EXERCISE 1 – Low-rank approximation techniques

Problem 1.

The spectral norm of a matrix $A \in \mathbb{R}^{m \times n}$ is defined as

$$||A||_2 := \max_{||x||_2 = 1} ||Ax||_2.$$
 Prof. Dr. L. Periša (1) Dr. L. Periša

- a) Using the definition (1), show that the spectral norm coincides with the Euclidean norm if A is a row or column vector.
- b) Using the definition (1), show that

$$\|\operatorname{diag}(\lambda_1,\ldots,\lambda_n)\|_2 = \max_{i=1}^n |\lambda_i|,$$

with $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$.

Problem 2. Express the singular values for each of the three following matrices

$$\begin{pmatrix} A & I_m \end{pmatrix}, \quad \begin{pmatrix} A \\ I_n \end{pmatrix}, \quad \begin{pmatrix} A & I_m \\ I_n & 0 \end{pmatrix},$$

in terms of the singular values of $A \in \mathbb{R}^{m \times n}$, with $m \geq n$.

Problem 3. Prove that for $A, B \in \mathbb{R}^{m \times n}$ it holds that

$$\operatorname{trace}(B^TA) = \operatorname{trace}(AB^T) = \operatorname{vec}(B)^T\operatorname{vec}(A).$$

Problem 4. Show that the only matrix $A \in \mathbb{R}^{n \times n}$ satisfying trace(A) = n and $||A||_2 \le 1$ is $A = I_n$.

Problem 5. For matrix $M \in \mathbb{R}^{m \times n}$, $m \ge n$, with singular values $\sigma_1, \ldots, \sigma_n$ it holds that for every $k = 1, \ldots, n$,

$$\max \left\{ \operatorname{trace}(P^T M Q) \mid P \in \mathbb{R}^{m \times k}, Q \in \mathbb{R}^{n \times k}, P^T P = Q^T Q = I_k \right\} = \sigma_1 + \dots + \sigma_k.$$

Using this statement prove that for $A, B \in \mathbb{R}^{m \times n}$, $m \ge n$,

$$\sigma_1(A+B) + \cdots + \sigma_k(A+B) < \sigma_1(A) + \cdots + \sigma_k(A) + \sigma_1(B) + \cdots + \sigma_k(B)$$

holds for every $k = 1, \ldots, n$.

Problem 6. The aim of this exercise is to understand the rank of the Hadamard product of two low-rank matrices. Let $A, B \in \mathbb{R}^{n \times n}$ be matrices with ranks r_A and r_B , respectively, and C = A * B their Hadamard (element-wise) product. Using MATLAB/Julia/Python create matrices A and B and calculate the rank of C for

- a) n = 100 and A and B random matrices with $r_A, r_B \in [1, 10]$ (try different combinations),
- b) n = 100 and A and B random matrices with $r_A = r_B = 15$,

c)
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$.

What can you conclude? BONUS: Set and prove the conjecture.