1.3.5 of the book, there exists a strongly convex rational polyhedral
cone o, such that U, = Spec(C[S,]) = Us,.

Therefore, (Us,)pex is an open cover of X with affine toric varieties and by quasi-compactness we can
find a finite number of points {p1, ..., p,} such that X = |J_, U; where U; := Us,,-

Moreover, since U; and U; are affine open subsets of the separated variety X, their intersection is also
affine.
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(ii) Let Uy, = U; Vi, then U; N U; is Ty-invariant since both U; and Uj; are, it is non-empty open in the
irreducible U; so it is irreducible. Moreover, it is normal since Oy,nu, » = Ou,,p for any p € U; N U;
and U; is normal. From point 1, we know that it is affine. Therefore, U; N U; is an affine toric variety
corresponding to a cone 7. Let us show that U; NU; = Uy;no,-

Using question 3. of the same exercise, we have that o; N o; is a face of both ¢; and o;. By exercise
3.2.9 of the book, we have that Uy,~,; is an affine open subset of both U,, and U,,. In particular,
Uoiﬂaj g Uoi n Uoj-

Moreover, both Us;ns; and Uy, N U,; are open and irreducible in U;, so they are both of maximal
dimension dim U;. As an affine toric variety, Us,n,; has a unique T-invariant subvariety of maximal
dimension (which is Ugmgj). It has to coincide with U,, NU,, since it is Ty-invariant and of maximal
dimension.

(iii) Let us show WLOG that o; N o is a face of 0;. We have that 0; N o; C 0; and Uy, is open in U, .
From exercise 3.2.9 of the book, it follows that o; N o; is a face of o;.

(iv) The collection of cones o; and their faces verifies the definition of a fan. Indeed, all cones are strongly
convex rational polyhedral. Moreover, point 3. of the exercise exactly corresponds to the third condition
in the definition of a fan (see Definition 3.1.2 in the book). Point 2. of the exercise corresponds to the
gluing condition for Xy, : X is constructed exactly as Xy from all its cones and faces so that X ~ Xy.

15.13 Solutions to Chapter 13
Solutions written by Julie Estelle Marie Bannwart

Solution 13.1. If ¥ is a fan in Vg, fix an integer 0 < ¢ <rank N =:n. For all 1 < p <n — 1, we want to
show that the composition

cr-L(z, A1) 255 or (s, A7) 2 or (3, A)

is the zero map. It suffices to show this in these degrees, because if CP(X,A9) is non zero then
0<¢g<p<n.

In particular, it suffices to show that the compositions:

AM(r) — @ AME)TES D AM(o') —» ATM(o)
T'€X(n—(p—1)) o’eX(n—(p+1))

are the zero maps (where the first map is the inclusion of a summand, for any fixed 7 € £(n — (p — 1)), and
the last map is the projection on one of the summands, for any fixed o € ¥(n — (p + 1))).

From the definition of the differentials summand by summand, this composition is given by:

q q — q

o' €X(n—p) o' €X(n—p)
oo’ <1 oo’ <XT

where, 14, : AYM (1) — AM (o) denotes the map induced by the inclusion M(7) =7+ N M C ot NM =
M (o) and the coeflicients ¢, , keep track of the orientation: for a chosen orientation on every cone in X,
¢r o has value 1 if the orientation induced by our chosen orientation of 7 on ¢’ agrees with the one we chose
for ¢/, and —1 if it induces the other orientation (and 0 if ¢’ is not a face of 7). So we only have to show
that the sum on the right hand side of the above equation vanishes. Note that this sum has exactly two
terms. Indeed:

Claim: A face o of codimension 2 in a strongly convex polyhedral cone 7 is contained in exactly two facets
of 7.
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Proof of the claim: First of all, o is contained in at least two facets, because any face of such a cone was
the intersection of the facets containing this face. In particular, if ¢ was contained in only one facet, then
it would be itself a facet, which contradicts the fact that o has codimension 2 in 7. To show that ¢ cannot
be contained in three distinct facets or more, recall that there is an inclusion-reversing bijection between
the faces of 7 and the faces of its dual cone 7V, that exchanges dimension and codimension. Assume by
contradiction ¢ is contained in three facets of 7 or more. Then, in the dual cone 7V, the dual face 7* is a
vertex, and ¢* is some face of dimension 2 containing 7*. It has at least three edges, all containing 7*, one
for each facet of 7 that contains ¢. Embedding the two dimensional cone ¢* in the plane, it is now clear
that it cannot have three edges all containing its vertex 7%, because such cones in the plane either have one
or two edges. This is a contradiction, and finishes the proof of our claim.

Let 01 and o9 be the two facets of 7 that contain ¢. Pick an R-basis B C ¢ of span ¢, positively oriented.
Let u; € 0; \ o for i = 1,2. In particular, BU {u;} C o; is an R-basis of spano; and since o1 # 02, we must
have ug ¢ o1 and therefore BU {uy,us} C o is an R-basis of spano.

e Assume first that ¢,, » = 1. This means that (B, ;) is positively oriented with respect to the orientation
on o1. Hence ¢, = sgn(B,uy,us) (the orientation of this basis). If on the contrary ¢,, » = —1, then
—Coy,r = sgn(B, uy,uz) (orientation of the basis (B,u1,uz2)). Hence coy 0o, r = sgn(B,ui,uz) in both
cases.

e Proceeding similarly with oo we obtain ¢y, ¢Cs,,» = sgn(B, us, u1).

e Therefore the sum we have to compute rewrites sgn(B, u1, ug) + sgn(B, uz, u;) = 0, because swapping two
vectors in a basis reverses the orientation.

This concludes the proof; (C*(X, A),d) is indeed a chain complex.

Solution 13.2. To fix notation, here is a representation of the fan of P? described in the exercise, in Ng = R?
for N = 72,

%
i
&

&

%2

(i) On the cones of dimension 2 in the fan, we choose the orientation induced by the standard orientation
on R2, where (e1, e2) is positively oriented. On the cones of dimension 1 we choose the vectors e, es
and —e; — es respectively as positively oriented basis. Here the rank of N is 2. Hence we only have to
compute C?(X,A%) when 0 < g <p < 2.

) By definition, for any 0 < p < 2, CP(%,A%) = D-ero-p) AOM (7). Since for A°A = Z for

any abelian group A, we obtain:
p=20 p=1 p=2

Loy © Ly, ® Ly — Loy @ Lory @ Ly —2 Ly

—_— 1, -1, 1
—_— 1, — 1

—_— 1, -1,
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(if)

The facets of oy are 7 and 75. We have ¢4, -, =1 and ¢,,,-, = —1: indeed the positively oriented
basis (e1) C 71 of spanT; can be completed by es € o \ 71 into the basis (e1,es) C o of span oy,
which is positively oriented; whereas the positive basis (e2) of 7o can be completed by e; € op \ 72
into the negatively oriented basis (es,e1) of spanog. The other orientation coefficients are
computed in the same way. For ¢!, the orientation induced on {0} necessarily agrees with the
chosen one, the only degenerate one that exists.

. For all 0 < i < 2, ot = {0}, hence A'M(o;) = 0. We also have 75" N M = Z(e; — ea),
- N M = Zea, 75 N M = Z(—eq). Finally, A'M({0}) = Ze; ® Zea. We obtain:
p=0 p=1 p=2
5

0o Z(er —e2) © Z(ea) ® Z(—eq) SN Zey @ Zey

1-(e1—e)) ——————> 1-e1®(—1) e

1-e9 0-e1P1-e9
1 (1)) ————— (1) e1®0-e2

Again all orientation coefficients appearing in the definition of §' are equal to 1, and the map is
induced by the inclusions ;- C {0}+.

. We only have to consider p = 2. We have
A2M({0}) = A2(Z61 D Zeg) = Z(€1 A 62)

and we obtain:

0 2 02 Z(e1 Nes)

By Theorem C.2.5 [CLS], a filtration of a topological space provides us with a spectral sequence
converging to the compactly supported cohomology of the space. Applying this to the filtration for X,
by Proposition 12.3.5 of [CLS], we have CP(X, A7) = EV? = HPT9(X;Z), and EY? = HP(C* (%, A9)).
If we show that EX'? = 0 for all p # ¢, we can conclude by exercise 4.a) below that:

Vk € N,H?*(Xy,Z) = H*(P?,Z) = ExF

and the other cohomology groups are zero (we can consider the usual cohomology instead of the
compactly supported ones, because we know that the projective plane P? is compact; one way to
see this is to invoke a theorem saying that if the fan X is complete, which is the case here because
ooUo Uoy = R?| then the variety Xy is compact). Computing the sheet E, of this spectral sequence
yields:

3 o 0 0 o
2 o 0 zZ o
1 oz o0 o
ol 'z o o o0

o 1 2 3
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For ¢ = 2, this is easy to see, since only one group in the complex C*(Xx, A?) does not vanish.

For ¢ = 1, we have Ey' = H'(C*(Z,A")) = ker(0') = Z because this kernel is free abelian as a
subgroup of a free abelian group, and has rank 1 by the null-rank theorem for abelian groups, because
the domain has rank 3 and the image has rank 2 (indeed &' is surjective because its image contains
e1; and ey (image of (—1) - (—ep) and 1 - ey respectively)). Because of this surjectivity we also get
Ey' = H2(C*(%,AY)) = coker 6! = 0.

For ¢ = 0, 8" is clearly surjective and hence as before E® = 0. We also note that ker§' = Im §°
hence EZI’O = 0. Finally, ker(6°) is a free abelian group of rank 1 because the domain has rank 3
and the image of the map has rank 2; indeed 1,, — 1,, and 1., — 1., are Z-linearly independent, and
Ly =1y = (15, — 15,) — (1, — 1,,). Hence E;}’O =Y

So we conclude as explained above that

HE (P2, 7) = {Z if k € {0,2,4}

0  otherwise

Solution 13.3. By Theorem 3.3.4 of [CLS], W|TX is given by the map p; @ C* : N @7z C* = N ®z C*,
=

up to the isomorphism T’x,, = N @z C*. Choose an isomorphism N = Z" and let ey, ..., e, be a Z-basis of

N corresponding to the canonical basis in Z". Then, any (t1,...,t,) € Txy = N ®z C*, identified via this

isomorphism with Y7, e; ® ¢;, is mapped by ¢y to

n n
=1 i=1 £ times
n
= Z e @t ( since we consider C* with multiplicative structure)
=1
which corresponds via the same isomorphism to (t£,...,t¢) € Tx,., as desired.

To consider the map ¢} induced in cohomology by ¢y, we first have to make sure that ¢, preserves O(7).
By Theorem 3.3.4, ¢, is a toric map. Hence it is equivariant with respect to the action of the torus, so the
image of any orbit is contained in another orbit. In particular, to check that ¢,(O(7)) C O(r), it suffices to
show that there exists € O(7) with ¢y(z) € O(7). Let © = v, be the distinguished point for 7. Then,
pick any u € Rellnt(7) (the relative interior is empty if and only if 7 is the zero cone. But then
O(1) = O({0}) is the torus of Xy, so we already know it is preserved by any toric morphism). By
Proposition 3.2.2 in the book, we have lim;,oA*(t) = ;. Therefore, by continuity,
we(vr) = we(limy_yo A%(t) = limy_yo we(A*(¢)). Because A“(t) belongs to the torus of Xy for any t € C*, by
the first part o, just raises it to the /-th power, so that y(v,) = lims_ @e(A%(t)) = lims_o A°%(t) = s,
because £ - u € Rellnt(7) since £ > 0. Hence ¢, preserves O(T).

Let 0 < p < n and consider 7 € ¥(n —p). Then, we have in cohomology the following commutative diagram:

*

HY(O(7),Q) L HI(O(71),Q)

r I

HI(Tn(r),Q) 2t HY(Ty(r), Q)

L L

(AM()@ = ATM(7) (AM ()@ = AsM(7)

()™
with ¢y the map induced on Ty (-, by the map of lattices @y : N(7) — N(7) induced by @7 (since N(7) is a

quotient of N). The vertical isomorphisms on the second row come from the fact that i (T, Q) = A M(T)
as algebras, and the exponent (¢) denotes the degree ¢ part. The vertical map f* is the map induced in
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cohomology by the isomorphism f : T,y = O(7). For this diagram to commute we have to check that
weo f = fowe. The situation is the following:

O(r) ®s O(1)
0 T
| |

t—=t-yr t—=ty,

TN(T) = N/<7-QN> ®yz C* —W T

Tﬂ@@* 'n'@)(f:”?t

‘Pz@c

The top square commutes if and only if the precomposition of the two different possible maps by the
surjective map m ® C* are equal. This holds because the lower square commutes (mutliplication by ¢ on the
lattice commutes with taking the quotient) and the outer rectangle too (the map ¢, obtained from
Theorem 3.3.4 is toric and hence equivariant under the action of the torus, and we have seen ;(7y,) = v7).

The map (¢-)V) appearing on the previous diagram is dual to the multiplication by £ on N(7), hence it is
also multiplication by £ on M (7). We are taking its ¢-th exterior power, hence it multiplies each of the ¢
terms in a form by ¢, by multilinearity we obtain that the map ((¢-))A" is multiplication by ¢¢. Hence also
@y on the top of the diagram is multiplication by £9.

Solution 13.4.
(i) Denote the filtrations with respect to which we have convergence by

0=F1gk Cc FFHY C ... C F'H* C FOH* = H* for all k € N.

Since the E5 sheet has only non-zero modules on the diagonal, the 0-th homology of the complexes it
defines consists exactly of these modules on the diagonal, and 0 elsewhere. In particular the sequence

degenerates at sheet Fy and EP¢ = FP? FpHp+q/FP+1HP+q for all p,q € Z.

Fix k € N. Then, for all j < 2k + 1, j # k, it holds that
Fszk/FjHHQk _ ngkfj _ E;’,2k7j -0
since j # 2k — j. In particular,
FRhlpp2k _ p2kpr2k . phlp2k _ g
2k — pOp2k — plpp2k — . pkp2k — Fksz/F’““HQk _ Eﬁok _ Eg,k'
And for all j < 2k + 2, we have
FjH2k+1/Fj+1H2k+1 _ E&2k+17j _ E%',Qk—&-l—j -0

since 2k + 1 — j # j because 2k + 1 # 2j for parity reasons. Hence all groups in the filtration are equal
to F2k+2[2k+1 — 0, and H?**+1 = 0.

(ii) By the way we defined the complexes C*(3, A®), the modules EV? in the first sheet F; are all of finite
rank and vanish outside of the square 0 < p,q < n. In particular, the sum introduced in the exercise
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is finite. For all r > 1, we compute, using the analog of the null-rank for abelian groups:

X(Eps1) = Y (~1)"FIrank B2y
P,qEZ
= Z (—=1)PFarank HO(Eptema—s(r=1) (by definition)

P,qEL
> (—1)P*rank (ker(Ef?"’ — Bprrar) / Im(EZ 9707 E,’Z’q))
P,qEL
= Y (~1)P™(rank (ker(EP? — EPT797"1)) — rank (Im(EP "9~ ("=1) — EPa)))

P,qEZL
= Y (~1)P"(rank (E??) — rank (Im(EP9 — EPTa-rH)

P,qEZ

— rank (Im(EP~9~ (=D _ pray))

=X(E:) + Y (=1)P" " rank (Im(EPY — EPFma=rtl))

P,9EL
— Z (—1)p/+r+q/+T_1rank (Im(Ef/’q/ — Ef/+r=q/—r+1))
p,q' €L
( by setting p’ =p—rand ¢ =q— (r—1))
= x(Er) (because (—1)P tr+ad+r=1 — (_1)p'+d'+1))

(iii) Since the spectral sequence degenerates at Eo (Proposition 12.3.10 [CLS]), it holds that:
X(Es) = Y (1P rank BR0 = ) (=1)P*rank B} = x(E») = x(E1)
P,qEZ P,qEZ

by the previous question.

Hence, since BV = HPT(Xy,, 7Z) =: HP*4, we have:

2n

X(Xz) =Y (~1)*rank H} (X5, 7Z)
k=0

= Z(—l)k Zrank (Fij/Fj+1Hk)

k=0 =0

= Z (—1)?Irank (E%9) (setting g = k — j)
0<q,j<2n

= x(Ew) (E2Y=0whenp#gqgorp>norq>n)
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In particular,

N(Xs) = x(Br) = 3 (—1)PHrank (O (5, A7)

P,qEZL

= > (M) )

0<g<p<n

ng(l)ﬁE(n ) zpjouw@

q=

[
[]= 1

(=15 (n = p)|6p=0(p)

=
I

—~ o

by

n)|

because for all z € R and p > 1, (z — 1)? = Zf;:o (z’)xp_q(—l)q. Inserting z = 1, we obtain that

gzo(fl)q(g) is equal to 0. For p = 0 the sum has a single term equal to 1. This finishes the proof.
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