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Structures traditionally seen as a system of

connected parts with the goal of bearing a load

while maintaining shape.

Structural mechanics applied now much more widely.
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Materials with engineered microstructure

Macro

Micro

Nano
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The line between material and structure is no longer clear.



Flexible Active Multiphysics

Structures now make use of the nonlinear regime

Harnessing instabilities Biological systems
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Materials with 

engineered 

microstructure

Nonlinear mechanics 

of soft solids
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Materials optical 

attenuation

Patterns on soft

solids

+

Textiles

Flexible fiber 

compositesCellular solids

Granular 

media
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FLEXIBLE FIBER  COMPOSITES
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Deployable methods, especially for precision large rigid

structures or flexible materials are the enabling force behind

developing the larger systems needed to attain advancements

in science and engineering of today and tomorrow.

NASA Space Technology Roadmap, 2012

MOTIVATION
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James Webb 

Space Telescope
Sun shield (12.2 m × 18 m)



Traditional deployable structures are rigid

and require mechanical elements:

• Complex

• Heavy

• Expensive

• External actuation

MOTIVATION
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NuSTAR – Space x-ray telescope (caltech.edu)

Folded mast (atk.com)

Stowed mast in canister 

(atk.com)



An alternative are structures that deform

elastically during packing.

The structure self deploys releasing strain

energy.

Designs are limited by the curvature failure

of the material.

DLR-CFRP boom, 

German Aerospace Center 

(Leipold et al., 2005)

Northrop Grumman Astro

Aerospace Flattenable Foldable 

Tubes for the Mars Express 

(Adams et al., 2009)

Boeing reflectors on the Mobile 

Satellite System (Tan et al., 2006)

MOTIVATION
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Fiber composites with a very soft elastomeric matrix can be folded to very

high curvatures without breaking.

Fiber composite Miura-Ori pattern (Maqueda et al., 2012)

MOTIVATION
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Why does this happen?

Does it have any effect on the material?

How tightly can we pack the composite?



Elastic Memory Composite bent at high temperature (Francis, 2008)

When folded, the fibers microbuckle without breaking.

Fiber microbuckling acts as a stress relief mechanism.

WHY DOES THIS HAPPEN?
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HTS40-12K carbon fibers (TohoTenax)

Diameter: 7 mm

Tensile modulus: 240 GPa

Failure strain: 1.8 %

CF19-2615 silicone (NuSil Technology)

Initial tensile modulus: 1 MPa

Failure elongation: 120% – 140%

No viscoelastic behavior or Mullins effect observed.
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EXPERIMENTAL CHARACTERIZATION

Vf = 30%,  = 0.5 mm-1



Bending behavior:

• Highly nonlinear

• Strain softening and hysteresis 

under cyclic loading

FLJ and Pellegrino, IJSS, 2012

EXPERIMENTAL CHARACTERIZATION
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=0.21 mm-1

=0.29 mm-1

=0.35 mm-1



Vf = 65%
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EXPERIMENTAL CHARACTERIZATION

It is hard to decouple material effects from the

nonlinearities due to microbuckling.

Tension perpendicular to the fibers isolates the

effects of damage.

Behavior close to typical filled rubber (Mullins effect).

Fiber 

direction

Loading 

direction

Vf = 22%



Finite element model in Abaqus/Standard:

• Representative volume element (RVE) with periodic

boundary conditions

• Continuum elements used for both fiber and matrix

• Gent hyperelastic model for the matrix, fitted from tensile

experiments:

• Different fiber distributions used:

- Purely random

- Random based on micrographs

FINITE ELEMENT MODELING
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Vf = 65% Vf = 22%

Square Hexagonal
Random 

(Poisson process)

Usual idealizations

Reality
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FINITE ELEMENT MODELING



The fibers can be used to calculate the second order

intensity function K(r) (Pyrz, 1994)

It measures the average number of fibers within a

radial distance from an arbitrary fiber:

Total number of fibers

Factor introduced to correct 

edge effects

Reconstruction algorithm (Rintoul and Torquato, 1997) minimizing the

following energy:

Area considered

Number of fibers inside a 

circle of radius r
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FINITE ELEMENT MODELING



y = 1%

Microstructure affects the 

stress and strain 

concentrations.

This is very important to 

model the damage process.

Examples with Vf = 50%

ReconstructedPurely random

Purely random Reconstructed
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FINITE ELEMENT MODELING



The simulation can only capture the 

initial stiffness.

Cohesive elements introduced to 

model the damage due to debonding.

FINITE ELEMENT MODELING
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FLJ and Pellegrino, IJSS, 2012

Model with cohesive elements captures:

Nonlinearity.
Damage under cyclic 

loading (no hysteresis)

Dependence on fiber volume fraction
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Vf = 65% Vf = 22%



The model predicts a reduction in fiber strain.

However, this effect is not enough to explain the performance of the

material.

Vf = 30%

 = 0.35 mm-1

FIBER FAILURE



The same happens when single carbon fibers under bending.

This is done with the fiber loop test (Sinclair, 1950):

Assuming  =  r , the maximum strain at A is much higher

than the fiber failure strain under uniaxial tension.

FIBER FAILURE
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FIBER FAILURE

F

small flaw

Carbon fiber as a very complicated structure.

Failure is probabilistic in nature, and depends

on the presence of flaws.

F
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F

small flaw big flaw

F

FF Bennet and Johnson (1978)



FIBER FAILURE

M M

region with high 

tensile stress

small flaw

big flaw
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Under bending the stress is highly localized, so curvature failure is

higher than expected.

Can we connect tension and bending? 



Brittle failure is modeled with a Weibull distribution:

The Weibull modulus m describes the variability in strength:

FIBER FAILURE
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V0 – volume dependence

0 – normalizing stress



Testing of single fibers provides a description of the failure process.

0 = 4.68 MPa

m = 10.397

0= 1.89 %

However, this equation is a simplification for pure tension.

FIBER FAILURE
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For general loading:

For pure bending:

Loop test can be analyzed using 

Euler’s elastica.

Failure as function of 

curvature
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In the case of fiber microbuckling in the composite:

Francis et al., 2007

Wavelength:

To compare, specimens of 0.5 mm thickness folded to different curvatures.

We then calculate the percentage of broken fibers.

FIBER FAILURE
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Amplitude:



FLJ and Pellegrino, JAM, 2013

The model is able to predict the initiation of failure.

FIBER FAILURE
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Numerical simulations useful to understand 

the mechanics.

The design of structures requires a simple 

homogenized response.

HOMOGENIZATION

Homogenization not only important in fiber composites:

Holzapfel et. al (2001)

Biological tissuePolycrystalline 

materials

Groeber et. al (2008)Danas et. al (2012)

Magnetorheological

elastomers



HOMOGENIZATION

Homogenization techniques aim to provide a prediction:

Strain energy of heterogeneous materials:

where:

Normally expressed as a function of the deformation invariants:

Nonlinear homogenization:

Several predictions exist, with explicit solutions for Neo-Hookean

composites.
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HOMOGENIZATION

deBotton (2005)

Lopez-Pamies and Ponte Castañeda (2006)

deBotton et al. (2006)

Agoras et al. (2009)

Lopez-Pamies and Idiart (2010)

Iterative homogenization:

Sequentially coated composites:

32



HOMOGENIZATION

Numerical homogenization for nonlinear general 3D loading.

In-plane 

deformation

Out-of-

plane 

deformation

Combined model for all loadings

FLJ, Composites B, 2014 33



Collaboration with:

Prof. Pedro Reis (MIT)

Prof. Jorn Dunkel (MIT, Mathematics)
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Dr. Norbert Stoop (MIT, Mathematics)

Dr. Denis Terwagne (Universite Libre de Bruxelles)

PATTERN FORMATION IN SOFT SOLIDS
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Audoly and Boudaoud (2008), Cai et al. (2011)

A thin film on a soft elastic foundation wrinkles under compression:

Allen (1969)

MOTIVATION AND BACKGROUND

Biaxial 
compression: Energy 

minimization:

Observed 
experimentally:

Bowden et al. (1998)



Terwagne et al. (2014)

Drag reduction: Effect of curvature on wrinkling:

Lagrange, FLJ, Terwagne, Brojan, Reis (JMPS, in review)



Collaboration with Norbert Stoop and Jorn Dunkel (MIT Math)

The energy minimization in the film can be rewritten as a modified Swift-

Hohenberg equation:

bending

stretching higher order 

stretching

local film and 

substrate

Stoop et. al (2015)

MODELING WRINKLING ON CURVED SURFACES



CRYSTALLOGRAPHY IN 3D

Goal:

Treat dimples as lattice elements.

Study the effect of curvature on crystal structures.

Sphere

R = 70 

Ellipsoid

Rx = 2 Ry = 2 Rz = 100 
Torus

R = 5 r = 80 

Crystallography shown to be independent of the physical 
potential (Bowick et al., 2002; Bausch et al., 2003) 38



CRYSTALLOGRAPHY IN 3D

Planar crystals tend to arrange in 

regular lattices.

A hexagonal lattice is space-filling and 

usually minimizes energy.

This is not true in 2D crystals in 3D curved surfaces, where 

defects are necessary.

Some examples:
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Geodesic dome

Graphene

(Zhang et al., 2014)
Football

Rotavirus

Colloids

(Irvine at al., 2010)

Microcapsules

(Chen et al., 2015)



CRYSTALLOGRAPHY IN 3D

First, there is a topological need:

In a sphere that usually means 12 pentagons: 

40Dodgson (1996)

Euler’s rule:

Topological charge:

Total charge: Sphere:

Torus:

s = -2s = -1s = 0s = 1s = 2



Five defect: 

Positive

Seven defect:

Negative

Dislocation:

Screens strain
Neutral

CRYSTALLOGRAPHY IN 3D

Second, defects reduce energy required to conform to surface:

Irvine et al, 2012 41

As size increases, more defects appear:



EFFECT OF SYSTEM SIZE

R /  = 50 R /  = 100

R /  = 150 R /  = 200

R /  = 20
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Similar scaling for all geometries

Agreement with results for colloids:

R /  = 40

Bausch et al. (2003)
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EFFECT OF CURVATURE

Relationship between defects and curvature:

If we consider larger caps of each solid:

Gauss-Bonnet:

Euler:



DEFECTS IN ELLIPSOID

Along 

poles

Parallel to 

equator

Single defects Defect chains

Chains:

• Position of centroids

• : Angle between end-to-
end vector and tangent t
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Along R 

(or )

Along r 

(or )

DEFECTS IN TORUS

Single defects Defect chains

Chains:

• Position of centroids

• : Angle between end-to-
end vector and tangent t



GLOBAL STRUCTURE IN TORUS

Positive chains: Approximately eight, equidistant, along outer 

side.

Negative chains: Same number, inner side.

Neutral chains: Between pairs of charged chains, in 

regions with zero gaussian curvature, 

perpendicular aligment.

Location and structure of defects

Positive: Negative:

Arrangement of chains can be interpreted as charged particles 

in an electric field. (Bowick et al., 2004) 46



GLOBAL STRUCTURE IN TORUS

Positive to positive:  = /4

Negative to positive:  = 0.

Neutral to positive:  = /8.

PDF of distance between centroid 

of chains shows alignment.
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GLOBAL STRUCTURE IN TORUS

Global orientation of the crystal lattice:

Hypothesis:

Nucleation of regular (hexagonal) lattice is favored 

along lines with minimum Gaussian curvature.

Lines connecting 

consecutive lattice lements

Geodesic of minimum 

Gaussian curvature
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PRE-STRETCH INDUCED PATTERNS

New method to create different patterns:

VPS8  – E  0.22 MPa x = y  2

VPS32  – E  1.2 MPa Thickness  300 mm
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PRE-STRETCH INDUCED PATTERNS

New method to create different patterns:
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PRE-STRETCH INDUCED PATTERNS
T
h

ic
k
n

e
ss

Pre-stretch

The ridges are 

fully bonded.

Different from 

telephone chord 

instability.
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PRE-STRETCH INDUCED PATTERNS

T
h
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k
n

e
ss

Pre-stretch

Test with same material as 

substrate and thin film.

The wrinkles appear even 

with no stiffness mismatch.
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PRE-STRETCH INDUCED PATTERNS

Self-organized patterns:

Applications:

Cellular adhesion

(Craighead et al., 2001)

Micro lenses

(Chand and Crosby, 2006)

Microfluidics

(Moon et al., 2009)

Pres-stretch

Model to study patterns in  

biological systems:

Differential 

growth

Extend known phase-diagram 

to biaxial loading:

Wang and Zhao (2015)

Folding pattern

(Tachi, 2015)



MATERIALS FOR OPTICAL ATTENUATION

Pure PDMS PDMS + dye

FLJ, Kumar and Reis, Adv. Opt. Mat., 2016

Optical attenuation changes as the system is stretched:
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MATERIALS FOR OPTICAL ATTENUATION

T = 10-ct

t = t0 
T = T0

-
Beer-Lambert law:

3D elasticity:

Repeatable and fast: Predictable:

Attenuation as function of stretch:
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MATERIALS FOR OPTICAL ATTENUATION

Color dye for band-pass behavior:

Surface topography to increase effect:
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SUMMARY AND PERSPECTIVE

Materials with 

engineered 

microstructure

Overall strategy:

Combination of experiments with analytical and numerical work.

Simplified experiments  Modeling  Realistic experiments
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Nonlinear mechanics 

of soft and flexible 

structures+



Flexible composites
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  = 0.21 mm
-1

 = 0.29 mm
-1

 = 0.35 mm
-1

Fiber microbuckling

allows high curvatures
Nonlinear behavior 

and strain softening

Real fiber 

microstructure

Predict failure of fibers in 

the appropriate 

geometry

Response depends on 

deformation mode
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Patterns on soft solids

Curvature influences 

wrinkling patterns

Material for 

tunable opacity

New patterns available 

through pre-stretching

Model used to study the effect of 

Gaussian and principal curvatures

Curvature gradient 

controls defects
59



Funding:

Engineered microstructure

Fundamental problems:

• Instabilities

• Failure/damage

• Patterns

• Actuation

Soft and flexible structures+

THANK YOU

Whitesides group

Soft robotics

amtcomposites

Draping of textilesDeployable structures

Maqueda et al. (2012)

• Microstructure

• Homogenization

Biomedical devices

Patterson et al. (2012)

Active mirrors

University of Surrey

Solar sails

Beningo et al. (2002)

Cell characterization

Rogers et al. (2010)

Flexible electronics

Applications:





BACK UP SLIDES
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MOTIVATION AND BACKGROUND

Mode selection

Energy minimization

Slight initial curvature may play an important role in mode selection.

Can we model its effect?

Observed experimentally

Audoly and Boudaoud (2008)

Cai et al. (2011)
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DEFECTS IN GRANULAR CRYSTALS
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Camera

Shaker
Air 

bearing

Horizontal tray (147x147 mm)

9400 monodisperse brass spheres

d = 1.5875 ± 0.0025 mm (1/16” grade 200)

Defect ~ 450-500 particles
Imaging ~ 0.7 Hz          Video 25x speed
f = 28 Hz A = 0.23 mm        a = 30 m/s2

Time evolution of defect 

under horizontal vibration
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Crystal

Defect

Boundary

DEFECTS IN GRANULAR CRYSTALS

Coincident lattice Glassy region

Local Voronoi density:

Crystal – Defect – Boundary 

Structure on boundary correlates with misorientation

Dislocations

High (25-30º) Medium (15-20º) Low (5-10º)
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𝑇 = 𝑇0𝑒
𝑘

𝑇0 = 1295
+732
−467

[s]

DEFECTS IN GRANULAR CRYSTALS
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𝑘 = −0.24 ± 0.04 [1/deg]

Goal:

Model system to study the dynamics of grain 

boundaries in general crystalline media.

High spread in healing time.

Next step: high speed camera to measure “temperature”.
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HOMOGENIZATION

Implicit assumption: isotropy of the RVE.

Is the response the same for all loading directions?

All deformations can be described by stretch and direction:

Principal stretches:

Incompressibility:

Plane strain:

Spectral theorem:



HOMOGENIZATION

Ten different realizations of the RVE.

Response is a sine:

Expected value:

Coefficient of variation:

Parameters change for each RVE.

…



HOMOGENIZATION

Considering all directions reduces variability between models 

and improves convergence in response.

 = L / R
FLJ, Composites B, 2016



Fiber-matrix interphase

(with Prof. Lopez-Pamies)

Numerically efficient 

homogenization

ONGOING WORK

37

Reduce the cost of numerical 

homogenization, taking into account:

• RVE anisotropy

• Range of fiber interaction.

Effect of thin layer of material 

between fiber and matrix.

Homogenized response 

including damage

Introduce strain softening and 

damage into homogenized 

response.


