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Introduction

Consider the Navier-Stokes/Euler equations on T3:

∂tu + u · ∇u =ν∆u −∇p + f , divu = 0

u(0) =u0

(1)

u(t, x) ∈ R3: the velocity field at time t and position x ,

p(t, x): the pressure,

viscosity ν ≥ 0 – Navier–Stokes equations ν > 0 and Euler equations ν = 0

f : random noise/ deterministic force
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Derivation of Navier-Stokes system: Newton’s law

Suppose u = uν(t, x(t)) and ρ: the density

d

dt
uν(t) = ∂tuν︸︷︷︸

variation

+ uν · ∇uν︸ ︷︷ ︸
convection

= ν∆uν︸ ︷︷ ︸
Diffusion

− ∇p︸︷︷︸
Internal source

+ f︸︷︷︸
External source

,

∂tρ+∇ · (ρuν) = 0︸ ︷︷ ︸
mass conservation

⇒ if ρ=constant divuν = 0

uν(0) = u0.

Motiviations for random force:

stochastic reduction

regularization by noise

Turbulence: dynamical behavior (high sensitivity) – statistical law

Kolmogorov 1941 turbulence theory
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∂tu + u · ∇u = ν∆u −∇p + f , Re ∼ 1/ν,

high Reynolds number limit ν → 0 – highly turbulent regime
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Determisnistic Navier–Stokes equations

Solution theory: [Leray34], [Kato, Fujita62], [Temam84], [Constantin, Foias88]
[Cafarelli,Kohn, Nirenberg84], [Fefferman 00], [Koch, Tataru01],...

The global existence of weak solutions has been obtained in all dimensions.

Existence and smoothness of solutions in the three dimensional case remains
open (the Millennium Prize problem)./ Small initial data

[Buckmaster, Vicol 19]: Non-uniqueness of analytic weak solutions:
Construction of solutions with given energy

[Buckmaster, Colombo, Vicol 20] connect two arbitrary strong solutions via a
weak solution

[Albritton, E. Brué, M. Colombo. 22] non-uniqueness of Leray solutions for
some force
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Stochastic Navier-Stokes equations

Solution theory:

Martingale solutions/Probabilistically weak solutions: probability measure on
the canonical space C ([0,∞) : H−3)

Probabilistically strong solutions: the solutions are adapted to the filtration
generated by the noise

Relations: ∃ probabilitically strong solutions + uniqueness in law
⇐⇒Yamada-Watanabe

Engelbert, Cherny Pathwise uniqueness + existence of martingale solutions

Known results:

Leray martingale Markov solutions to stochastic 3D Navier–Stokes have been
constructed [Da Prato, Debussche 03, Flandoli, Romito 08]

Nonuniqueness in law for Stochastic 3D Navier–Stokes/Euler equations
[Hofmanová, Zhu, Z. 19, 20]

Nonuniqueness of Markov solutions/Global probabilistically strong solutions to
stochastic 3D Navier–Stokes equations [Hofmanová, Zhu, Z. 21]

Rongchan Zhu (BIT) N-S stationary 8 / 26



Stochastic Navier-Stokes equations

Solution theory:

Martingale solutions/Probabilistically weak solutions: probability measure on
the canonical space C ([0,∞) : H−3)

Probabilistically strong solutions: the solutions are adapted to the filtration
generated by the noise

Relations: ∃ probabilitically strong solutions + uniqueness in law
⇐⇒Yamada-Watanabe

Engelbert, Cherny Pathwise uniqueness + existence of martingale solutions

Known results:

Leray martingale Markov solutions to stochastic 3D Navier–Stokes have been
constructed [Da Prato, Debussche 03, Flandoli, Romito 08]

Nonuniqueness in law for Stochastic 3D Navier–Stokes/Euler equations
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Ergodic hypothesis

basic assumption in turbulence theory:

lim
T→∞

1

T

∫ T

0

F (u(t))dt =

∫
Fdν

the measure is invariant – Statistically stationary solutions:
Law[u(t + ·)] =Law[u(·)]

ergodic stationary solution

lim
T→∞

1

T

∫ T

0

F (u(t))dt = EF (u(0))

Results related to ergodicity

2d Navier-Stokes: Uniqueness of invariant measure [Hairer, Mattingly 06]

3d Navier-Stokes with non-degenerate noise: Every Markov selection has a
unique invariant measure [Da Prato-Debussche 03, Flandoli, Romito 08]
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Aim

Existence and (non)uniqueness of ergodic stationary solutions uν to the
stochastic Navier–Stokes equations

Relative compactness of stationary solutions uν and convergence to a
stationary solution to the Euler equations

Existence and (non)uniqueness of ergodic stationary solutions to stochastic
3D Euler equations

Kolmogorov law of turbulence along the vanishing viscosity limit ν → 0
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Nonuniqueness of stationary solutions for the stochastic NS/ Euler equations

Nonuniqueness of stationary solutions for the stochastic NS/ Euler
equations

Rongchan Zhu (BIT) N-S stationary 11 / 26



Nonuniqueness of stationary solutions for the stochastic NS/ Euler equations

Main results: Nonuniqueness of stationary solutions

du + u · ∇udt =ν∆udt −∇pdt + dB(t), divu = 0

u(0) =u0

(2)

Theorem (Hofmanová, Zhu, Z. 22)

There exist

1 infinitely many stationary solutions;

2 infinitely many ergodic stationary solutions;

to the stochastic 3D Navier–Stokes and Euler equations.

Theorem (Hofmanová, Zhu, Z. 22)

For any νn → 0, ∃ stationary solutions un to (2) with ν = νn so that L[un], n ∈ N,
is tight in C (R; L2

σ) and every accumulation point is a stationary solution to the
stochastic Euler equations.
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Nonuniqueness of stationary solutions for the stochastic NS/ Euler equations

Idea of proof: stochastic convex integration

Stochastic convex integration: for some ϑ > 0 and r > 1

sup
ν

sup
s∈R

(E sup
s≤t≤s+1

‖u(t)‖2rHϑ + E‖u‖2rCϑ([s,s+1];L2)) <∞.

decomposition u = z + v

dz − (ν∆− 1)zdt = dB, divz = 0

∂tv − ν∆v − z + div((v + z)⊗ (v + z)) +∇p = 0, divv = 0.

For any p ≥ 1

sup
s≥0

E

[
sup

s≤t≤s+1
‖z(t)‖p

H1−δ + ‖z‖p
C

1/2−δ
[s,s+1]

L2

]
≤ (p − 1)p/2Lp,

iteration scheme

∂tvq − ν∆vq − z + div((vq + z)⊗ (vq + z)) +∇pq = divR̊q, divvq = 0.
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Nonuniqueness of stationary solutions for the stochastic NS/ Euler equations

Idea of proof: stochastic convex integration

Key step: Let wq+1 = vq+1 − vq, then we have

divR̊q+1 = −ν∆wq+1 + ∂twq+1 + div((vq + z)⊗ wq+1 + wq+1 ⊗ (vq + z))︸ ︷︷ ︸
linear error

+ div
(

wq+1 ⊗ wq+1 + R̊q

)
︸ ︷︷ ︸
oscillation error: cancelation

+....

Choose
wq+1 ∼

∑
ξ

aξ(R̊q)Wξ

with Wξ intermittent jets from [Buckmaster, Colombo, Vicol19]

The space concentration ensure the linear error is small in L1∫
Wξ ⊗Wξ ' 1 and aξ(R̊q) ≈

√
−R̊q oscillates slowly
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Nonuniqueness of stationary solutions for the stochastic NS/ Euler equations

Idea of proof: stochastic convex integration

for the construction of stationary solution, work with:

sup
ν

sup
s∈R

(E sup
s≤t≤s+1

‖vq(t)‖2rHϑ + E‖vq‖2rCϑ([s,s+1];L2)).

previous versions worked with stopping time – not good for stationary
solutions

due to the quadratic nonlinearity the estimates are superlinear – control all
the moments

iterative estimates: r > 1 fixed, any m ∈ N

sup
t≥0

E

[
sup

t≤s≤t+1
‖R̊q(s)‖rL1

]
≤ δq+1 → 0, q →∞

sup
t≥0

E

[
sup

t≤s≤t+1
‖R̊q(s)‖mL1

]
≤ (6q · 4mL2)(6

q)

use small factors to absorb the blow up
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Nonuniqueness of stationary solutions for the stochastic NS/ Euler equations

Idea of proof: Krylov–Bogoliubov

instead of Markov semigroup, work with shifts on trajectories

St(u,B)(·) = (u(t + ·),B(t + ·)− B(t))

on path space C (R; L2)× C (R; L2) continuity for free (cf. Feller property)

the bounds good enough to apply Krylov–Bogoliubov – existence of stationary
solutions

1

T

∫ T

0

L[St(u,B)]dt → ν = L[ũ, B̃], T →∞.

ν is a shift invariant measure on trajectories and a law of a stationary solution
(ũ, B̃)

Krein–Milman – existence of ergodic staitonary solutions, ergodicity
understood as ergodicity of the dynamical system

nonuniqueness by choosing different energy

bounds uniform in ν-the results apply to the stochastic Euler equations and
vanishing viscosity limit
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Kolmogorov 4/5 law for the forced NS equations

Energy inequality

Consider the forced NS equations

∂tuν + uν · ∇uν =ν∆uν −∇pν + fν , divuν = 0

uν(0) =u0

Formal energy inequality

Assume uν is smooth – test the equation by uν

〈∂tuν , uν〉+ 〈uν · ∇uν , uν〉+ 〈∇p, uν〉 = ν〈∆uν , uν〉+ 〈fν , uν〉

⇒ 1

2
∂t‖uν‖2L2 + ν‖∇uν‖2L2 = 〈fν , uν〉

energy conservation for Euler equations 1
2∂t‖u‖

2
L2 = 〈f , u〉

vanishing viscosity limit in a class of smooth solutions would imply

lim
ν→0

ν‖∇uν‖2L2 = 0
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Kolmogorov 4/5 law for the forced NS equations

Kolmogorov (’41) theory for turbulence

Zeroth law of turbulence (Anomalous dissipation): the inviscid limit ν → 0

ε = lim inf
ν→0

(
ν〈|∇uν |2〉

)
> 0,

〈 · 〉: integration w.r.t. spatial variable

4/5 law: The third order longitudinal structure function

S
‖
3 (`) =

∫
S2

∫
T3

((uν(t, x + `n̂)− uν(t, x)) · n̂)3dxdS(n̂) ' −4

5
ε`,

for ` ∈ (`I , `D). [Bedrossian, Coti Zelati, Punshon-Smith, Weber19/ Dudley
23]

The pth order absolute structure function

Sp(`) =

∫
S2

∫
T3

|uν(t, x + `n̂)− uν(t, x)|pdxdS(n̂) ∼ (ε`)p/3.

in the infinite Reynolds number limit. p = 3 is verified by all experiments.
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Kolmogorov 4/5 law for the forced NS equations

Assumption

[Brue, De Lellis 22/ Brue, Colombo, Crippa, De Lellis, Sorella 22] constructed
forces fν and initial data such that the Leray solution to the forced NS
equation satisfy the anomalous dissipation:

ε := lim sup
ν→0

ν

∫ 1

0

‖∇uν‖2L2dt > 0.

(H) Assume that uν is a Leray–Hopf solution on [0, 1]× T3 with force fν such
that there exist σ > 0, α > 0 such that

sup
ν∈(0,1)

(
‖uν‖L∞(0,1;L2) + ‖uν‖L1(0,1;Hα) + ‖fν‖L1+σ(0,1;L2)

)
<∞.

Assumption (H) is satisfied by the solutions constructed in [Brue, Colombo,
Crippa, De Lellis, Sorella 22]
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Kolmogorov 4/5 law for the forced NS equations

Structure function

Let
δhuν(x) = uν(x + h)− uν(x), h ∈ R3.

The average of the cube of the longitudinal velocity increment given by

Sν‖ (t, `) :=
1

4π

∫
S2

∫
T3

(δ`n̂uν(t, x) · n̂)3dxdS(n̂),

The averaged structure function

Sν0 (t, `) :=
1

4π

∫
S2

∫
T3

|δ`n̂uν(t, x)|2δ`n̂vν(t, x) · n̂dxdS(n̂).

The third order absolute structure function is

Sν3 (t, `) :=
1

4π

∫
S2

∫
T3

|δ`n̂uν(t)|3dxdS(n̂).
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Kolmogorov 4/5 law for the forced NS equations

Main results: Kolmogorov 4/5 law

Theorem (Hofmanová, Pappalettera, Zhu, Z. 23)

Let uν , ν ∈ (0, 1), be Leray-Hopf solutions to the forced Navier–Stokes system
satisfying (H). Then there exists `D = `D(ν) with limν→0 `D = 0 such that for
any p ∈ [1,∞)

lim
`I→0

lim sup
ν→0

sup
`∈[`D ,`I ]

∥∥∥∥∥
∫ ·
0

Sν‖ (r , `)

`
dr +

4

5
εν(·)

∥∥∥∥∥
Lp(0,1)

= 0,

lim
`I→0

lim sup
ν→0

sup
`∈[`D ,`I ]

∥∥∥∥∫ ·
0

Sν0 (r , `)

`
dr +

4

3
εν(·)

∥∥∥∥
Lp(0,1)

= 0,

with

εν(t) =
1

2
‖uν(t)‖2L2 −

1

2
‖uν(0)‖2L2 +

∫ t

0

〈fν , uν〉ds.

If the energy equality holds true then εν(t) = ν
∫ t

0
‖∇uν(s)‖2L2ds.
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Kolmogorov 4/5 law for the forced NS equations

Main results: Kolmogorov 4/5 law – probabilistic interpretation

Theorem (Hofmanová, Pappalettera, Zhu, Z. 23)

Let uν , ν ∈ (0, 1), be solutions to the forced Navier–Stokes system satisfying the
hypothesis (H). There exists `D = `D(ν) with limν→0 `D = 0 such that for every
p ∈ [1,∞), κ > 0 and K > 0

lim
`I→0

lim sup
ν→0

sup
`∈[`D ,`I ]

sup
t

〈∣∣∣∣∣
∫ t

0

Sν‖ (r , `)

`
dr +

4

5
εν(t)

∣∣∣∣∣
p〉

= 0,

and

lim
`I→0

lim sup
ν→0

sup
`∈[`D ,`I ]

sup
t

〈∣∣∣∣∫ t

0

Sν0 (r , `)

`
dr +

4

3
εν(t)

∣∣∣∣p
〉

= 0.

Here t are arbitrary random times taking values in [0, 1] whose law is absolutely
continuous with respect to the Lebesgue measure with a density ψ satisfying
‖ψ‖L1+κ(0,1) ≤ K and the bracket 〈·〉 denotes the ensemble average.
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Kolmogorov 4/5 law for the forced NS equations

Idea of Proof: Kármán–Howarth–Monin (KHM) relation

∫
R3

η(h) : Γν(t, h)dh︸ ︷︷ ︸
∼ 2

3
‖uν (t)‖2

L2

−
∫
R3

η(h) : Γν(0, h)dh︸ ︷︷ ︸
∼ 2

3
‖uν (0)‖2

L2

= − 1

2

3∑
k=1

∫ t

0

∫
R3

∂kη(h) : Dk
ν(r , h)dhdr︸ ︷︷ ︸

∼
Sν
0
(`)

`

+ 2ν

∫ t

0

∫
R3

∆η(h) : Γν(r , h)dhdr︸ ︷︷ ︸
∼0

+ 2

∫ t

0

∫
R3

∫
T3

η(h) : fν ⊗ Thuνdxdhdr︸ ︷︷ ︸
∼〈fν ,uν〉

,

where Thvν(t, x) = uν(t, x + h),

Γν(t, h) :=

∫
T3

uν(t, x) ⊗ uν(t, x + h)dx ,

Dk
ν(t, h) =

∫
T3

(δhuν(t, x) ⊗ δhuν(t, x))δhu
k
ν(t, x)dx .
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Kolmogorov 4/5 law for the forced NS equations

Main results: the third order absolute structure function

Theorem (Hofmanová, Pappalettera, Zhu, Z. 23)

Let α ∈ (0, 1/3) be given and let uν , ν ∈ (0, 1), be the solutions to the forced
Navier–Stokes equations satisfying

sup
ν∈(0,1)

(
‖uν‖L3(0,1;Cα) + ‖uν‖L∞(0,1;L∞)

)
<∞.

Then the third order absolute structure function exponents

ζ3 := lim inf
`I→0

inf
ν∈(0,1)

inf
`∈[`D ,`I ]

log(
∫ 1

0
Sν3 (r , `)dr)

log `
,

ζ̄3 := lim sup
`I→0

lim inf
ν→0

sup
`∈[`D ,`I ]

log(
∫ 1

0
Sν3 (r , `)dr)

log `
.

satisfy
3α ≤ ζ3 ≤ ζ̄3 ≤ 1.
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Thank you !
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