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The Navier-Stokes equations

... describe the motion of a viscous, incompressible fluid.

Conservation of Momentum

∂t u + (u · ∇)u︸ ︷︷ ︸
acceleration

−ν∆u +
1
%
∇p = 0

I u(x , t) is the fluid velocity field
I p(x , t) is the (scalar) pressure
I ν > 0 is the viscosity
I % = constant > 0 is the density

Incompressibility

div u = 0
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Instability in the Navier-Stokes equations

The Reynolds number

Re =
LU
ν

≈ |(u · ∇)u|
|ν∆u|

is a dimensionless number which roughly characterizes the flow regime.

The onset of vortex shedding in flow around a cylinder, from Dynamics and Control of Flow around Circular
Cylinder, by Ramsay, Sellier, and Ho, in the 2019 APS DFD Gallery of Fluid Motion. Available on YouTube.
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https://youtu.be/pW0JfEBE9h8?t=20


Vortex shedding at Re = 22000

Three-dimensional turbulent flows develop features at length scales
L × Re−3/4 and, hence, are extremely difficult to resolve.

Turbulent flow around a square cylinder at Reynolds number 22000: a DNS study, by Triasa, Gorobetsa,
and Oliva (Computers & Fluids, 2015). Available on YouTube.
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https://youtu.be/c8zKWaxohng?t=16


A rapid tour of the PDE theory of the Navier-Stokes equations
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The Navier-Stokes equations are expected to be a self-consistent
deterministic model capable of predicting the motion of a fluid.

{
∂t u + (u · ∇)u −∆u +∇p = f

div u = 0
in R3 × R+ (NS)

(Q) Are the Navier-Stokes equations well-posed globally in time?

I Local-in-time well-posedness in Lp, p > 3

Heuristic: u ∼ σ

|x |κ =⇒ u · ∇u ∼ σ2

|x |2κ+1 , ∆u ∼ σ

|x |κ+2

When κ < 1 (p > 3), the viscous term wins at small scales.

I The energy balance (f = 0, for simplicity)

1
2

∫
|u(x , t)|2 dx +

∫ t

0

∫
|∇u|2 dx ds =

1
2

∫
|u0(x)|2 dx .

is not strong enough to prove global well-posedness.
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Weak solutions

For each u0 ∈ L2 (div u0 = 0) and f ∈ L1
t L2

x , there exists a global-in-time
Leray-Hopf solution [Leray, Acta 1934], [Hopf, Math. Nachr. 1951]:

u ∈ L∞t L2
x ∩ L2

t Ḣ1
x (R3 × R+)

I solves (NS) for some pressure p,
I attains the initial data u0, and
I satisfies the energy inequality for all t > 0:

1
2

∫
|u(x , t)|2 dx +

∫ t

0

∫
|∇u|2 dx ds ≤ 1

2

∫
|u0(x)|2 dx +

∫ t

0

∫
f · u dx ds .

Suitable weak solutions further satisfy the local energy inequality:

(∂t −∆)
1
2
|u|2 + |∇u|2 + div

[(
1
2
|u|2 + p

)
u
]
≤ f · u

and partial regularity [CKN, CPAM 1982] when f ∈ L5/2+:

Singularities cannot fill a curve in spacetime.
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Cartoon picture

Weak solutions become relevant if the strong solutions break down.
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Weak solutions: a success story

I [Kruzhkov 1970] In spite of shock discontinuities, for each u0 ∈ L∞,
there exists a unique entropy solution of Burgers equation

∂t u + u∂xu = 0 . (B)

I Viscous regularization converges to the unique entropy solution:

∂t u + u∂xu = ε∆u . (Bε)

I A dispersive regularization need not [Lax–Levermore, CPAM 1983]:

∂t u + u∂xu + ε2∂3
x u = 0 . (KdVε)
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[McLaughlin & Strain, Computing the Weak Limit of KdV, CPAM 1994].

NB: The PDE convention here is ∂t u − 6u∂x u rather than ∂t u + u∂x u.
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Mounting evidence

In 1969, Ladyzhenskaya constructed an example of non-uniqueness
for (NS) within a Leray–Hopf-type class with caveats.

The example described here can provoke “displeasure” for only one reason. It has
been constructed for boundary conditions of type (18) but not for adhesion
conditions...

The examples presented here are interesting to me in that they refute the
entrenched opinion on the “naturalness” for nonstationary problems of physics and
mechanics of the class of solutions which have finite energy norm.

Recent progress.

I [Jia-Šverák, Inventiones 2014, JFA 2015] and [Guillod-Šverák, arXiv
2017] produced compelling numerical evidence of non-unique
Leray solutions but no “proof.”

I Convex integration constructions of [Buckmaster-Vicol, Ann.
Math. 2019] in Ct H

β
x (small β) without energy inequality.

Proof, but no Leray solutions.
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Theorem (A.-Brué-Colombo, Ann. Math. 2022)

There exists a one-parameter family of distinct suitable Leray–Hopf
solutions to the Navier–Stokes equations with identical body force
f ∈ L1

t L2
x and identical initial velocity u0 ≡ 0.
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Self-similarity
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Self-similar solutions

I (NS) has a one-parameter scaling symmetry :

uλ(x , t) = λu(λx , λ2t) , fλ(x , t) = λ3f (λx , λ2t) , λ > 0 .

I Self-similar solutions are invariant under the scaling symmetry:

u(x , t) =
1√
t

U(ξ), f (x , t) =
1

t
3
2

F(ξ) , ξ =
x√
t
.

[Leray 1934] proposed self-similar singularity formation
I The Navier-Stokes equations for the similarity profile U are

−1
2

(1 + ξ · ∇ξ) U︸ ︷︷ ︸
additional terms

−∆U + U · ∇U +∇P = F , div U = 0 (NS-SS)

with boundary condition

|U − u0| = o
(

1
|ξ|

)
,

where u0 is −1-homogeneous.
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The Jia-Šverák-Guillod picture

I Fix a0 divergence-free and −1-homogeneous and f = 0.
I Increase size σ of initial data u0,σ,

u0,σ = σa0 , σ ≈ Reynolds number ≥ 0 .

I Extract curve-in-σ of self-similar solutions [Jia-Šverák, Invent. 2014].

Theorem (Jia-Šverák, JFA 2015)

Suppose bifurcation (saddle-node, Hopf...). Then, upon truncating
properly, there exist two distinct Leray-Hopf solutions with identical
compactly supported data u0, and |u0| = O(1/|x |) at x = 0.

I Linearized operator around self-similar solution Uσ:

− LσU = −1
2

(1 + ξ · ∇ξ) U −∆U + P (Uσ · ∇U + U · ∇Uσ) .
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|x|Uσ · eθ for two solutions when σ ≈ 300 [Guillod-Šverák, arXiv 2017]. See video on Guillod’s website.

Low-lying eigenvalues of the linearized operator Lσ [Guillod-Šverák, arXiv 2017]

16 / 34



Self-similarity variables

I Self-similar solutions are steady states of the evolutionary PDE

∂τU −1
2

(1 + ξ · ∇ξ) U︸ ︷︷ ︸
additional terms

−∆U + U · ∇U +∇P = F , div U = 0 . (NS-SS)

I This is (NS) in self-similarity variables

ξ =
x√
t
, τ = log t ∈ R ( τ → −∞ ⇐⇒ t → 0+ )

u(x , t) =
1√
t

U(ξ, τ), f (x , t) =
1

t
3
2

F(ξ, τ)

[Giga-Kohn 1980s] semilinear heat equation

I U = O(1), smooth, decaying =⇒ u in critical spaces, e.g., L∞t L3,∞
x
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Flexibility of a force

The Jia-Šverák-Guillod picture is difficult to verify analytically.

We incorporate a body force to add flexibility to the problem.

Theorem (A.-Brué-Colombo, Ann. Math. 2022)

Suppose there exist Ū ∈ C∞0 (R3) (div Ū = 0) satisfying
I (Linear instability) Lss has an unstable eigenvalue.

Then there exists a non-trivial solution U on the unstable manifold of Ū,
that is, U τ→−∞−→ Ū exponentially backward-in-log time, and

ū =
1√
t

Ū(ξ), u =
1√
t

U(ξ, τ)

are the desired distinct suitable Leray-Hopf solutions with zero initial
velocity and identical force f̄ , whose similarity profile is

F̄ := −1
2

(1 + ξ · ∇ξ)Ū −∆Ū + Ū · ∇Ū .
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“Non-uniqueness in backward time”

ẋ = f (x) . . . equilibrium f (x0) = 0

Linearized equation : ẏ = (Df )(x0)y

Unstable manifold Mu

I All trajectories x(τ)
τ→−∞−→ x0 with

certain exponential rate
I dim Mu = dim Eu

I Generalization to semilinear parabolic
PDEs: [Henry 1981]
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Finding unstable solutions
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Euler steady states

Claim. To complete the argument, it is enough to find a smooth,
decaying steady state to the Euler equations in three dimensions,

∂t u + u · ∇u +∇p = f in R3 × R+ , (E3d)

unstable due to an unstable eigenvalue of the linearized operator.

Heuristic.

−L(β)ss U = −1
2

(1 + ξ · ∇ξ) U −∆U︸ ︷︷ ︸
perturbative when β�1

+βP
(
Ū · ∇U + U · ∇Ū

)

Remarkably, no suitable steady state was known, and a key
component and major difficulty of our proof is its construction!
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Unstable vortices

The two-dimensional Euler equations

∂tω + u · ∇ω = 0 , ∆ψ = ω , u = ∇⊥ψ (E2d)

have a family of steady states known as vortices,

ū(x) = ζ(r)x⊥, ω̄(x) = ω̄(r), x ∈ R2, r = |x | .

Theorem (Vishik, arXiv ’18)

There exists a smooth unstable vortex ω̄. Its velocity profile ū can be
chosen to be compactly supported [ABC 2022].

Remarks.
I Instability of shear flows explored in [Tollmien 1935], [Lin, SIMA 2002]
I Vishik’s mechanism is the same and, to our knowledge, one of the

only known mechanisms for generating unstable eigenvalues.
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Non-uniqueness in the forced 2d Euler equations

The unstable two-dimensional vortex is a key ingredient in

Theorem (Sharpness of the Yudovich class, Vishik, arXiv ’18)

For every p ∈ (2,+∞), there exist two distinct finite-energy weak
solutions ū,u of the Euler equations

∂tω + u · ∇ω = curl f , ∆ψ = ω , u = ∇⊥ψ on R2 × (0, 1) (E2d)

satisfying
ω̄, ω ∈ L∞t (L1 ∩ Lp)x ,

with zero initial velocity [ABCDGJK, arXiv ’21] and identical body force

f ∈ L1
t L2

x , curl f ∈ L1
t (L1 ∩ Lp)x .
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The Bressan-Murray-Shen scenario in unforced 2d Euler equations

[Bressan-Shen ’21], [Bressan-Murray ’20], inspired by [Elling], [Pullin]

ω0(x) =
1

r
1
α

φ

(
x
|x |

)
(−α)-homogeneous
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Vortex rings

Steam vortex ring above Mount Etna, Italy

Vortex ring in axisymmetric coordinates

Our unstable three-dimensional
object will be a vortex ring.
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Key observation

As r → +∞, the axisymmetric Euler equations without swirl formally
converge to the two-dimensional Euler equations.

I. Axisymmetric vorticity equation (ω = −ωθ(r , z)eθ, ψ = ψθ(r , z)eθ):

∂tω
θ + u · ∇ωθ − ur

r
ωθ = 0

(
∂2

r +
1
r
∂r −

1
r2 + ∂2

z

)
ψθ = ωθ

u = −∂zψ
θer +

(
∂r +

1
r

)
ψθez

II. Two-dimensional vorticity equation

∂tω + u · ∇ω = 0

∆x,yψ = ω, u = ∇⊥ψ
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Constructing the vortex ring

I Recenter coordinates on the vortex, so r > −`.

I Let ũ be a truncation of Vishik’s unstable vortex.

 This is the vortex core (x → r , y → z).

I Correction v` keeps ũ` divergence-free in the physical variables:

ũ` = ũ + v`, ω̃` = curl` ũ` := −∂z ũr
` + ∂r ũz

` .
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Linearized operators

I Linearization about the 3d vortex ring at distance `:

− L`ω := ũ` · ∇ω︸ ︷︷ ︸
=:−M`ω

+ BS`[ω] · ∇ω̃`︸ ︷︷ ︸
=:−K`ω

−(r + `)−1BS`[ω]r ω̃` − (r + `)−1ũr
`ω︸ ︷︷ ︸

=:−S`ω

I Linearization about the 2d vortex:

− L∞ω := ũ · ∇ω︸ ︷︷ ︸
=:−M∞ω

+ BS2d [ω] · ∇ω̃︸ ︷︷ ︸
=:−K∞ω
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Proposition (Axisymmetric instability)

Let λ∞ be an unstable eigenvalue of L∞. For all ε ∈ (0,Reλ∞) and
`�ũ,ε,λ∞ 1, L` has an unstable eigenvalue λ` with |λ` − λ∞| < ε.

Spectral projection Pr`ω :=
1

2πi

∫
~c

R(λ, L`)ω dλ

Claim: R(λ, L`P`)ω → R(λ, L∞)ω in L2
γ , ∀ω ∈ C∞0 (R2), uniformly on ~c.
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Conclusion
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Toward a more perfect picture

I Is it possible to remove the force?
I Interactions with computer-assisted techniques

I Non-unique continuations of blow-ups?
I Minimal mass blow-up in focusing nonlinear Schrödinger equation

[Merle, CPAM 1992]
I Bubbling and reverse bubbling in harmonic map heat flow

[Davila–Del Pino–Wei, Invent. 21]
I Generalized self-similar blow-up and continuation in complex

Ginzburg-Landau equation
[Lessons from CGL, Online Lecture by Šverák, 2020]

I Non-existence of a selection principle via regularization?

I What would the implications of non-uniqueness be for physics?
I Case study: Non-uniqueness in inviscid limit to vortex sheet
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Kelvin-Helmholtz instability

[Thalabard-Bec-Mailybaev, Communications Physics 2020]

I Regularize: Hyperviscous Navier-Stokes with viscosity ν
I Randomize: (vortex sheet) + (ε× random perturbation)

As ν ∼ ε→ 0+, a non-trivial measure of solutions emerges with (maybe)
universal macroscopic properties spontaneous stochasticity
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Conclusion

Lorenz, “The predictability of a flow which possesses many scales of
motion”, 1969:

It is proposed that certain formally deterministic fluid systems which
possess many scales of motion are observationally indistinguishable
from indeterministic systems; specifically, that two states of the sys-
tem differing initially by a small “observational error” will evolve into
two states differing as greatly as randomly chosen states of the system
within a finite time interval, which cannot be lengthened by reducing
the amplitude of the initial error.

I He refers to a more extreme version of chaos than the “standard
butterfly effect”, i.e., sensitive dependence on initial conditions (in
which the solution map is still well-defined and continuous).

I This is termed the “real butterfly effect” in [Palmer-Döring-Seregin,
Nonlinearity 2014].

I Our understanding of this concept from the perspective of
rigorous PDEs and dynamics is in its early stages!
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Thank you!
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