IL.4 Practical Error Estimation and Step Size Selection

Ich glaube indessen, dass ein practischer Rechner sich meistens
mit der geringeren Sicherheit begniigen wird, die er aus der Ue-
bereinstimmung seiner Resultate fiir grisssere und kleinere Schritte
gewinnt. (C. Runge 1895)

Even the simplified error estimates of Section I3, which are content with the lead-
ing error term, are of little practical interest, because they require the computation
and majorization of several partial derivatives of high orders. But the main advan-
- “fage of Runge-Kutta methods, compared with Taylor series, is precisely that the
computation of derivatives should be no longer necessary. However, since practical
error estimates are necessary (on the one hand to ensure that the step sizes h; are
chosen sufficiently small to yield the required precision of the computed results,
and on the other hand to ensure that the step sizes are sufficiently large to avoid
unnecessary computational work), we shall now discuss alternative methods for
error estimates.

The eldest device, used by Runge in his numerical examples, is to repeat the
computations with halved step sizes and to compare the results: those digits which
haven’t changed are assumed to be correct (... woraus ich schliessen zu diirfen
glaube ...").

Richardson Extrapolation

... its usefulness for practical computations can hardly be over-
estimated. (G. Birkhoff & G.C. Rota)

The idea of Richardson, announced in his classical paper Richardson (1910) which
treats mainly partial differential equations, and explained in full detail in Richardson
(1927}, is to use more carefully the known behaviour of the error as a function of A.
Suppose that, with a given initial value (z,,y,) and step size k, we compute
two steps, using a fixed Runge-Kutta method of order p, and obtain the numerical
results y, and y,. We then compute, starting from (z,,y,), one big step with step
size 2h to obtain the solution w. The error of y,; is known to be (Theorem 3.2)

ey =y(2o +h)—y, = C-k*H + O(APF?) @.1)

where C contains the error coefficients of the method and the elementary differ-
entials FJ(t)(y,) of order p+ 1. The error of y, is composed of two parts: the

114 Practical Error Estimation and Step Size Selection 165

transported error of the first step, which is

(1+ h% +O(h?))ey,

and the local error of the second step, which is the same as (4.1), but with the
elementary differentials evaluated at y, =y, + O(h). Thus we obtain

e, =y(zo +2h)—y, = (I'+ O(k))ChP*+! 4 (C+ O(h))h?H1 + O(hr1?)

=2ChPt! 4 O(hP""). 4.2)
Similarly to (4.1), we have for the big step
(2o +2h) —w = C(2h)PH 4 O(KP+2), (4.3)

Neglecting the terms O(h?*?), formulas (4.2) and (4.3) allow us to eliminate the

unknown constant C and to “extrapolate” a better value ¥, for y(zy + 2h), for
which we obtain;

Theorem 4.1. Suppose that y, is the numerical result of two steps with step size h
of a Runge-Kutta method of order p, and w is the result of one big step with step
size 2h. Then the error of y, can be extrapolated as

—w
Y(zo +2h) —y, = gi — (R (4.4)
and
- _ Y—w
B2 =%t o0 4.5)
is an approximation of order p+1 to y(zy +2h).]

Formula (4.4) is a very simple device to estimate the error of ¥, and formula
(4.5) allows one to increase the precision by one additional order (“... The better
theory of the following sections is complicated, and tends thereby to suggest that
the practice may also be complicated; whereas it is really simple.” Richardson).

Embedded Runge-Kutta Formulas

Scraton is right in his criticism of Merson's process, although
Merson did not claim as much for his process as some people
expect. (R. England 1969)

The idea is, rather than using Richardson extrapolation, to construct Runge-Kutta
formulas which themselves contain, besides the numerical approximation y,, a
second approximation ¥, . The difference then yields an estimate of the local error
for the less precise result and can be used for step size control (see below). Since

166 I Runge-Kutta and Extrapolation Methods

it is at our disposal at every step, this gives more flexibility to the code and makes
step rejections less expensive.

We consider two Runge-Kutta methods (one for y, and one for §;) such that
both use the same function values. We thus have to find a scheme of coefficients
(see (1.8%)),

0
€ | 921
C3 | @33 a3
(4.6)
<, 2,1 @,z al.l—l
b, b, b,_, b,
bl 32 3‘—1 ba
such that
¥y =y +h(bk, +...+b,k,) 4.7)
is of order p, and N
5 = v +h(Bky +... 4B k,) @

is of order § (usually p=p—1 or p=p+1). The approximation y, is used to
continue the integration.

From Theorem 2.13, we have to satisfy the conditions

2 b;®;(t) = for all trees of order < p, 4.8)
J—'l

-~ 1

B.(1) = — <p. 4.8
; b;®;(t) 70 for all trees of order < P (4.8")

The first methods of this type were proposed by Merson (1957), Ceschino (1962),
and Zonneveld (1963). Those of Merson and Zonneveld are given in Tables 4.1 and
4.2. Here, “name p(p)” means that the order of y, is p and the order of the error
estimator 3, is p. Merson’s §; is of order 5 only for linear equations with constant
coefficients; for nonlinear problems it is of order 3. This method works quite well
and has been used very often, especially by NAG users. Further embedded methods
were then derived by Sarafyan (1966), England (1969), and Fehlberg (1964, 1968,
1969). Let us start with the construction of some low order embedded methods.

Methods of order 3(2). Itis a simple task to construct embedded formulas of order
3(2) with s = 3 stages. Just take a 3-stage method of order 3 (Exercise I1.1.4) and
put by =0,5, =1/2¢,, b, =1—1/2¢,.

IL.4 Practical Error Estimation and Step Size Selection 167

Table 4.1. Merson 4(“5") Table 4.2. Zonneveld 4(3)
0 0
111 111
3| 3 2 2
1 1 1 1 1
3| 6 s 2| 0 2
1 1 3
E § 0 § 1 0 0 1
1 3 3 5 7 13 1
1137 0-32 il m un m
1 2 1 T 1 1 1
wl g0 03¢ |l s 3 3 %
s | Ly 3 21 = | L 7 7 13 16
LA BT 10 5 5 n 2 3 3 6 3

Methods of order 4(3). With s =4 it is impossible to find a pair of order 4(3)
(see Exercise 2). The idea is to add y, as 5th stage of the process (i.e., a5; = b;
fori=1,...,4) and to search for a third order method which uses all ﬁve funcuon
values. Whenevcr the step is accepted this represents no extra work, because
f(zq +h,v,) has to be computed anyway for the following step. This idea is
called FSAL (First Same As Last). Then the order conditions (4.8’) with p =3
represent 4 linear equations for the five unknowns bl, b One can arbitrarily
fix b # 0 and solve the system for the remaining parameters. With 65 chosen such
that b = 0 the result is

4.9)

Automatic Step Size Control

D’ordinaire, on se contente de multiplier ou de diviser par 2 la
valeur du pas ... (Ceschino 1961)

We now want to write a code which automatically adjusts the step size in order to
achieve a prescribed tolerance of the local error.

Whenever a starting step size b has been chosen, the program computes two
approximations to the solution, y, and ¥, . Then an estimate of the error for the
less precise result is y, — ¥, . We want this error to satisfy componentwise

[y1; — %35 < ¢, sc; = Atol; + max(|y;|, lyy;|) - Rrol; (4.10)

where Atol; and Rtol; are the desired tolerances prescribed by the user (relative
errors are considered for Atol; = 0, absolute errors for Rtol; = 0; usually both

168 II. Runge-Kutta and Extrapolation Methods

tolerances are different from zero; they may depend on the component of the
solution). As a measure of the error we take

err = %Z(%)g @.11)

i=1

other norms, such as the max norm, are also of frequent use. Then err is compared
to 1 in order to find an optimal step size. From the error behaviour err = C - h91
and from 1 = C- hg"'l1 (where g = min(p, p)) the optimal step size is obtained as
(*... le procédé connu”, Ceschino 1961)

hope = h - (1/err)t/(at)), (4.12)

Some care is now necessary for a good code: we multiply (4.12) by a safety factor
fac, usually fac = 0.8, 0.9, (0.25)!/(s+1) or (0.38)1/(s+1) 50 that the error will
be acceptable the next time with high probability. Further, k is not allowed to
increase nor to decrease too fast. For example, we may put

hnew = h - min (facmax, max (facmin, fac - (1/err)*/(9+17)) (4.13)

for the new step size. Then, if err <1, the computed step is accepted and the solution
is advanced with y, and a new step is tried with k., as step size. Else, the step
is rejected and the computations are repeated with the new step size h,,, . The
maximal step size increase facmax, usually chosen between 1.5 and 5, prevents the
code from too large step increases and contributes to its safety. It is clear that, when
chosen too small, it may also unnecessarily increase the computational work. It is
also advisable to put facmax =1 in the steps right after a step-rejection (Shampine
& Watts 1979).

Whenever y, is of lower order than #,, then the difference y, — ¥, is (at
least asymptotically) an estimate of the local error and the above algorithm keeps
this estimate below the given tolerance. But isn’t it more natural to continue
the integration with the higher order approximation? Then the concept of “error
estimation” is abandoned and the difference y; — ¥, is only used for the purpose of
step size selection. This is justified by the fact that, due to unknown stability and
instability properties of the differential system, the local errors have in general very
little in common with the global errors. The procedure of continuing the integration
with the higher order result is called “local extrapolation™.

A modification of the above procedure (PI step size control), which is particu-
larly interesting when applied to mildly stiff problems, is described in Section IV.2
(Volume II).

I1.4 Practical Error Estimation and Step Size Selection 169
Starting Step Size

If anything has been made foolproof, a better fool will be devel-
oped. (Heard from Dr. Pirkl, Baden)

For many years, the starting step size had to be supplied to a code. Users were
assumed to have a rough idea of a good step size from mathematical knowledge
or previous experience. Anyhow, a bad starting choice for h was quickly repaired
by the step size control. Nevertheless, when this happens too often and when the
choices are too bad, much computing time can be wasted. Therefore, several people
(e.g., Watts 1983, Hindmarsh 1980) developed ideas to let the computer do this
choice. We take up an idea of Gladwell, Shampine & Brankin (1987) which is
based on the hypothesis that

local error & ChP1y(P+1)(z).
Since y(P+1)(z;) is unknown we shall replace it by approximations of the first and
second derivative of the solution. The resulting algorithm is the following one:

a) Do one function evaluation f(z,,y,) at the initial point. It is in any case
needed for the first RK step. Then put dj = ||y, || and d, = || f(z,,¥,)|l, where
the norm is that of (4.11) with sc; = Arol; + |y,;| - Reol;.

b) As a first guess for the step size let
hy=0.01-(d,/d,)
so that the increment of an explicit Euler step is small compared to the size of
the initial value. If either d, or d, is smaller than 10~% we put h, = 108,

c) Perform one explicit Euler step, y; = yp + by f(%¢,¥,), and compute f(z, +
hos%y)-

d) Compute d, = ||f(zg + ko, ¥1) — F(Zg, %0)|/ ho 2s an estimate of the second
derivative of the solution; the norm being the same as in (a).

e) Compute a step size h, from the relation
h2*! . max(d,,d,) = 0.01.
If max(d,,d,) <107* we put h; = max(10-%,h,-10-3).
f) Finally we propose as starting step size
h = min(100- hy, &,). (4.14)
An algorithm like the one above, or a similar one, usually gives a good guess
for the initial step size (or at least avoids a very bad choice). Sometimes, more

information about h is known, e.g., from previous experience or computations of
similar problems.

170 IL. Runge-Kutta and Extrapolation Methods

Numerical Experiments

As a representative of 4-stage 4th order methods we consider the *“3/8 Rule” of
Table 1.2. We equipped it with the embedded formula (4.9) of order 3.

OO-0-0—0—0
1 " M " M] " M M . 1

100 5 10 15

rejected step sizes % X

T

107 “ accepted step sizes

: i mxpal h (4.‘ 14)l

L i " i 1

E 5 10
103 ;_ global error
10~ T [T ﬁ W0 020 % et (e SR

5 gy oy

: 3 ﬁuu gl -H-5 -

105 I %ol Say °
H o-Q E é : 3

106§ local error estimate " exact local error l g b

Fig. 4.1. Step size control, Rrol = Atol = 10*, 96 steps + 32 rejected

Step control mechanism. Fig. 4.1 presents the results of the step control mech-
anism (4.13) described above. As an example we choose the Brusselator (see
Section 1.16).
i =1+3y, —4y,
¥; =3y — ¥i ¥
with initial values y, (0) = 1.5, y,(0) = 3, integration interval 0 < z < 20 and
Atol = Rtol = 10—*. The following results are plotted in this figure:

4.15)

IL4 Practical Error Estimation and Step Size Selection 171

i) Atthe top, the solutions y,(z) and y,(z) with all accepted integration steps;

ii) then all step sizes used; the accepted ones are connected by a polygon; the
rejected ones are indicated by x;

iii) the third graph shows the local error estimate err, the exact local error and the

global error; the desired tolerance is indicated by a broken horizontal line.
It can be seen that, due to the instabilities of the solutions with respect to the
initial values, quite large global errors occur during the integration with small local
tolerances everywhere. Further many step rejections can be observed in regions
where the step size has to be decreased. This cannot easily be prevented, because
right after an accepted step, the step size proposed by formula (4.13) is (apart from
the safety factor) always increasing.

Numerical comparison. We are now curious to see the behaviour of the variable
step size code, when compared to a fixed step size implementation. We applied
both implementations to the Brusselator problem (4.15) with the initial values used
there. The tolerances (Aol = Rtol) are chosen between 10~2 and 10—1° with ratio
¥/10. The results are then plotted in Fig. 4.2. There, the abscissa is the global error
at the endpoint of integration (the “precision”), and the ordinate is the number of
function evaluations (the “work™). We observe that for this problem the variable
step size code is about twice as fast as the fixed step size code. There are, of
course, problems (such as equation (0.1)) where variable step sizes are much more
important than here.

R
L fe o
e
il RKF4S 7 .~
RK4 (var. steps) \<\'/\,,’,/
- RK4 (const. steps) o - 7/
10°

o 0

T
3 . error
vy beaera o Bensve's sy Semecr S v e s e b
102 104 10-¢ 10°% 10-1°

Fig. 4.2. Precision-Work diagram

In this comparison we have included some higher order methods, which will
be dicussed in Section IL5. The code RKF45 (written by H.A. Watts and L.F.
Shampine) is based on an embedded method of order 5(4) due to Fehlberg. The
codes DOPRIS (order 5(4)) and DOP853 (order 8(5,3)) are based on methods of

172 I Runge-Kutta and Extrapolation Methods

Dormand & Prince. They will be discussed in the following section. It can clearly
be seen that higher order methods are, especially for higher precision, more efficient
than lower order methods. We shall also understand why the 5th order method of
Dormand & Prince is clearly superior to RKF45.

Exercises

1. Show that Runge’s method (1.4) can be interpreted as two Euler steps (with
step size h/2), followed by a Richardson extrapolation.

2. Prove that no 4-stage Runge-Kutta method of order 4 admits an embedded
formula of order 3.
Hint. Replace d; by 31- — b; in the proof of Lemma 1.4 and deduce that 'l;j =b,;
for all j, which is a contradiction. !

3. Show that the step size strategy (4.13) is invariant with respect to a rescaling
of the independent variable. This means that it produces equivalent step size
sequences when applied to the two problems

y' = f(zv !I); y(O) = Yo» y(mend) =7
' =0 f(ot,z), 2(0)=yy, 2(Teng/o)=?
with initial step sizes hg and h, /o, respectively.

Remark. This is no longer the case if one replaces err in (4.13) by err/h and
g by g — 1 (“error per unit step”).

IL.5 Explicit Runge-Kutta Methods of Higher Order

Gehen wir endlich zu Ndherungen von der fiinften Ordnung iiber,
so werden die Verhiiltnisse etwas andere. (W. Kutta 1901)

This section describes the construction of Runge-Kutta methods of higher orders,
particularly of orders p=15 and p=8. As can be seen from Table 2.3, the
complexity and number of the order conditions to be solved increases rapidly with
P An increasingly skilful use of simplifying assumptions will be the main tool for
this task.

The Butcher Barriers

For methods of order 5 there are 17 order conditions to be satisfied (see Table 2.2).
If we choose s = 5 we have 15 free parameters. Already Kutta raised the question
whether there might nevertheless exist a solution (“Nun wire es zwar méglich
...""), but he had no hope for this and turned straight away to the case s =6 (see
I1.2, Exercise 5). Kutta's question remained open for more than 60 years and was
answered around 1963 by three authors independently (Ceschino & Kuntzmann
1963, p. 89, Shanks 1966, Butcher 1964b, 1965b). Butcher’s work is the farthest
reaching and we shall mainly follow his ideas in the following:

Theorem S.1. For p > 5 no explicit Runge-Kutta method exists of order p with
s = p stages.

Proof. We first treat the case s = p = 5: define the matrices U and V by

Yiben Xibiay Y bay € & X;j0556,—¢3/2
U=| Tibispc, Tibiaises Tibisc, |, V=) 5 6§ XT;05;¢;—c3/2
92 9s 94 ¢y €§ X;045¢;—c}/2

(5.1

where

1
9= Z biaj05, - 3 Z bia;n(1-cs)- 52
8 :

