

► Setting

The goal of this project is to understand the need for recompression of tensors in low-rank formats, in particular the TT format, and to develop an efficient algorithm for such procedure.

Prof. Dr. D. Kressner Dr. L. Perisa

Let \mathcal{X} and \mathcal{Y} be two tensors given in TT decompositions

$$\mathcal{X}(i_1, i_2, \dots, i_d) = U_1(i_1)U_2(i_2) \cdots U_d(i_d),$$

 $\mathcal{Y}(i_1, i_2, \dots, i_d) = V_1(i_1)V_2(i_2) \cdots V_d(i_d),$

then their Hadamard product $\mathcal{Z} = \mathcal{X} * \mathcal{Y}$ has the following TT decomposition

$$\mathcal{Z}(i_1, i_2, \dots, i_d) = (U_1(i_1) \otimes V_1(i_1)) (U_2(i_2) \otimes V_2(i_2)) \cdots (U_d(i_d) \otimes V_d(i_d)). \tag{1}$$

► Tasks

- 1. Implement the right-orthogonalization procedure of the cores of a TT decomposition.
- 2. Implement the algorithm for recompression of TT decomposition from Slide 18 (Lecture 7). Adjust the algorithm to work with given rank and with given precision.
- 3. Create $n \times \cdots \times n$ tensor \mathcal{X} of order d=10 with rank (r,\ldots,r) the following way. Generate d random $n \times r$ matrices with orthogonal columns U_{μ} , $\mu=1,\ldots,d$ and define a vector σ as $\sigma_i=e^{1-i}$, for $i=1,\ldots,r$. Create the CP decomposition of \mathcal{X} as

$$\mathcal{X}(i_1,\ldots,i_d) = \sum_{\alpha=1}^r \left(\sigma_\alpha U_1(i_1,\alpha)\right) U_2(i_2,\alpha) \cdots U_d(i_d,\alpha),$$

and use it to get the TT decomposition of \mathcal{X} . Apply recompression algorithm from Point 2 to tensor \mathcal{X} such that the norm of the error is smaller that some ε . Try different combinations of parameters.

- 4. Prove formula (1).
- 5. Create tensors \mathcal{X} and \mathcal{Y} following the same procedure as in Point 3 for n=30 and r=10. Create the Hadamard product in TT format $\mathcal{Z}=\mathcal{X}*\mathcal{Y}$ using representation (1) and apply the algorithm from Point 2 to get its TT format with rank r.