

Prof. D. Kressner

M. Steinlechner

1 ► Quiz

Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable and bounded from below.

(a) Let $A \in \mathbb{R}^{n \times n}$ be symmetric and positive definite. Then for every norm $0 < \lambda_{min}(A) \|\mathbf{x}\|^2 \le \mathbf{x}^\mathsf{T} A \mathbf{x} \le \lambda_{max}(A) \|\mathbf{x}\|^2.$ (b) A point $\mathbf{x} \in \mathbb{R}^n$ is a critical point of f, if and only if it holds $\nabla f(\mathbf{x})^\mathsf{T} \mathbf{h} \leq 0 \text{ for all } \mathbf{h} \in \mathbb{R}^n.$ true \square $false \square$ (c) If **p** is not a descent direction, then there exists no $\alpha_0 > 0$ such that $f(\mathbf{x} + \alpha \mathbf{p}) < f(\mathbf{x})$ for all $\alpha \in (0, \alpha_0]$. false \square (d) For the function $\mathbf{x} \mapsto \frac{1}{2}\mathbf{x}^\mathsf{T}\mathbf{x} - \mathbf{b}^\mathsf{T}\mathbf{x}$ the steepest descent algorithm with exact line search converges in one step. (e) Let the sequences (\mathbf{x}_k) , (\mathbf{p}_k) , and (α_k) be generated by a line search method using descent directions and the Armijo condition. Then it holds: $f(\mathbf{x}_{k+1}) - f(\mathbf{x}_k) \to 0 \quad \Rightarrow \quad \nabla f(\mathbf{x}_k)^\mathsf{T} \mathbf{p}_k / ||\mathbf{p}_k|| \to 0.$ (f) For a given starting point \mathbf{x}_0 , let the level set of $\{\mathbf{x}: f(\mathbf{x}) \leq f(\mathbf{x}_0)\}$ be bounded. The sequence $f(\mathbf{x}_k)$ produced by a descent algorithm converges. $\mathbf{false} \ \ \Box$ For any two clusterpoints \mathbf{x}^* and \mathbf{x}^{**} of the sequence (\mathbf{x}_k) it holds $f(\mathbf{x}^*)$ $f(\mathbf{x}^{**}).$ true \square $false \square$ (g) Let the level set again be bounded, and assume \mathbf{x}_0 is not a critical point. Then the steepest descent algorithm (with Armijo line search) produces at least one subsequence which converges to a local minimum. ${f true} \ \square$ (h) A bounded sequence (\mathbf{x}_k) generated by a line search method, satisfying the Wolfe conditions and the angle condition $\cos \theta_k \geq \delta > 0$ (see page 51), has a convergent subsequence (\mathbf{x}_{k_l}) such that $\|\nabla f(\mathbf{x}_{k_{l+1}})\| \leq \frac{1}{2} \|\nabla f(\mathbf{x}_{k_l})\|$. true 🗆 false \square

2 ► Curvature condition for Quasi-Newton methods

For the whole sequence it at holds $\|\nabla f(\mathbf{x}_{k+1})\| \leq \|\nabla f(\mathbf{x}_k)\|$.

In a Quasi-Newton method, after the (k+1)-th iteration, a symmetric positive definite matrix B_{k+1} is sought to satisfy $B_{k+1}(\mathbf{x}_{k+1} - \mathbf{x}_k) = \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k)$. A necessary condition for such a matrix to exist is

$$(\mathbf{x}_{k+1} - \mathbf{x}_k)^T (\nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k)) > 0. \tag{*}$$

true 🗆

false \square

- (a) Proof that for a strictly convex function (★) always holds.
- (b) Show that the strong Wolfe curvature condition

$$|\nabla f(\mathbf{x}_k + \alpha_k \mathbf{p}_k)^T \mathbf{p}_k| \le -c_2 \nabla f(\mathbf{x}_k)^T \mathbf{p}_k$$

with $c_2 \in (0,1)$ implies (\star) for $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$.

3 ► Steepest descent vs. Newton vs. BFGS

(a) The Rosenbrock function

$$f(\mathbf{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2.$$

serves as an example of functions which are difficult to optimize using steepest descent.

Calculate the gradient $\nabla f(\mathbf{x})$ and Hessian $\nabla^2 f(\mathbf{x})$. Prove that $\mathbf{x}^* = (1,1)$ is the only local minimizer and $\nabla^2 f(\mathbf{x}^*)$ is positive definite.

(b) A Matlab function on the homepage visualizes the minimization of f using steepest descent, Newton's method and BFGS, all with Armijo backtracking. However, you have to provide these algorithms, as well as the function handles for f, ∇f , and H, to run it. The syntax has to be:

X = steepdesc(f, df, x0, c1, alpha0, beta, tol)

X = newton(f, df, ddf, x0, c1, alpha0, beta, tol)

X = BFGS(f, df, x0, B0, c1, alpha0, beta, tol)

Here f,df,ddf are the function handles for f, ∇f , and $\nabla^2 f$; x0 is the starting value, and c1,alpha0,beta are the parameters of the Armijo backtracking. The iteration should stop when $\|\nabla f(\mathbf{x}_n)\| \leq \text{tol}$. The output matrix X contains all generated iterates as columns.

For the BFGS algorithm, use the identity $B_0 = I$ as the initial guess for the approximate Hessian at \mathbf{x}_0 . To improve upon this bad starting guess, do the following:

After having calculated \mathbf{x}_1 using B_0 , but before updating B_0 to B_1 by the BFGS formula, B_0 is replaced by

$$B_0 \leftarrow B_0 \frac{\mathbf{y}_0^T \mathbf{s}_0}{\mathbf{y}_0^T \mathbf{y}_0},$$

where $\mathbf{s}_0 = \mathbf{x}_1 - \mathbf{x}_0$ and $\mathbf{y}_0 = \nabla f(\mathbf{x}_1) - \nabla f(\mathbf{x}_0)$. Then continue normally for all following B_i .

(c) Use first $\mathbf{x}_0 = (1.2, 1.2)^T$, and then the more difficult starting point $\mathbf{x}_0 = (-1.2, 1)^T$. For both choices plot the error of both methods to the exact value against the iteration number on a semilogarithmic scale.

2