Non-unique ergodiciy for deterministic and stochastic 3D Navier–Stokes and Euler equations

Rongchan Zhu

Beijing Institute of Technology

Joint work with Martina Hofmanová, Umberto Pappalettera and Xiangchan Zhu

Table of contents

Introduction

Nonuniqueness of stationary solutions for the stochastic NS/ Euler equations

3 Kolmogorov 4/5 law for the forced NS equations

Introduction

Introduction

Consider the Navier-Stokes/Euler equations on \mathbb{T}^3 :

$$\partial_t u + u \cdot \nabla u = \nu \Delta u - \nabla p + f, \quad \text{div} u = 0$$

$$u(0) = u_0 \tag{1}$$

- $u(t,x) \in \mathbb{R}^3$: the velocity field at time t and position x,
- p(t,x): the pressure,
- \bullet viscosity $\nu \geq 0$ Navier–Stokes equations $\nu > 0$ and Euler equations $\nu = 0$
- *f*: random noise/ deterministic force

Derivation of Navier-Stokes system: Newton's law

Suppose $u = u_{\nu}(t, x(t))$ and ρ : the density

$$\frac{\mathrm{d}}{\mathrm{d}t}u_{\nu}(t) = \underbrace{\partial_{t}u_{\nu}}_{\text{variation}} + \underbrace{u_{\nu}\cdot\nabla u_{\nu}}_{\text{convection}} = \underbrace{\nu\Delta u_{\nu}}_{\text{Diffusion}} - \underbrace{\nabla p}_{\text{Internal source}} + \underbrace{f}_{\text{External source}}$$

$$\partial_t \rho + \nabla \cdot (\rho u_{\nu}) = 0 \Rightarrow {}^{\mathrm{if} \ \rho = \mathrm{constant}} \ \mathrm{div} u_{\nu} = 0$$

mass conservation

$$u_{\nu}(0)=u_0.$$

Derivation of Navier-Stokes system: Newton's law

Suppose $u = u_{\nu}(t, x(t))$ and ρ : the density

$$\frac{\mathrm{d}}{\mathrm{d}t}u_{\nu}(t) = \underbrace{\partial_{t}u_{\nu}}_{\mathrm{variation}} + \underbrace{u_{\nu}\cdot\nabla u_{\nu}}_{\mathrm{convection}} = \underbrace{\nu\Delta u_{\nu}}_{\mathrm{Diffusion}} - \underbrace{\nabla\rho}_{\mathrm{Internal source}} + \underbrace{f}_{\mathrm{External source}}$$

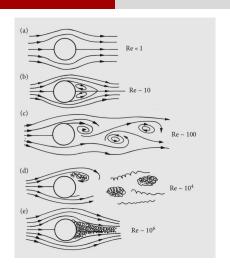
$$\partial_{t}\rho + \nabla\cdot(\rho u_{\nu}) = 0 \Rightarrow \text{if } \rho = \text{constant } \operatorname{div}u_{\nu} = 0$$

mass conservation

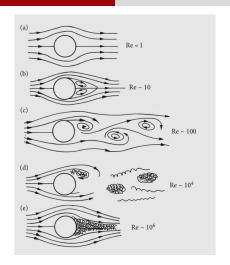
$$u_{\nu}(0)=u_0.$$

Motiviations for random force:

- stochastic reduction
- regularization by noise
- Turbulence: dynamical behavior (high sensitivity) statistical law
- Kolmogorov 1941 turbulence theory



$$\partial_t u + u \cdot \nabla u = \nu \Delta u - \nabla p + f$$
, Re $\sim 1/\nu$,



$$\partial_t u + u \cdot \nabla u = \nu \Delta u - \nabla p + f$$
, Re $\sim 1/\nu$,

ullet high Reynolds number limit u o 0 – highly turbulent regime

Rongchan Zhu (BIT) N-S stationary 6 / 26

Determisnistic Navier-Stokes equations

Solution theory: [Leray34], [Kato, Fujita62], [Temam84], [Constantin, Foias88] [Cafarelli,Kohn, Nirenberg84], [Fefferman 00], [Koch, Tataru01],...

- The global existence of weak solutions has been obtained in all dimensions.
- Existence and smoothness of solutions in the three dimensional case remains open (the Millennium Prize problem)./ Small initial data
- [Buckmaster, Vicol 19]: Non-uniqueness of analytic weak solutions: Construction of solutions with given energy
- [Buckmaster, Colombo, Vicol 20] connect two arbitrary strong solutions via a weak solution
- [Albritton, E. Brué, M. Colombo. 22] non-uniqueness of Leray solutions for some force

Solution theory:

- Martingale solutions/Probabilistically weak solutions: probability measure on the canonical space $C([0,\infty):H^{-3})$
- Probabilistically strong solutions: the solutions are adapted to the filtration generated by the noise

Solution theory:

- Martingale solutions/Probabilistically weak solutions: probability measure on the canonical space $C([0,\infty):H^{-3})$
- Probabilistically strong solutions: the solutions are adapted to the filtration generated by the noise
- Relations: \exists probabilitically strong solutions + uniqueness in law $\iff_{\text{Engelbert, Cherny}}^{\text{Yamada-Watanabe}}$ Pathwise uniqueness + existence of martingale solutions

8 / 26

Solution theory:

- Martingale solutions/Probabilistically weak solutions: probability measure on the canonical space $C([0,\infty):H^{-3})$
- Probabilistically strong solutions: the solutions are adapted to the filtration generated by the noise
- Relations: \exists probabilitically strong solutions + uniqueness in law $\iff_{\text{Engelbert, Cherny}}^{\text{Yamada-Watanabe}}$ Pathwise uniqueness + existence of martingale solutions

Known results:

 Leray martingale Markov solutions to stochastic 3D Navier–Stokes have been constructed [Da Prato, Debussche 03, Flandoli, Romito 08]

8 / 26

Solution theory:

- Martingale solutions/Probabilistically weak solutions: probability measure on the canonical space $C([0,\infty):H^{-3})$
- Probabilistically strong solutions: the solutions are adapted to the filtration generated by the noise
- Relations: \exists probabilitically strong solutions + uniqueness in law $\iff_{\text{Engelbert, Cherny}}^{\text{Yamada-Watanabe}}$ Pathwise uniqueness + existence of martingale solutions

Known results:

- Leray martingale Markov solutions to stochastic 3D Navier–Stokes have been constructed [Da Prato, Debussche 03, Flandoli, Romito 08]
- Nonuniqueness in law for Stochastic 3D Navier–Stokes/Euler equations [Hofmanová, Zhu, Z. 19, 20]
- Nonuniqueness of Markov solutions/Global probabilistically strong solutions to stochastic 3D Navier–Stokes equations [Hofmanová, Zhu, Z. 21]

Ergodic hypothesis

basic assumption in turbulence theory:

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T F(u(t))dt=\int Fd\nu$$

- the measure is invariant Statistically stationary solutions: $\text{Law}[u(t+\cdot)] = \text{Law}[u(\cdot)]$
- ergodic stationary solution

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T F(u(t))dt = \mathbf{E}F(u(0))$$

Ergodic hypothesis

• basic assumption in turbulence theory:

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T F(u(t))dt=\int Fd\nu$$

- the measure is invariant Statistically stationary solutions: $\text{Law}[u(t+\cdot)] = \text{Law}[u(\cdot)]$
- ergodic stationary solution

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T F(u(t)) dt = \mathbf{E} F(u(0))$$

Results related to ergodicity

- 2d Navier-Stokes: Uniqueness of invariant measure [Hairer, Mattingly 06]
- 3d Navier-Stokes with non-degenerate noise: Every Markov selection has a unique invariant measure [Da Prato-Debussche 03, Flandoli, Romito 08]

Aim

- ullet Existence and (non)uniqueness of ergodic stationary solutions $u_
 u$ to the stochastic Navier–Stokes equations
- Relative compactness of stationary solutions u_{ν} and convergence to a stationary solution to the Euler equations
- Existence and (non)uniqueness of ergodic stationary solutions to stochastic 3D Euler equations

Aim

- ullet Existence and (non)uniqueness of ergodic stationary solutions $u_{
 u}$ to the stochastic Navier–Stokes equations
- Relative compactness of stationary solutions u_{ν} and convergence to a stationary solution to the Euler equations
- Existence and (non)uniqueness of ergodic stationary solutions to stochastic 3D Euler equations
- ullet Kolmogorov law of turbulence along the vanishing viscosity limit $\nu \to 0$

Nonuniqueness of stationary solutions for the stochastic NS/ Euler equations

Main results: Nonuniqueness of stationary solutions

$$du + u \cdot \nabla u dt = \nu \Delta u dt - \nabla p dt + dB(t), \quad div u = 0$$

$$u(0) = u_0$$
(2)

Theorem (Hofmanová, Zhu, Z. 22)

There exist

- infinitely many stationary solutions;
- infinitely many ergodic stationary solutions;

to the stochastic 3D Navier-Stokes and Euler equations.

Main results: Nonuniqueness of stationary solutions

$$du + u \cdot \nabla u dt = \nu \Delta u dt - \nabla p dt + dB(t), \quad div u = 0$$

$$u(0) = u_0$$
(2)

Theorem (Hofmanová, Zhu, Z. 22)

There exist

- infinitely many stationary solutions;
- infinitely many ergodic stationary solutions;

to the stochastic 3D Navier-Stokes and Euler equations.

Theorem (Hofmanová, Zhu, Z. 22)

For any $\nu_n \to 0$, \exists stationary solutions u_n to (2) with $\nu = \nu_n$ so that $\mathcal{L}[u_n]$, $n \in \mathbb{N}$, is tight in $C(\mathbb{R}; L^2_\sigma)$ and every accumulation point is a stationary solution to the stochastic Euler equations.

• Stochastic convex integration: for some $\vartheta > 0$ and r > 1

$$\sup_{\nu}\sup_{s\in\mathbb{R}}(\mathbf{E}\sup_{s\leq t\leq s+1}\|u(t)\|_{H^{\vartheta}}^{2r}+\mathbf{E}\|u\|_{C^{\vartheta}([s,s+1];L^2)}^{2r})<\infty.$$

• Stochastic convex integration: for some $\vartheta > 0$ and r > 1

$$\sup_{\nu}\sup_{s\in\mathbb{R}}(\mathbf{E}\sup_{s\leq t\leq s+1}\|u(t)\|_{H^{\vartheta}}^{2r}+\mathbf{E}\|u\|_{C^{\vartheta}([s,s+1];L^2)}^{2r})<\infty.$$

• decomposition u = z + v

$$dz - (\nu \Delta - 1)z dt = dB$$
, $divz = 0$

13 / 26

$$\partial_t v - \nu \Delta v - z + \operatorname{div}((v+z) \otimes (v+z)) + \nabla p = 0, \quad \operatorname{div} v = 0.$$

• For any $p \ge 1$

$$\sup_{s \geq 0} \mathbf{E} \left[\sup_{s \leq t \leq s+1} \|z(t)\|_{H^{1-\delta}}^p + \|z\|_{C_{[s,s+1]}^{1/2-\delta}L^2}^p \right] \leq (p-1)^{p/2} L^p,$$

• Stochastic convex integration: for some $\vartheta > 0$ and r > 1

$$\sup_{\nu}\sup_{s\in\mathbb{R}}(\mathbf{E}\sup_{s\leq t\leq s+1}\|u(t)\|_{H^\vartheta}^{2r}+\mathbf{E}\|u\|_{C^\vartheta([s,s+1];L^2)}^{2r})<\infty.$$

• decomposition u = z + v

$$dz - (\nu \Delta - 1)zdt = dB, \quad divz = 0$$

$$\partial_t v - \nu \Delta v - z + \operatorname{div}((v+z) \otimes (v+z)) + \nabla p = 0, \quad \operatorname{div} v = 0.$$

• For any $p \ge 1$

$$\sup_{s \geq 0} \mathbf{E} \left[\sup_{s \leq t \leq s+1} \|z(t)\|_{H^{1-\delta}}^p + \|z\|_{C_{[s,s+1]}^{1/2-\delta}L^2}^p \right] \leq (p-1)^{p/2} L^p,$$

• iteration scheme

$$\partial_t v_q - \nu \Delta v_q - z + \operatorname{div}((v_q + z) \otimes (v_q + z)) + \nabla p_q = \operatorname{div} \mathring{R}_q, \quad \operatorname{div} v_q = 0.$$

• Key step: Let $w_{q+1} = v_{q+1} - v_q$, then we have

$$\operatorname{div}\mathring{R}_{q+1} = \underbrace{-\nu\Delta w_{q+1} + \partial_t w_{q+1} + \operatorname{div}((v_q + z) \otimes w_{q+1} + w_{q+1} \otimes (v_q + z))}_{\text{linear error}} + \underbrace{\operatorname{div}\left(w_{q+1} \otimes w_{q+1} + \mathring{R}_q\right) +}_{\text{oscillation error: cancelation}}$$

Rongchan Zhu (BIT) N-S stationary 14 / 26

• Key step: Let $w_{q+1} = v_{q+1} - v_q$, then we have

$$\operatorname{div} \mathring{R}_{q+1} = \underbrace{-\nu \Delta w_{q+1} + \partial_t w_{q+1} + \operatorname{div}((v_q + z) \otimes w_{q+1} + w_{q+1} \otimes (v_q + z))}_{\text{linear error}} + \underbrace{\operatorname{div}\left(w_{q+1} \otimes w_{q+1} + \mathring{R}_q\right)}_{\text{oscillation error: cancelation}} + \dots$$

Choose

$$w_{q+1} \sim \sum_{\xi} a_{\xi}(\mathring{R}_q) W_{\xi}$$

with W_{ξ} intermittent jets from [Buckmaster, Colombo, Vicol19]

• Key step: Let $w_{q+1} = v_{q+1} - v_q$, then we have

$$\begin{split} \operatorname{div} \mathring{R}_{q+1} &= \underbrace{-\nu \Delta w_{q+1} + \partial_t w_{q+1} + \operatorname{div}((v_q + z) \otimes w_{q+1} + w_{q+1} \otimes (v_q + z))}_{\text{linear error}} \\ &+ \underbrace{\operatorname{div} \left(w_{q+1} \otimes w_{q+1} + \mathring{R}_q \right)}_{\text{oscillation error: cancelation}} + \dots \end{split}$$

Choose

$$w_{q+1} \sim \sum_{\xi} a_{\xi}(\mathring{R}_q) W_{\xi}$$

with W_{ξ} intermittent jets from [Buckmaster, Colombo, Vicol19]

ullet The space concentration ensure the linear error is small in L^1

• Key step: Let $w_{q+1} = v_{q+1} - v_q$, then we have

$$\begin{split} \operatorname{div} \mathring{R}_{q+1} &= \underbrace{-\nu \Delta w_{q+1} + \partial_t w_{q+1} + \operatorname{div}((v_q + z) \otimes w_{q+1} + w_{q+1} \otimes (v_q + z))}_{\text{linear error}} \\ &+ \underbrace{\operatorname{div} \left(w_{q+1} \otimes w_{q+1} + \mathring{R}_q \right)}_{\text{oscillation error: } \mathbf{cancelation} \end{split}$$

Choose

$$w_{q+1} \sim \sum_{\xi} a_{\xi}(\mathring{R}_q) W_{\xi}$$

with W_{ξ} intermittent jets from [Buckmaster, Colombo, Vicol19]

- ullet The space concentration ensure the linear error is small in L^1
- $\int W_{\xi} \otimes W_{\xi} \simeq 1$ and $a_{\xi}(\mathring{R}_q) \approx \sqrt{-\mathring{R}_q}$ oscillates slowly

for the construction of stationary solution, work with:

$$\sup_{\nu}\sup_{s\in\mathbb{R}}(\mathbf{E}\sup_{s\leq t\leq s+1}\|v_q(t)\|_{H^\vartheta}^{2r}+\mathbf{E}\|v_q\|_{C^\vartheta([s,s+1];L^2)}^{2r}).$$

 previous versions worked with stopping time – not good for stationary solutions

for the construction of stationary solution, work with:

$$\sup_{\nu}\sup_{s\in\mathbb{R}}(\mathsf{E}\sup_{s\leq t\leq s+1}\|v_q(t)\|_{H^\vartheta}^{2r}+\mathsf{E}\|v_q\|_{C^\vartheta([s,s+1];L^2)}^{2r}).$$

- previous versions worked with stopping time not good for stationary solutions
- due to the quadratic nonlinearity the estimates are superlinear control all the moments

for the construction of stationary solution, work with:

$$\sup_{\nu}\sup_{s\in\mathbb{R}}(\mathsf{E}\sup_{s\leq t\leq s+1}\|v_q(t)\|_{H^\vartheta}^{2r}+\mathsf{E}\|v_q\|_{C^\vartheta([s,s+1];L^2)}^{2r}).$$

- previous versions worked with stopping time not good for stationary solutions
- due to the quadratic nonlinearity the estimates are superlinear control all the moments
- iterative estimates: r > 1 fixed, any $m \in \mathbb{N}$

$$\sup_{t\geq 0} \mathbf{E} \left[\sup_{t\leq s\leq t+1} \|\mathring{R}_q(s)\|_{L^1}^r \right] \leq \delta_{q+1} \to 0, \quad q \to \infty$$

$$\sup_{t\geq 0} \mathbf{E} \left[\sup_{t\leq s\leq t+1} \|\mathring{R}_q(s)\|_{L^1}^m \right] \leq (6^q \cdot 4mL^2)^{(6^q)}$$

for the construction of stationary solution, work with:

$$\sup_{\nu}\sup_{s\in\mathbb{R}}(\mathsf{E}\sup_{s\leq t\leq s+1}\|v_q(t)\|_{H^\vartheta}^{2r}+\mathsf{E}\|v_q\|_{C^\vartheta([s,s+1];L^2)}^{2r}).$$

- previous versions worked with stopping time not good for stationary solutions
- due to the quadratic nonlinearity the estimates are superlinear control all the moments
- iterative estimates: r > 1 fixed, any $m \in \mathbb{N}$

$$\sup_{t\geq 0} \mathbf{E} \left[\sup_{t\leq s\leq t+1} \|\mathring{R}_q(s)\|_{L^1}^r \right] \leq \delta_{q+1} \to 0, \quad q \to \infty$$

$$\sup_{t\geq 0} \mathbf{E} \left[\sup_{t\leq s\leq t+1} \|\mathring{R}_q(s)\|_{L^1}^m \right] \leq (6^q \cdot 4mL^2)^{(6^q)}$$

• use small factors to absorb the blow up

• instead of Markov semigroup, work with shifts on trajectories

$$S_t(u,B)(\cdot) = (u(t+\cdot),B(t+\cdot)-B(t))$$

on path space $C(\mathbb{R}; L^2) \times C(\mathbb{R}; L^2)$ continuity for free (cf. Feller property)

instead of Markov semigroup, work with shifts on trajectories

$$S_t(u,B)(\cdot) = (u(t+\cdot),B(t+\cdot)-B(t))$$

on path space $C(\mathbb{R}; L^2) \times C(\mathbb{R}; L^2)$ continuity for free (cf. Feller property)

 the bounds good enough to apply Krylov–Bogoliubov – existence of stationary solutions

$$rac{1}{T}\int_0^T \mathcal{L}[S_t(u,B)]\mathrm{d}t o
u = \mathcal{L}[\tilde{u},\tilde{B}], \quad T o \infty.$$

• ν is a shift invariant measure on trajectories and a law of a stationary solution (\tilde{u}, \tilde{B})

instead of Markov semigroup, work with shifts on trajectories

$$S_t(u,B)(\cdot) = (u(t+\cdot),B(t+\cdot)-B(t))$$

on path space $C(\mathbb{R}; L^2) \times C(\mathbb{R}; L^2)$ continuity for free (cf. Feller property)

 the bounds good enough to apply Krylov–Bogoliubov – existence of stationary solutions

$$\frac{1}{T}\int_0^T \mathcal{L}[S_t(u,B)]\mathrm{d}t \to \nu = \mathcal{L}[\tilde{u},\tilde{B}], \quad T \to \infty.$$

- ν is a shift invariant measure on trajectories and a law of a stationary solution (\tilde{u}, \tilde{B})
- Krein-Milman existence of ergodic staitonary solutions, ergodicity understood as ergodicity of the dynamical system

instead of Markov semigroup, work with shifts on trajectories

$$S_t(u,B)(\cdot)=(u(t+\cdot),B(t+\cdot)-B(t))$$

on path space $C(\mathbb{R}; L^2) \times C(\mathbb{R}; L^2)$ continuity for free (cf. Feller property)

 the bounds good enough to apply Krylov–Bogoliubov – existence of stationary solutions

$$\frac{1}{T}\int_0^T \mathcal{L}[S_t(u,B)]\mathrm{d}t \to \nu = \mathcal{L}[\tilde{u},\tilde{B}], \quad T \to \infty.$$

- ν is a shift invariant measure on trajectories and a law of a stationary solution (\tilde{u}, \tilde{B})
- Krein-Milman existence of ergodic staitonary solutions, ergodicity understood as ergodicity of the dynamical system
- nonuniqueness by choosing different energy

instead of Markov semigroup, work with shifts on trajectories

$$S_t(u,B)(\cdot) = (u(t+\cdot),B(t+\cdot)-B(t))$$

on path space $C(\mathbb{R}; L^2) \times C(\mathbb{R}; L^2)$ continuity for free (cf. Feller property)

 the bounds good enough to apply Krylov–Bogoliubov – existence of stationary solutions

$$\frac{1}{T}\int_0^T \mathcal{L}[S_t(u,B)]\mathrm{d}t \to \nu = \mathcal{L}[\tilde{u},\tilde{B}], \quad T \to \infty.$$

- ν is a shift invariant measure on trajectories and a law of a stationary solution (\tilde{u}, \tilde{B})
- Krein-Milman existence of ergodic staitonary solutions, ergodicity understood as ergodicity of the dynamical system
- nonuniqueness by choosing different energy
- \bullet bounds uniform in $\nu\text{-the}$ results apply to the stochastic Euler equations and vanishing viscosity limit

Kolmogorov 4/5 law for the forced NS equations

Kolmogorov 4/5 law for the forced NS equations

Consider the forced NS equations

$$\begin{split} \partial_t u_\nu + u_\nu \cdot \nabla u_\nu = & \nu \Delta u_\nu - \nabla p_\nu + f_\nu, \quad \mathrm{div} u_\nu = 0 \\ u_\nu(0) = & u_0 \end{split}$$

Consider the forced NS equations

$$\begin{split} \partial_t u_\nu + u_\nu \cdot \nabla u_\nu = & \nu \Delta u_\nu - \nabla p_\nu + f_\nu, \quad \mathrm{div} u_\nu = 0 \\ u_\nu(0) = & u_0 \end{split}$$

Formal energy inequality

• Assume u_{ν} is smooth – test the equation by u_{ν}

$$\begin{split} \langle \partial_t u_{\nu}, u_{\nu} \rangle + \langle u_{\nu} \cdot \nabla u_{\nu}, u_{\nu} \rangle + \langle \nabla p, u_{\nu} \rangle &= \nu \langle \Delta u_{\nu}, u_{\nu} \rangle + \langle f_{\nu}, u_{\nu} \rangle \\ \Rightarrow & \frac{1}{2} \partial_t \|u_{\nu}\|_{L^2}^2 + \nu \|\nabla u_{\nu}\|_{L^2}^2 &= \langle f_{\nu}, u_{\nu} \rangle \end{split}$$

Consider the forced NS equations

$$\begin{split} \partial_t u_\nu + u_\nu \cdot \nabla u_\nu = & \nu \Delta u_\nu - \nabla p_\nu + f_\nu, \quad \mathrm{div} u_\nu = 0 \\ u_\nu(0) = & u_0 \end{split}$$

Formal energy inequality

• Assume u_{ν} is smooth – test the equation by u_{ν}

$$\begin{split} \langle \partial_t u_{\nu}, u_{\nu} \rangle + \langle u_{\nu} \cdot \nabla u_{\nu}, u_{\nu} \rangle + \langle \nabla p, u_{\nu} \rangle &= \nu \langle \Delta u_{\nu}, u_{\nu} \rangle + \langle f_{\nu}, u_{\nu} \rangle \\ \Rightarrow & \frac{1}{2} \partial_t \|u_{\nu}\|_{L^2}^2 + \nu \|\nabla u_{\nu}\|_{L^2}^2 = \langle f_{\nu}, u_{\nu} \rangle \end{split}$$

ullet energy conservation for Euler equations $rac{1}{2}\partial_t \|u\|_{L^2}^2 = \langle f,u
angle$

Consider the forced NS equations

$$\begin{split} \partial_t u_\nu + u_\nu \cdot \nabla u_\nu = & \nu \Delta u_\nu - \nabla p_\nu + f_\nu, \quad \mathrm{div} u_\nu = 0 \\ u_\nu(0) = & u_0 \end{split}$$

Formal energy inequality

• Assume u_{ν} is smooth – test the equation by u_{ν}

$$\begin{split} \langle \partial_t u_{\nu}, u_{\nu} \rangle + \langle u_{\nu} \cdot \nabla u_{\nu}, u_{\nu} \rangle + \langle \nabla p, u_{\nu} \rangle &= \nu \langle \Delta u_{\nu}, u_{\nu} \rangle + \langle f_{\nu}, u_{\nu} \rangle \\ \Rightarrow & \frac{1}{2} \partial_t \|u_{\nu}\|_{L^2}^2 + \nu \|\nabla u_{\nu}\|_{L^2}^2 = \langle f_{\nu}, u_{\nu} \rangle \end{split}$$

- energy conservation for Euler equations $\frac{1}{2}\partial_t \|u\|_{L^2}^2 = \langle f, u \rangle$
- vanishing viscosity limit in a class of smooth solutions would imply

$$\lim_{\nu \to 0} \nu \|\nabla u_{\nu}\|_{L^{2}}^{2} = 0$$

Kolmogorov ('41) theory for turbulence

ullet Zeroth law of turbulence (Anomalous dissipation): the inviscid limit u o 0

$$\varepsilon = \liminf_{\nu \to 0} \left(\nu \langle |\nabla u_{\nu}|^2 \rangle \right) > 0,$$

 $\langle \, \cdot \, \rangle$: integration w.r.t. spatial variable

Kolmogorov ('41) theory for turbulence

ullet Zeroth law of turbulence (Anomalous dissipation): the inviscid limit u o 0

$$\varepsilon = \liminf_{\nu \to 0} \left(\nu \langle |\nabla u_{\nu}|^2 \rangle \right) > 0,$$

- $\langle \, \cdot \, \rangle$: integration w.r.t. spatial variable
- 4/5 law: The third order longitudinal structure function

$$S_3^{\parallel}(\ell) = \int_{\mathbb{S}^2} \int_{\mathbb{T}^3} ((u_{\nu}(t, x + \ell \hat{n}) - u_{\nu}(t, x)) \cdot \hat{n})^3 dx dS(\hat{n}) \simeq -\frac{4}{5} \varepsilon \ell,$$

for $\ell \in (\ell_I, \ell_D)$. [Bedrossian, Coti Zelati, Punshon-Smith, Weber19/ Dudley 23]

Kolmogorov ('41) theory for turbulence

ullet Zeroth law of turbulence (Anomalous dissipation): the inviscid limit u o 0

$$\varepsilon = \liminf_{\nu \to 0} \left(\nu \langle |\nabla u_{\nu}|^2 \rangle \right) > 0,$$

 $\langle \cdot \rangle$: integration w.r.t. spatial variable

• 4/5 law: The third order longitudinal structure function

$$S_3^{\parallel}(\ell) = \int_{\mathbb{S}^2} \int_{\mathbb{T}^3} ((u_{\nu}(t, x + \ell \hat{n}) - u_{\nu}(t, x)) \cdot \hat{n})^3 dx dS(\hat{n}) \simeq -\frac{4}{5} \varepsilon \ell,$$

for $\ell \in (\ell_I, \ell_D)$. [Bedrossian, Coti Zelati, Punshon-Smith, Weber19/ Dudley 23]

The pth order absolute structure function

$$S_p(\ell) = \int_{\mathbb{S}^2} \int_{\mathbb{T}^3} |u_{
u}(t,x+\ell\hat{n}) - u_{
u}(t,x)|^p \mathrm{d}x \mathrm{d}S(\hat{n}) \sim (\varepsilon\ell)^{p/3}.$$

in the infinite Reynolds number limit. p = 3 is verified by all experiments.

Assumption

• [Brue, De Lellis 22/ Brue, Colombo, Crippa, De Lellis, Sorella 22] constructed forces f_{ν} and initial data such that the Leray solution to the forced NS equation satisfy the anomalous dissipation:

$$arepsilon := \limsup_{
u o 0}
u \int_0^1 \|
abla u_
u \|_{L^2}^2 \mathrm{d}t > 0.$$

20 / 26

Assumption

• [Brue, De Lellis 22/ Brue, Colombo, Crippa, De Lellis, Sorella 22] constructed forces f_{ν} and initial data such that the Leray solution to the forced NS equation satisfy the anomalous dissipation:

$$arepsilon := \limsup_{
u o 0}
u \int_0^1 \|
abla u_
u \|_{L^2}^2 \mathrm{d}t > 0.$$

• (**H**) Assume that u_{ν} is a Leray–Hopf solution on $[0,1]\times \mathbb{T}^3$ with force f_{ν} such that there exist $\sigma>0$, $\alpha>0$ such that

$$\sup_{\nu \in (0,1)} \left(\|u_{\nu}\|_{L^{\infty}(0,1;L^{2})} + \|u_{\nu}\|_{L^{1}(0,1;\mathbf{H}^{\alpha})} + \|f_{\nu}\|_{L^{1+\sigma}(0,1;L^{2})} \right) < \infty.$$

20 / 26

 Assumption (H) is satisfied by the solutions constructed in [Brue, Colombo, Crippa, De Lellis, Sorella 22]

Structure function

Let

$$\delta_h u_{\nu}(x) = u_{\nu}(x+h) - u_{\nu}(x), \quad h \in \mathbb{R}^3.$$

The average of the cube of the longitudinal velocity increment given by

$$S^
u_\parallel(t,\ell) := rac{1}{4\pi} \int_{\mathbb{S}^2} \int_{\mathbb{T}^3} (\delta_{\ell \hat{n}} u_
u(t,x) \cdot \hat{n})^3 \mathrm{d}x \mathrm{d}S(\hat{n}),$$

The averaged structure function

$$S_0^
u(t,\ell) := rac{1}{4\pi} \int_{\mathbb{S}^2} \int_{\mathbb{T}^3} |\delta_{\ell \hat{n}} u_
u(t,x)|^2 \delta_{\ell \hat{n}} v_
u(t,x) \cdot \hat{n} \mathrm{d}x \mathrm{d}S(\hat{n}).$$

The third order absolute structure function is

$$\mathcal{S}_3^{
u}(t,\ell) := rac{1}{4\pi} \int_{\mathbb{S}^2} \int_{\mathbb{T}^3} |\delta_{\ell \hat{n}} u_{
u}(t)|^3 \mathrm{d}x \mathrm{d}\mathcal{S}(\hat{n}).$$

Main results: Kolmogorov 4/5 law

Theorem (Hofmanová, Pappalettera, Zhu, Z. 23)

Let u_{ν} , $\nu \in (0,1)$, be Leray-Hopf solutions to the forced Navier–Stokes system satisfying (**H**). Then there exists $\ell_D = \ell_D(\nu)$ with $\lim_{\nu \to 0} \ell_D = 0$ such that for any $p \in [1,\infty)$

$$\lim_{\ell_I \to 0} \limsup_{\nu \to 0} \sup_{\ell \in [\ell_D, \ell_I]} \left\| \int_0^{\cdot} \frac{S_{\parallel}^{\nu}(r, \ell)}{\ell} dr + \frac{4}{5} \varepsilon_{\nu}(\cdot) \right\|_{L^p(0, 1)} = 0,$$

$$\lim_{\ell_{I}\to 0}\limsup_{\nu\to 0}\sup_{\ell\in [\ell_{D},\ell_{I}]}\left\|\int_{0}^{\cdot}\frac{S_{0}^{\nu}(r,\ell)}{\ell}\mathrm{d}r+\frac{4}{3}\varepsilon_{\nu}(\cdot)\right\|_{L^{p}(0,1)}=0,$$

with

$$arepsilon_{
u}(t) = rac{1}{2} \|u_{
u}(t)\|_{L^{2}}^{2} - rac{1}{2} \|u_{
u}(0)\|_{L^{2}}^{2} + \int_{0}^{t} \langle f_{
u}, u_{
u}
angle \mathrm{d}s.$$

22 / 26

If the energy equality holds true then $\varepsilon_{\nu}(t) = \nu \int_0^t \|\nabla u_{\nu}(s)\|_{L^2}^2 ds$.

Main results: Kolmogorov 4/5 law – probabilistic interpretation

Theorem (Hofmanová, Pappalettera, Zhu, Z. 23)

Let u_{ν} , $\nu \in (0,1)$, be solutions to the forced Navier–Stokes system satisfying the hypothesis (**H**). There exists $\ell_D = \ell_D(\nu)$ with $\lim_{\nu \to 0} \ell_D = 0$ such that for every $\rho \in [1,\infty)$, $\kappa > 0$ and K > 0

$$\lim_{\ell_I \to 0} \limsup_{\nu \to 0} \sup_{\ell \in [\ell_D, \ell_I]} \sup_{\mathfrak{t}} \left\langle \left| \int_0^{\mathfrak{t}} \frac{S_{\parallel}^{\nu}(r,\ell)}{\ell} \mathrm{d}r + \frac{4}{5} \varepsilon_{\nu}(\mathfrak{t}) \right|^p \right\rangle = 0,$$

and

$$\lim_{\ell_I \to 0} \limsup_{\nu \to 0} \sup_{\ell \in [\ell_D, \ell_I]} \sup_{\mathfrak{t}} \left\langle \left| \int_0^{\mathfrak{t}} \frac{S_0^{\nu}(r,\ell)}{\ell} \mathrm{d}r + \frac{4}{3} \varepsilon_{\nu}(\mathfrak{t}) \right|^p \right\rangle = 0.$$

Here $\mathfrak t$ are arbitrary random times taking values in [0,1] whose law is absolutely continuous with respect to the Lebesgue measure with a density ψ satisfying $\|\psi\|_{L^{1+\kappa}(0,1)} \leq K$ and the bracket $\langle \cdot \rangle$ denotes the ensemble average.

Idea of Proof: Kármán-Howarth-Monin (KHM) relation

$$\underbrace{\int_{\mathbb{R}^{3}} \eta(h) : \Gamma_{\nu}(t,h) dh}_{\sim \frac{2}{3} \|u_{\nu}(t)\|_{L^{2}}^{2}} - \underbrace{\int_{\mathbb{R}^{3}}^{2} \eta(h) : \Gamma_{\nu}(0,h) dh}_{\sim \frac{2}{3} \|u_{\nu}(0)\|_{L^{2}}^{2}}$$

$$= -\underbrace{\frac{1}{2} \sum_{k=1}^{3} \int_{0}^{t} \int_{\mathbb{R}^{3}} \partial_{k} \eta(h) : D_{\nu}^{k}(r,h) dh dr}_{\sim \frac{S_{0}^{\nu}(\ell)}{\ell}} + \underbrace{2\nu \int_{0}^{t} \int_{\mathbb{R}^{3}} \Delta \eta(h) : \Gamma_{\nu}(r,h) dh dr}_{\sim 0}$$

$$+ \underbrace{2 \int_{0}^{t} \int_{\mathbb{R}^{3}} \int_{\mathbb{T}^{3}} \eta(h) : f_{\nu} \otimes T_{h} u_{\nu} dx dh dr}_{\sim \langle f_{\nu}, u_{\nu} \rangle}$$

where
$$T_h v_{\nu}(t,x) = u_{\nu}(t,x+h)$$
,

$$\Gamma_{
u}(t,h) := \int_{\mathbb{T}^3} u_{
u}(t,x) \otimes u_{
u}(t,x+h) \mathrm{d}x,$$

$$D_{\nu}^{k}(t,h) = \int_{\mathbb{T}^{3}} (\delta_{h} u_{\nu}(t,x) \otimes \delta_{h} u_{\nu}(t,x)) \delta_{h} u_{\nu}^{k}(t,x) dx.$$

Main results: the third order absolute structure function

Theorem (Hofmanová, Pappalettera, Zhu, Z. 23)

Let $\alpha \in (0,1/3)$ be given and let u_{ν} , $\nu \in (0,1)$, be the solutions to the forced Navier–Stokes equations satisfying

$$\sup_{\nu \in (0,1)} \left(\|u_{\nu}\|_{L^{3}(0,1;C^{\alpha})} + \|u_{\nu}\|_{L^{\infty}(0,1;L^{\infty})} \right) < \infty.$$

Then the third order absolute structure function exponents

$$\zeta_3 := \liminf_{\ell_I \to 0} \inf_{\nu \in (0,1)} \inf_{\ell \in [\ell_D,\ell_I]} \frac{\log(\int_0^1 S_3^\nu(r,\ell) \mathrm{d}r)}{\log \ell},$$

$$\bar{\zeta}_3 := \limsup_{\ell_I \to 0} \liminf_{\nu \to 0} \sup_{\ell \in [\ell_D, \ell_I]} \frac{\log(\int_0^1 S_3^\nu(r,\ell) \mathrm{d}r)}{\log \ell}.$$

satisfy

$$3\alpha \leq \zeta_3 \leq \overline{\zeta}_3 \leq 1.$$

Thank you!