EXERCISE 2 – Low-rank approximation techniques

Problem 1. Let $A \in \mathbb{R}^{m \times n}$ with $m \geq n$ and $k \leq n$. Use von Neumann's trace inequality to prove that

$$\max\{\|Q^T A\|_F: \ Q \in \mathbb{R}^{n \times k}, \ Q^T Q = I_k\} = \sqrt{\sigma_1^2 + \dots + \sigma_k^2},$$

Prof. Dr. D. Kressner Dr. L. Periša

where $\sigma_1, \ldots, \sigma_k$ are the singular values of A.

Problem 2.

- 1. Prove the basic properties of the angle between vectors stated on Slide 12 of the slides of Lecture 2.
- 2. Prove the basic properties of the angle between a vector and a subspace stated on Slide 13 of the slides of Lecture 2.

Problem 3. The goal of this exercise is to prove the projector characterization $\sin \theta_1(\mathcal{X}, \mathcal{Y}) = \|XX^T - YY^T\|_2$ for orthograml bases X, Y of \mathcal{X}, \mathcal{Y} .

- 1. Explain why one can assume w.l.o.g that $X = \begin{bmatrix} I_k \\ 0 \end{bmatrix}$ (Hint: Utilize the QR decomposition.)
- 2. Assuming that $X = \begin{bmatrix} I_k \\ 0 \end{bmatrix}$, partition $Y = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}$ with $Y_1 \in \mathbb{R}^{k \times k}$. Setting $P = XX^T YY^T$, show that P^2 is block diagonal. What are the diagonal blocks?
- 3. Using Point 2, compute the largest singular value of P in terms of the singular values of X^TY and establish $\sin \theta_1(\mathcal{X}, \mathcal{Y}) = ||XX^T YY^T||_2$.

Problem 4

A function $f: \mathbb{R}^{m \times n} \to \mathbb{R}$ is called lower semi-continuous (upper semi-continuous) at $x_0 \in \mathbb{R}^{m \times n}$ if for every $\epsilon > 0$ there exists a neighborhood \mathcal{U} of x_0 such that $f(x) \geq f(x_0) - \epsilon$ $(f(x) \leq f(x_0) + \epsilon)$ for all $x \in \mathcal{U}$.

- 1. Prove that the rank function $A \mapsto \operatorname{rank}(A)$ is lower semi-continuous at every matrix $A_0 \in \mathbb{R}^{m \times n}$. (Hint: Use the stability of singular values.)
- 2. Construct an example to show that the rank function is in general $\it not$ upper semi-continuous.

Problem 5. The goal of this exercise is to recall the QR decomposition and illustrate its use in low-rank approximation.

Let $X \in \mathbb{R}^{m \times n}$ with $m \ge n$. Then there is an orthogonal matrix $Q \in \mathbb{R}^{m \times m}$ such that

$$X = QR$$
, with $R = \begin{pmatrix} R_1 \\ 0 \end{pmatrix} = \begin{pmatrix} \ddots \\ 0 \end{pmatrix}$,

that is, $R_1 \in \mathbb{R}^{n \times n}$ is an upper triangular matrix. In practice, one often uses the economy-size QR decomposition instead: Letting $Q_1 \in \mathbb{R}^{m \times n}$ contain the first n columns of Q, one obtains

$$X = Q_1 R_1 = Q_1 \cdot \left[\right].$$

The computation of such an economy-size QR decomposition requires $\mathcal{O}(mn^2)$ operations.

1. Given $A \in \mathbb{R}^{n \times n}$, partition $A = [a_1, a_2, \dots, a_n]$ with $a_i \in \mathbb{R}^n$. Using the QR decomposition, show *Hadamard's inequality*:

$$|\det(A)| \le ||a_1||_2 \cdot ||a_2||_2 \cdots ||a_n||_2.$$

Characterize the set of all $n \times n$ matrices A for which equality holds.

2. Let $P \in \mathbb{R}^{m \times R}$, $Q \in \mathbb{R}^{n \times R}$, with $R \leq n \leq m$, be matrices with orthonormal columns. Let $A = PSQ^T$ and r < R. Prove that $P \cdot \mathcal{T}_r(S) \cdot Q^T$ is a best rank-r approximation of A in the sense that

$$||A - P \cdot \mathcal{T}_r(S) \cdot Q^T||_F = ||A - \mathcal{T}_r(A)||_F.$$

- 3. Using the result from Point 2, develop an algorithm of complexity $\mathcal{O}(mR^2 + nR^2)$ for performing rank-r truncation of a matrix BC^T with $B \in \mathbb{R}^{m \times R}$, $C \in \mathbb{R}^{n \times R}$, $R \leq n \leq m$. Implement and test this algorithm in MATLAB.
- 4. Using the algorithm from Point 3, develop an algorithm of complexity $\mathcal{O}(mr^2 + nr^2)$ for recompressing the sum of two rank-r matrices back to rank r. Implement and test this algorithm in MATLAB.