EXERCISE 8 – Low-rank approximation techniques

Problem 1. Given two tensors \mathcal{X} and \mathcal{Y} in TT decomposition, derive a TT decomposition for $\mathcal{X} + \mathcal{Y}$.

Problem 2. Show that a tensor of tensor rank R has TT rank at most (R, \ldots, R) by converting its CP decomposition into a TT decomposition.

Prof. Dr. D. Kressner Dr. L. Periša

Problem 3. Given a tensor in TT decomposition, derive upper bounds for its multilinear rank.

Problem 4. In Matlab, implement the TT-SVD algorithm from slide 10. Adjust the algorithm to work with prescribed accuracy $\varepsilon > 0$ for which it determines the TT ranks adaptively such that $\|\mathcal{X} - \mathcal{X}_{SVD}\| \leq \varepsilon$. (Use theorem from slide 11.)

Problem 5. Let \mathcal{X} be a tensor in TT decomposition with TT cores $\mathcal{U}_1, \ldots, \mathcal{U}_d$.

- 1. Show that $\|\mathcal{X}\| = \|\mathcal{U}_d\|$ holds for a left-orthogonal TT decomposition. What can you say about the singular values of $X^{<\mu-1>}$?
- 2. Show that $\|\mathcal{X}\| = \|\mathcal{U}_1\|$ holds for a right-orthogonal TT decomposition. What can you say about the singular values of $X^{<1>}$?
- 3. In Matlab, implement the left and right orthogonalization process as described on slide 16 and check the conjectures from Points 1 and 2.

Problem 6. Using tensor contractions, develop an efficient method for computing the mean,

$$\bar{\mathcal{X}} = \frac{1}{n_1 \cdots n_d} \sum_{i_1, \dots, i_d} \mathcal{X}(i_1, \dots, i_d),$$

of a tensor in TT decomposition.