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2D Incompressible Euler equations in vorticity form

The vorticity form in R2

∂tω + u · ∇ω = 0 in (0,∞)× R2,

ω|t=0 = ω0 on R2.
(1)

The velocity field u is determined by the scalar vorticity ω = −∂2u1 + ∂1u2 following the
Biot-Savart law:

u = ∇⊥(−∆)−1ω.

x

Ω ⊂ ℝ2

time 0 time t

Φt(Ω) ⊂ ℝ2

Φt(x)

Φt

u(t, Φt(x)) = d
dt

Φt(x)= Φ0(x)

ω0(x) ω(t, Φt(x))=

Figure: The dynamics of an ideal incompressible fluid with the flow map Φt
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2D Incompressible Euler equations in vorticity form

Conserved quantities in time

The measure of any level set |{x ∈ R2 : ω(t, x) > c}|, c > 0.

Lp-norms ‖ω(t)‖Lp(R2) for any p ∈ [1,∞].

The energy

E
(
u(t)

)
:=

1

2

∫
R2
|u(t, x)|2dx ,

The angular impulse

J
(
ω(t)

)
:=

∫
R2
|x |2ω(t, x)dx ,

which represents the rotational inertia of ω(t), i.e., the angular mass.

Goal

To prove stabilities of the unit disc patch 1B1
and, more generally, a radial, non-negative,

and monotone vorticities in R2.

To construct a vortex patch in the half cylinder having instability (infinite perimeter growth
for all time.)

3 / 20



Lyapunov stability

Steady state

A solution ω of (1) is called a steady state if it satisfies

u · ∇ω = 0,

where u = ∇⊥(−∆)−1ω.

For instance, any radial vorticity ω = ω(|x |) is a steady state of (1) because its stream
function ψ = (−∆)−1ω is also radial, so the velocity field u = ∇⊥ψ is in the tangential
direction while ∇ω is in the radial direction.

During the first section of this talk, we will discuss about stability of radial vorticities.

Lyapunov stability

A steady state ω is said to be (Lyapunov) stable if ∀ ε > 0, ∃ δ > 0 s.t. if any perturbed
vorticity ω0 satisfies

‖ω0 − ω‖X ≤ δ,

then for any t ≥ 0, the corresponding solution ω(t) of (1) with initial data ω0 satisfies

‖ω(t)− ω‖X ≤ ε.

Related works

L1-stability : Wan–Pulvirenti ’85, Marchioro–Pulvirenti ’85, Sideris–Vega ’09, etc.

Other stability : Tang ’87, Bedrossian–Masmoudi ’14, Beichman–Denisov ’17, Choi–Jeong
’22, etc.
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Vortex patches

Vortex patches

If a vorticity ω is given as a characteristic function;

ω = 1Ω,

of some measurable set Ω ⊂ R2, then we call it as a vortex patch.

For example, the unit disc patch 1B1
has its corresponding velocity field

uB1
(x) =

 x⊥

2
if |x | ≤ 1,

x⊥

2|x|2 if |x | > 1.

Vortex patches are helpful in distinguishing regions where the local tendency to have rotation
is strong or weak.

If an initial data of (1) is ω0 = 1Ω0
, then ∀ t ≥ 0, its corresponding solution of (1) is

ω(t) = 1Ωt , Ωt = Φt(Ω0).

If the boundary ∂Ω0 of 1Ω0
is C k -smooth, then the boundary ∂Ωt of 1Ωt is also C k -smooth

∀ t ≥ 0.
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Vortex patches

u(x) = x⊥

Figure: Relative velocity field around a certain point on the velocity field u(x) = x⊥
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Vortex patches

u(x) = 212x⊥

|x |2

Figure: Relative velocity field around a certain point on the velocity field u(x) = 212x⊥
|x|2
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Main results

∀ measurable set Ω ⊂ R2 with finite measure and J (1Ω) <∞, let us denote

‖Ω‖J := ‖1Ω‖L1(R2) + J (1Ω) =

∫
Ω

(1 + |x |2)dx .

Also, let us denote 1Ω0
as the perturbed vortex patch with J (1Ω0

) <∞, and 1Ωt as its
corresponding vortex patch solution of (1).

Theorem 1 (Choi–L. ’22, θ = 1B1 , ω0 = 1Ω0 )

We have
sup
t≥0
‖Ωt4B1‖J . ‖Ω04B1‖1/2

J + ‖Ω04B1‖J .

Remark

This means that the unit disc patch 1B1
is stable in J-norm. This tells us that if the initial

perturbation is small in J-norm, then the perturbation stays small in the same norm for all
time.

However, it does not give us any information on the time evolution of the form of the
perturbation.

More generally, we proved that the same type of stability holds for a radial, non-negative,

and decreasing vorticity, such as a Gaussian e−|x|
2
, as well.
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Arnold-type stability

Arnold-type stability

Find a functional H of ω (or u) that satisfies

H
(
ω(t)

)
= H(ω0) ∀t ≥ 0.

e.g. the energy E(u) = 1
2

∫
R2 |u|2dx , the angular impulse J (ω) =

∫
R2 |x |2ωdx , etc.

For a steady state ω, and any ω̂ in some admissible class of functions, find constants
0 < c1 ≤ c2 <∞ that satisfy

c1‖ω̂ − ω‖X ≤ H(ω̂)− H(ω) ≤ c2‖ω̂ − ω‖X .

The upper bound is easier to obtain. The lower bound is the non-trivial part.

Once the above two conditions are satisfied, then we have

c1‖ω(t)− ω‖X ≤ H
(
ω(t)

)︸ ︷︷ ︸
=H(ω0)

−H(ω) ≤ c2‖ω0 − ω‖X ∀t ≥ 0.
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Key ideas

Conservation of the angular impulse:

J (1Ωt ) = J (1Ω0
) ∀t ≥ 0.

Symmetric rearrangement Ω∗ of Ω ⊂ R2

Ω∗ is defined as the disc s.t. |Ω∗| = |Ω| <∞.

Basic property : J (1Ω∗ ) ≤ J (1Ω), (Ωt)∗ = (Ω0)∗.

Properties of Ω∗

Nonexpansivity:
|Ω∗4B1| ≤ |Ω4B1|.

Estimates of the difference of angular impulse between 1Ω and 1Ω∗ (adaptation of
Marchioro–Pulvirenti ’85 for patch); if Ω ⊂ BR for some R > 0, then

|Ω4Ω∗| . [J (1Ω)− J (1Ω∗ )]1/2 .R |Ω4Ω∗|1/2.

This means that 1Ω∗ is the unique minimizer of J among every vortex patch of a set having
the same measure as Ω.
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Instability

Goal

To prove stabilities of the unit disc patch 1B1
and, more generally, a radial, non-negative,

and monotone vorticities in R2.

To construct a vortex patch in the half cylinder having instability (infinite perimeter growth
for all time.)

Instability

ω is not stable : ∃ ε0 > 0 s.t. ∀ δ > 0, ∃ ω0 and ∃ T0 > 0 s.t. we have

‖ω0 − ω‖X ≤ δ,

but
‖ω(T0)− ω‖X > ε0.

For a vortex patch 1Ω with smooth boundary, we can consider its perimeter length(∂Ω) as a
one way to describe instability, although it is not a norm.

Does there exist a vortex patch 1Ω0
satisfying

length(∂Ω0) ≤ C ,

and its corresponding solution 1Ωt of (1) showing

length(∂Ωt) & t, ∀t ≥ 0?

Related works on various instabilities of vortex solutions : Nadirashvili ’91, Choi–Jeong ’22,
Choi–Jeong ’22, etc.
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Half cylinder S+

Half cylinder S+ := R+ × T, T := R/2πZ (= [−π, π))

Ω0

t = 0
Figure: A diagram of some vortex patch on S+

x1

x2

+1−12π

2π

2π

2π

Figure: Considering the half cylinder as an infinite strip
with boundary

Global well-posedness of a weak solution ω ∈ L∞(S+) with compact support :
Beichman–Denisov ’17.

Conserved quantities of ω(t) in time

The measure of any level set |{x ∈ S+ : ω(t, x) > c}|, c > 0.

Lp-norms ‖ω(t)‖Lp(S+) for any p ∈ [1,∞].

The horizontal impulse

h
(
ω(t)

)
:=

∫
S+

x1ω(t, x)dx .
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Stability of 1Ω

Let us denote Ω := {x1 < 1}, and ∀ measurable set Ω ⊂ S+ with finite measure and h(1Ω) <∞,
let us denote

‖Ω‖Z := ‖1Ω‖L1(S+) + h(1Ω) =

∫
Ω

(1 + x1)dx .

Then we can produce the stability result of 1Ω analogous to Theorem 1.

Theorem 2 (Choi–Jeong–L. ’22)

We have
sup
t≥0
‖Ωt4Ω‖Z . ‖Ω04Ω‖1/2

Z + ‖Ω04Ω‖Z .

Note

We do not present key ideas of Theorem 2, since they are analogies of ideas from Theorem 1. We
use its result to prove our second goal. In particular, we use the following; if Ω0 ⊂ {x1 < 3} and
|Ω04Ω| ≤ 1, then we have

sup
t≥0
|Ωt4Ω| . |Ω04Ω|1/2.
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Main results

Theorem 3 (Choi–Jeong–L. ’22)

∃ an open, bounded set Ω0 ∈ S+ with smooth, connected boundary ∂Ω0 ∈ S+ := {x1 ≥ 0} that
satisfies

length(∂Ω0) ≤ 20, ∂Ω0 ∩ ∂S+ 6= ∅,

and
length(∂Ωt) & t ∀t ≥ 0.

Ω0

t = 0

Ωt

t > 0
Figure: A schematic diagram of the patch 1Ωt from Theorem 3 on S+

Remark

This says that 1Ω can be viewed as having instability in the sense of perimeter.

This tells that Ωt twists around on S+ and length(∂Ωt) grows ∀ t ≥ 0, but this does not tell
us what the precise form of 1Ωt is going to be throughout the time evolution.
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Key ideas

Considering patches 1Ω and 1Ω0
in R2

+

u : velocity field in S+ from 1Ω.

Φt : flow map in R2
+ from periodic

extension of u.

x1

Ω

−π

π

0

3π

5π

7π

x2

time 0
Figure: The patch 1Ω in R2

+

u(t) : velocity field in S+ from 1Ωt .

Φt : flow map in R2
+ from periodic

extension of u(t).

time 0

x1

Ω0

−π

π

0

3π

5π

7π

x2

Figure: The patch 1Ω0
in R2

+
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Key ideas

Notable features of u2 on ∂S+ and the patch 1Φt (Ω) in R2
+

The vertical speed u2 of any point on the
boundary ∂S+ of S+

u2
∣∣
x1=0

= 1.

The growth rate of the vertical center of
mass of the patch 1Φt (Ω) in R2

+

d

dt

1

2π

∫
Φt (Ω)

x2dx = · · · =
1

2
.

x1

Ω

−π

π

0

3π

5π

7π

x2

time 0 time t

Φt

−π

π

0

3π

5π

7π

x1

x2

Φt(Ω)

Ω = Q(Φt(Ω))

Figure: A schematic diagram describing the dynamics of 1Φt (Ω).
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Key ideas

Controlling the vertical speed and the growth rate

Lemma 4 (Choi–Jeong–L. ’22)

Let Ω0 ⊂ {x1 < 3} satisfy |Ω0| = |Ω| and |Ω04Ω| ≤ 1. Then we have∣∣∣u2(t, x)
∣∣
x1=0
− u2(x)

∣∣
x1=0

∣∣∣ . |Ωt4Ω|1/2 . |Ω04Ω|1/4 ∀t ≥ 0, x2 ∈ T,∣∣∣∣ ddt 1

2π

∫
Φt (Ω0)

x2dx −
d

dt

1

2π

∫
Φt (Ω)

x2dx

∣∣∣∣ . |Ω04Ω|1/4 ∀t ≥ 0.
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Key ideas

The dynamics of 1Φt (Ωt )

x1

Ω0

−π

π

0

3π

5π

7π

x2

time 0 time t

Φt

Φt(Ω0)

−π

π

0

3π

5π

7π

x1

x2

Ωt = Q(Φt(Ω0))

Figure: A schematic diagram describing the dynamics of 1Φt (Ωt )
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Open problems

Open problems

For 1B1
, if we allow the perturbed vorticity ω0 to have a negative part, i.e. a negative

perturbation, then would it be stable? If not, then is there any counterexample which shows
instability in some sense?

Very recently, Drivas–Elgindi–Jeong (arXiv:2305.09582) proved the existence of a vortex
patch of some multiply connected set in R2 showing infinite perimeter growth for infinite
time, which is a surprising result. Then would there be a vortex patch of a simply connected
set in an unbounded domain which shows infinite perimeter growth for infinite time, without
using the boundary of the domain (if it exists)?
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Thank you!
Please feel free to ask any questions.

20 / 20



Main results

Remark

We enhanced the work of Wan–Pulvirenti ’85 by expanding the domain to R2, and the work
of Sideris–Vega ’09 by allowing perturbations which are not necessarily compactly supported.

More generally, we proved that a non-negative and monotone θ = θ(|x |) in L∞(R2) with

some decay at infinity, such as a Gaussian e−|x|
2
, is stable in the norm ‖ · ‖L1 +J (| · |) w.r.t.

nonpatch-type and non-negative perturbations not necessarily compactly supported in R2.
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Related works on stability of vortex solutions

Related works on stability of radial vorticities

Wan–Pulvirenti ’85 : L1-stability of the unit disc patch 1B1
in L∞(BR) w.r.t. patch-type

perturbations.

Sideris–Vega ’09 : L1-stability of the unit disc patch 1B1
in L∞(R2) w.r.t. patch-type

perturbations with compact support in R2.

sup
t≥0
|Ωt 4 B1|2 . sup

Ω04B1

∣∣|x |2 − 1
∣∣ · |Ω0 4 B1|.

Marchioro–Pulvirenti ’85 : L1-stability of a monotone vorticity θ = θ(|x |) in L∞(BR) w.r.t.
nonpatch-type perturbations.

Related works on stability of other vorticities in 2D domains

Marchioro–Pulvirenti ’85 : L1-stability of a monotone vorticity ζ = ζ(x1) in L∞([0, α]× T)
w.r.t. nonpatch-type perturbations.

Bedrossian–Masmoudi ’14 : Asymptotic stability of a planar shear flow u(x) = (0, x1) in the
full cylinder S := R× T.

Beichman–Denisov ’17 : Stability of a vortex patch 1{|x1|<L} in S for large enough L.

Tang ’87 : Stability of elliptic vortex patches in R2.

Choi–Jeong ’22 : Stability and instability of Kelvin waves in R2.
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Main results

Let us denote the weighted L1-norm involving the angular impulse as

‖f ‖J := ‖f ‖L1(R2) + J (|f |).

Also, let us denote ω0 ∈ (L1 ∩ L∞)(R2) as the non-negative perturbed vorticity and ω(t) as its
corresponding solution of (1).

Theorem 5 (Choi–L. ’22, θ = 1B1 )

We have
sup
t≥0
‖ω(t)− 1B1

‖J . ‖ω0 − 1B1
‖1/2
J + ‖ω0 − 1B1

‖J .

Remark

The previous stability results had dependences on either the size of the domain (or the support of
ω0) or the supremum of ω0, or both. Our result is independent on any information of the
perturbed initial data ω0. The L∞-condition of ω0 is only to guarantee the uniqueness of ω(t).
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Stability of the unit disc patch 1B1

Proposition 6 (Adaptation of Marchioro–Pulvirenti ’85 to patches on R2)

Let R > 0. Then ∀ compact set Ω0 ⊂ BR , we have

sup
t≥0
‖1Ωt − 1B1

‖L1(R2) .R ‖1Ω0
− 1B1

‖1/2

L1(R2)
+ ‖1Ω0

− 1B1
‖L1(R2).

Symmetric rearrangement Ω∗ of a finite-measured measurable set Ω in R2

Ω∗ := B√
|Ω|
π

= {|x | <
√
|Ω|
π
}, i.e., |Ω∗| = |Ω|.

J (1Ω∗ ) ≤ J (1Ω).

∵ J (1Ω)− J (1Ω∗ ) =

∫
Ω\Ω∗

|x |2dx −
∫

Ω∗\Ω
|x |2dx ≥

|Ω|
π
· |Ω \ Ω∗| −

|Ω|
π
· |Ω∗ \ Ω| = 0.
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Properties of rearrangements

Properties of rearrangements

Nonexpansivity:
‖1Ω∗ − 1B1

‖L1(R2) ≤ ‖1Ω − 1B1
‖L1(R2). (2)

Estimates of the difference of angular impulse between 1Ω and 1Ω∗ (adaptation of
Marchioro–Pulvirenti ’85 for patch):

‖1Ω − 1Ω∗‖L1(R2) . [J (1Ω)− J (1Ω∗ )]1/2 .R ‖1Ω − 1Ω∗‖
1/2

L1(R2)
. (3)

Indeed, if we let Bb = Ω∗ and β := |Ω \ Ω∗| = |Ω∗ \ Ω| = 1
2
‖1Ω − 1Ω∗‖L1 , then∫

Ω\Ω∗
|x |2dx =

∫
Ω∪Ω∗

|x |2dx −
∫

Ω∗
|x |2dx ≥

∫
(Ω∪Ω∗)∗

|x |2dx −
∫

Ω∗
|x |2dx =

2π

4
(a4

1 − b4),∫
Ω∗\Ω

|x |2dx =

∫
Ω∗
|x |2dx −

∫
Ω∩Ω∗

|x |2dx ≤
∫

Ω∗
|x |2dx −

∫
(Ω∩Ω∗)∗

|x |2dx =
2π

4
(b4 − a4

2),

where π(a2
1 − b2) = |Ω \ Ω∗| = β = |Ω∗ \ Ω| = π(b2 − a2

2). Thus,

J (1Ω)− J (1Ω∗ ) =

∫
Ω\Ω∗

|x |2dx −
∫

Ω∗\Ω
|x |2dx ≥

π

2
(a4

1 + a4
2 − b4)

=
β2

π
=

1

4π
‖1Ω − 1Ω∗‖2

L1 .
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Key ideas

Key ideas
Symmetric rearrangement Ω∗ of Ω ⊂ R2 is the disc s.t. |Ω∗| = |Ω| <∞.
Basic property : J (1Ω∗ ) ≤ J (1Ω).
Properties of the solution 1Ωt of (1) with initial data 1Ω0

:

J (1Ωt ) = J (1Ω0
), (Ωt)

∗ = (Ω0)∗, ∀t ≥ 0.

Nonexpansivity:
|Ω∗4B1| ≤ |Ω4B1|.

Estimates of the difference of angular impulse between 1Ω and 1Ω∗ (adaptation of
Marchioro–Pulvirenti ’85 for patch); if Ω ⊂ BR for some R > 0, then

|Ω4Ω∗| . [J (1Ω)− J (1Ω∗ )]1/2 .R |Ω4Ω∗|1/2.

x

y

−1 1−2 20

1

Figure: Nonexpansivity in 1D

Ω∖Ω* = (Ω ∪ Ω*)∖Ω*

Ω*∖Ω = Ω*∖(Ω ∩ Ω*)

(Ω ∪ Ω*)*∖Ω*

Ω*∖(Ω ∩ Ω*)*

J (1(Ω∪Ω∗)∗ ) ≤ J (1Ω∪Ω∗ ), J (1(Ω∩Ω∗)∗ ) ≤ J (1Ω∩Ω∗ ).

Figure: Estimating the difference of J between 1Ω and 1Ω∗
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Properties of rearrangements

Sketch of the proof of Proposition 6

We use the conservation J (1Ωt ) = J (1Ω0
) and the property Ω∗t = Ω∗0 :

‖ 1Ω∗t︸︷︷︸
=1Ω∗

0

−1B1
‖L1 ≤ ‖1Ω0

− 1B1
‖L1 , (∵ (2))

‖1Ωt − 1Ω∗t︸︷︷︸
=1Ω∗

0

‖L1 . [J (1Ωt )︸ ︷︷ ︸
=J (1Ω0

)

−J (1Ω∗0
)]1/2 .R ‖1Ω0

− 1Ω∗0
‖1/2

L1 (∵ (3))

≤ ‖1Ω0
− 1B1

‖1/2

L1 + ‖1B1
− 1Ω∗0

‖1/2

L1 ≤ 2‖1Ω0
− 1B1

‖1/2

L1 .

Hence, we have

‖1Ωt − 1B1
‖L1 ≤ ‖1Ωt − 1Ω∗t

‖L1 + ‖1Ω∗t
− 1B1

‖L1 .R ‖1Ω0
− 1B1

‖1/2

L1 + ‖1Ω0
− 1B1

‖L1 .
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Properties of rearrangements

Symmetric-decreasing rearrangement f ∗ of a non-negative function f ∈ L1(R2):

{x ∈ R2 : f ∗(x) > c} = {x ∈ R2 : f (x) > c}∗ ∀c > 0.

Note

f ∗ is radial and non-increasing.

|{f ∗ > c}| = |{f > c}| ∀c > 0, ‖f ∗‖L1(R2) = ‖f ‖L1(R2), J (f ∗) ≤ J (f ).

Generalizations of key lemmas

Lemma 7 (Nonexpansivity)

Let f , g ∈ L1(R2) be non-negative with g = g∗. Then

‖f ∗ − g‖L1(R2) ≤ ‖f − g‖L1(R2).

Lemma 8 (Adaptation of Marchioro–Pulvirenti ’85)

Let f ∈ L∞(R2) be non-negative with J (f ) <∞. Then

‖f − f ∗‖2
L1(R2)

. ‖f ‖L∞(R2) · [J (f )− J (f ∗)].
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Cut-off operation

Remark

To avoid the stability’s dependence on ‖ω0‖L∞(R2), we use the cut-off operator Γ:

(Γf )(x) :=

{
f (x) if f (x) ≤ 2,

2 if f (x) > 2.

Then the rearrangement and the cut-off operator commute with each other:

Γ(f ∗) = (Γf )∗.

In addition, we can estimate the measure of the region {f > 2} as

|{f > 2}| =

∫
{f>2}

1dx ≤
∫
{f>2}

|f − 1|dx ≤
∫
{f>2}

|f − 1B1
|dx ≤ ‖f − 1B1

‖L1(R2).
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Cut-off operation

Sketch of the proof of Theorem 1

We decompose the L1-norm of the perturbation using the cut-off operator Γ as

‖ω − 1B1
‖L1(R2) = ‖ω − 1B1

‖L1({ω>2}) + ‖Γω − 1B1
‖L1({ω≤2}).

For the upper part, we have

‖ω − 1B1
‖L1({ω>2}) ≤

∫
{ω>2}

ωdx +

∫
{ω>2}

1B1
dx =

∫
{ω0>2}

ω0dx +

∫
{ω>2}

1B1
dx

≤
∫
{ω0>2}

|ω0 − 1B1
|dx +

∫
{ω0>2}

1B1
dx +

∫
{ω>2}

1B1
dx

≤ ‖ω0 − 1B1
‖L1(R2) + |{ω0 > 2}|+ |{ω > 2}| . ‖ω0 − 1B1

‖L1(R2).

For the lower part, we get

‖Γω − 1B1
‖L1({ω≤2}) ≤ ‖Γω − (Γω)∗︸ ︷︷ ︸

=(Γω0)∗

‖L1(R2) + ‖(Γω)∗ − 1B1
‖L1(R2)︸ ︷︷ ︸

≤‖Γω0−1B1
‖
L1(R2)

.
[
J (Γω)− J

(
(Γω0)∗︸ ︷︷ ︸

=Γ[(ω0)∗]

)]1/2
+ ‖ω0 − 1B1

‖L1(R2) ≤ · · ·

. J (|ω0 − 1B1
|)1/2 + ‖ω0 − 1B1

‖1/2

L1(R2)
+ ‖ω0 − 1B1

‖L1(R2).

Lastly, we have

J (|ω − 1B1
|) ≤ · · · ≤ 2‖ω − 1B1

‖L1(R2) + J (|ω0 − 1B1
|).
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Related works on various instabilities of vortex solutions

Related works on various instabilities of vortex solutions
Nadirashvili ’91 : Construction of a C1-unstable smooth solution on an annulus domain,
where two points on inner and outer circle have different tangential velocities for all time.
Choi–Jeong ’22 : Construction of a patch in R2, showing perimeter growth for any large
finite time.

Figure: A schematic diagram of Nadirashvili ’91 Figure: A schematic diagram of Choi–Jeong ’22

Remark

These tell us about growth of a line or a boundary component, but these does not tell us about
their precise form throughout time.

Growth of support size : Choi–Denisov ’19, Choi–Jeong ’22, etc.
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Instability

Choi–Denisov ’19 : Growth of support size of a non-negative ω ∈ L∞(S) in x1-direction with
rate O(t1/3 ln2 t).

Choi–Jeong ’22 : Filamentation for perturbation of Lamb dipole in R2 (growth of ∇ω and
support size for all time).
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Key ideas

The dynamics of 1Φt (Ω) in R2
+

uext : periodic extension of u on R2
+, Φt : flow map on R2

+ induced from uext.

The velocity field u determined by 1Ω.

u1(x) = −∂2ψ(x) = 0 (∵ ψ = ψ(x1)),

u2(x) = ∂1ψ(x) = −ψ′(s)

∣∣∣∣s=∞

s=x1

= −
∫ ∞
x1

ψ′′(s)︸ ︷︷ ︸
=∆ψ(s)

ds = −
∫ ∞
x1

1(0,1)(s)ds

=

{
1− x1 if 0 ≤ x1 < 1,

0 if x1 ≥ 1.
(∵ ψ|x1=0 = 0, ∂1ψ → 0 as x1 →∞, |ψ(t, x)| . x1 + 1.)

The growth rate of the vertical center of mass of 1Φt (Ω) in R2
+.

k(f ) :=

(∫
R2

+

f (x)dx

)−1

·
∫
R2

+

x2f (x)dx .

⇒
d

dt
k(1Φt (Ω)) =

d

dt

[(∫
Φt (Ω)

1dx

)−1

·
∫

Φt (Ω)
x2dx

]
=

1

|Ω|

∫
Ω

d

dt
Φ

2
t (y)dy

=
1

2π

∫
Ω
u2

ext(y)dy =
1

2π

∫
Ω
u2(y)dy =

∫ 1

0
(1− y1)dy1 =

1

2
.
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Preprints

Global regularity of some high-dimensional axisymmetric Euler flows

Although d ≥ 4 is not physical, there are several works suggesting possibility of a finite-time
blow-up of smooth solutions of axisymmetric, swirl-free Euler equations in higher dimensions.

(Choi–Jeong–L., to appear) In d = 4, if ω0 vanishes at r = 0 and has some decay at infinity,
then

‖ω(t)‖L∞(R4) .ω0 eCt ∀t ≥ 0.

Also, for d ≤ 7, if ω0 is single-signed and compactly supported, then

‖ω(t)‖L∞(Rd ) .ω0

{
(1 + t)

4(d−2)
7−d , d = 4, 5, 6,

eC4t , d = 7,
∀t ≥ 0.

(L., preprint) ∀ d ≥ 3, if ω0 is single-signed and compactly supported, then

‖ω(t)‖L∞(Rd ) .ω0 [(1 + t) ln(e + t)](d−2)/(d+1) ∀t ≥ 0.

(Open question by Drivas–Elgindi) Can singularities form from smooth data for the
axisymmetric no swirl Euler equations on Rd when d ≥ 4?
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Ongoing projects

Half cylinder

Construction of a vortex solution which shows gradient growth for all time.

Finding growth rate of the horizontal size of support of a vortex solution with compact
support.

Bi-rotational flow in 4D coordinates (r , θ, s, φ)

Obtaining upper or lower bound of radial impulse of the flow.
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