

Fracture & Fatigue of Advanced Metallic Alloys

<u>Bernd Gludovatz</u> & Robert O. Ritchie Materials Sciences Division, Lawrence Berkeley Laboratory University of California, Berkeley

Marios D. Demetriou & William L. Johnson California Institute of Technology, Pasadena

> Jamie J. Kruzic Oregon State University, Corvallis

Dhiraj Cartoor & Easo P. George Oak Ridge National Laboratory & University of Tennessee

> Anton Hohenwarter University of Leoben, Austria

Work supported by the Office of Science (Basic Energy Sciences) of the Department of Energy (Berkeley, Oakridge) and by the National Science Foundation (Caltech).

Mechanical Properties of Structural Materials

Past research (Master & PhD theses):

Fracture behavior of W-materials

- understanding mechanisms determining brittle fracture at low temperatures & ductile-to-brittle transition
- influence of grain size, dislocation density/arrangement, texture & impurities on fracture mechanism
- fracture behavior in the range RT to 1000C

Past and Current Research Non-metallic materials

Current research (Post-doctoral work) – bio-related work:

- Mechanical properties of biological & nature-inspired materials
 - using in-situ VP-SEM & SAXS/WAXD techniques
 - understanding effects like aging, strain rate, diseases (OI) and drugs on structural integrity of bone
 - investigating natural materials (fish scales, skin, nacre, ...)
 & mimicking natural structures using ceramics/metals/polymers

Strength of nano-particle reinforced fibers & thin films

- understanding mechano-optical sensing capabilities
- verifying usability of block copolymers for lithium metal batteries
- Fatigue behavior of UHMWPE (ultra-high-molecular-weight polyethylene)
 - used in hip and knee replacements
 - evaluation of fatigue crack propagation from various notch geometries

Mechanical Properties of Structural Materials

Past research (Master & PhD theses):

Fracture behavior of W-materials

- understanding mechanisms determining brittle fracture at low temperatures & ductile-to-brittle transition
- influence of grain size, dislocation density/arrangement, texture & impurities on fracture mechanism
- fracture behavior in the range RT to 1000C

Current research (Post-doctoral work) - engineering materials:

- Strength and toughness of nuclear graphite
 - investigating deformation mechanisms and damage tolerance in the temperature range room temperature to 1000C using synchrotron x-ray tomography
- Fracture & fatigue of bulk-metallic glasses (BMGs)
- Fracture behavior of high-entropy alloys (HEAs)

Fracture & Fatigue of Multi-Component Alloys

Fracture and fatigue of bulk-metallic glasses (BMGs)

Bernd Gludovatz & Robert O. Ritchie

Materials Sciences Division, Lawrence Berkeley Laboratory University of California, Berkeley

Marios D. Demetriou & William L. Johnson California Institute of Technology, Pasadena

> Jamie J. Kruzic Oregon State University, Corvallis

Dhiraj Cartoor & Easo P. George Oak Ridge National Laboratory & University of Tennessee

> Anton Hohenwarter University of Leoben, Austria

Work supported by the Office of Science (Basic Energy Sciences) of the Department of Energy (Berkeley, Oakridge) and by the National Science Foundation (Caltech).

Mechanical Properties of Metallic Glasses

- \rightarrow high strength (0.5 4 (5) GPa)
- \rightarrow low stiffness (<100 GPa)
- → limited ductility (tension: ~ 0% / compression: < 2%)
- \rightarrow varying fatigue strength (0.05 – 0.2 (0.3) σ_{UTS})
- → 'OK' fracture properties (fracture toughness 10 – 100 (200) MPa√m)

Gludovatz, Demetriou, Floyd, Hohenwarter, Johnson, Ritchie, PNAS 2013 | Sergueeva, Mara, Kuntz, Lavernia, Mukherjee, Phil. Mag., 2005 | Naleway, Greene, Gludovatz, Dave, Ritchie, Kruzic, Metal. Mater. Trans. A, 2013

Bulk-metallic glass matrix composites

BMG in situ Matrix Composites

Fully Amorphous Monolithic Glasses

Gludovatz, Demetriou, Floyd, Hohenwarter, Johnson, Ritchie, PNAS 2013 | Sergueeva, Mara, Kuntz, Lavernia, Mukherjee, Phil. Mag., 2005 | Naleway, Greene, Gludovatz, Dave, Ritchie, Kruzic, Metal. Mater. Trans. A, 2013

Pd-based BMG: Threshold & flaw sensitivity

thickness of 4-point bending stress-life (S-N) sample

50µm

Gludovatz, Demetriou, Floyd, Hohenwarter, Johnson, Ritchie, PNAS, 2013

⇒ 'zig-zag' pattern at the crack tip

→ alternating crack propagation direction leading to highly serrated crack path throughout the entire thickness of the sample

shear-bands cavitate & form a crack

'staircase-like' crack propagation along with extensive shear-band formation

locally decreased crack propagation resistance along slip planes of shear bands ('staircase-like' crack path)

Roughness-induced crack closure

multiple stable shear-band formation and proliferation

 → excessive crack tip blunting and plastic-zone size formation,
 prior to initiation and propagation of shear-band cracks

 akin to general yielding and fully ductile fracture in crystalline alloys

10um

large crack-tip open displacements (CTODs) lead to very high toughness

Pd-based monolithic BMGs

Demetriou, Launey, Garrett, Schramm, Hofmann, Johnson, Ritchie, Nat Mater, 2011

WD16.0mm 15.0kV x3.0k

Current issues with metallic glasses

Major problem: VARIABILITY of mechanical properties

i) Processingii) Mechanical testing

processing & structure-property relation

Current issues with metallic glasses

Major problem: VARIABILITY of mechanical properties

i) Processing: - 'structure'-property relation
 ii) Mechanical testing: - notch sensitivity

100µm

mechanical testing: i) notch sensitivity

- increased notch root radius, $\rho \uparrow \Rightarrow artificially$ elevates toughness, $K_Q \uparrow$
- notch root sensitivity varies for different compositions
- effect possibly more pronounced than in crystalline materials
- K_Q values of samples tested with same ρ comparable

Current issues with metallic glasses

Major problem: VARIABILITY of mechanical properties

- ii) Mechanical testing: notch sensitivity
- i) Processing: 'structure'-property relation

 - sample size

mechanical testing: ii) sample size

Demetriou, Launey, Garrett, Schramm, Hofmann, Johnson, Ritchie, Nat Mater, 2011

SE(B) with pre-crack:

(S ~ 8 mm, B ~ 2.1 mm, W ~ 2.1 mm, a ~ 0.5 W, *b* ~ 1mm)

mechanical testing: ii) sample size

Current issues with metallic glasses

Major problem: VARIABILITY of mechanical properties

- ii) Mechanical testing: notch sensitivity
- i) Processing: 'structure'-property relation

 - sample size
 - loading condition -

mechanical testing: iii) loading condition

BMGs show major differences when being loaded in ...

Zr ₅₆ Ni ₂₅ Al15Nb ₄ (ZNAN) - brittle					
BENDING	TENSION				
~48 MPa.m ^{0.5}	~83 MPa.m ^{0.5}				
Zr _{52.5} Cu _{17.9} Ni _{14.6} Al ₁₀ Ti ₅ (Vit105) - medium					
BENDING	TENSION				
~59+ MPa.m ^{0.5}	~88 MPa.m ^{0.5}				
$Zr_{61}Ti_2Cu_{25}AI_{12}$ (ZT1) – ductile					
BENDING	TENSION				

~64+ MPa.m^{0.5}

Gludovatz, Garrett, Demetriou, Ritchie, unpublished, 2015

~129 MPa.m^{0.5}

Conclusions (part I)

Metallic glasses show good combination of strength and toughness

- BMGs ... fascinating class of potential structural materials with a decent combination of mechanical properties:
 low stiffness & high strength (0.5 – 4 GPa)
 - reasonable fracture toughness (10 100 MPa.m^{0.5})
 - 'OK' fatigue strength (0.05 0.2 σ_{UTS})
- Some glasses/glass-like materials can significantly enhance the fracture/fatigue properties through ductility from "plasticity" via multiple shear-band formation:
 - Glass-composite alloys with second phase dendrites
 → ARRESTING shear bands before they can form cracks
 - \rightarrow microstructural length-scales, $\lambda \leftrightarrow a_c$, mechanical length-scales

⇒ excellent toughness & fatigue behavior!

⇒ Major problem: Variability of mechanical properties

Processing

- structure-property relationship
 - → local atomic packing structure / quasi-localized soft spots strongly influence shear deformation

Mechanical testing ...

notch root radius / flaw sensitivity

- \rightarrow larger notch root radii artificially increase the fracture toughness \rightarrow notch root sensitivity varies for different compositions
- o sample size

 \rightarrow smaller samples seem to behave more 'plastic' (K_{lc} , K_{Jlc} , K_Q \uparrow) & show stable crack propagation rather than catastrophic failure

- o loading condition
 - \rightarrow no obvious bending ductility
 - \rightarrow large variation in the results of both bending and tension
 - \rightarrow trend to higher numbers in tension

NEED to understand variability of mechanical properties in BMGs to be able to use them in structural applications

Fracture & Fatigue of Multi-Component Alloys

Fracture toughness of the CrCoFeMnNi high-entropy alloy at cryogenic temperatures

<u>Bernd Gludovatz</u> & Robert O. Ritchie Materials Sciences Division, Lawrence Berkeley Laboratory University of California, Berkeley

Marios D. Demetriou & William L. Johnson California Institute of Technology, Pasadena

> *Jamie J. Kruzic* Oregon State University, Corvallis

Dhiraj Cartoor & Easo P. George Oak Ridge National Laboratory & University of Tennessee

> Anton Hohenwarter University of Leoben, Austria

Work supported by the Office of Science (Basic Energy Sciences) of the Department of Energy (Berkeley, Oakridge) and by the National Science Foundation (Caltech).

A new class of equiatomic alloys ...

Arc-melted and drop-cast alloy is indeed single phase FCC

Why HEA?

Element	Ni	Fe	Cr	Со	Mn
Crystal structure	fcc	bcc	bcc	hcp	A12

 $\Delta G = \Delta H - T \Delta S$

 \Rightarrow Hume-Rothery rules for solid solubility do *NOT* apply

Cantor et al., Mater. Sci Eng. 2004 Yeh et al., Adv. Eng. Mater. 2004 Otto et al., Acta Mater. 2013 \Rightarrow **Configurational entropy** can stabilize solid solutions (relative to compound/precipitate formation)

 \Rightarrow High-entropy alloys (number of elements \geq 5)

Tensile stress-strain behavior

- $\Rightarrow \text{strong temperature dependence of strength and ductility} \\\Rightarrow \text{highest ducitilites at -196C (likely due to prevention of necking)} \\\Rightarrow \text{degree of work hardening } (\sigma_u \sigma_y) \text{ highest at -196C} \\\Rightarrow \sigma_y \text{ approx doubles from RT to -196C (thermally activated yielding)} \\\Rightarrow \sigma_y \text{ insensitive to strain rate (unusual for thermally activated yield)} \\\hline \text{Deformation:} \end{aligned}$
- ⇒ ε < 2 %: deformation by *planar slip* on {111}<110> (ALL temperatures)

Microstructure, elastic & mechanical properties

Microstructure:

- equiatomic, single-phase material
- equiaxed grains
- grain size ~ 6 μm
- numerous recrystallization twins

Elastic properties:

temp (K)	E (GPa)	ν
77	214.5	0.256
200	209	0.263
293	202	0.267

Mechanical properties:

Fracture toughness measurements

C(T)-samples: *W* = 18 mm *B* ~ 9 mm / *B*_N ~ 7 mm

- \rightarrow samples machined by EDM
- \rightarrow surfaces polished using SiC-paper
- $\rightarrow \text{ pre-cracked in tension} \\ (R = 0.1, \Delta K = 12 13 \text{ MPa.m}^{1/2})$
- \rightarrow side-grooved by EDM
- \rightarrow tested at 293K, ~200K & ~77K

 after the last loading/unloading cycle, one sample of each temperature was fatigued to failure in order to investigate the fracture surfaces \rightarrow average particle size ~ 1.6 µm \rightarrow average particle spacing ~ 49.6 µm

 → particles are likely oxides
 → most particles:
 Cr-rich (50% +) with ~35% Mn (+ small amounts of Fe, Co, Ni)

some particles:
up to 75% Mn, 12% Cr
(+ minor conc of Fe, Co and Ni)
particles NOT seen in CoCrFeNi alloy

EDX of particles

5μm

Fracture analysis

EBSD & BSE at the interior of the crack tip @ 293K

- deformation mainly by dislocation motion (planar slip) \rightarrow grain misorientations
- no evidence of pronounced deformation-induced nano-twinning
- mainly annealing/recrystallization twins visible

1µm

- pronounced cell structures
- significant dislocation activity

extensive deformationinduced nano-twinning

2µm

Stereophotogrammetry

- an independent assessment of the toughness can be achieved from the fracture surface
- crack-initiation toughness K_i can also be determined using stereophotogrammetry in the SEM in order to determine the crack-tip opening displacements (CTOD) at the onset of crack extension
- digital surface model of both fracture surfaces from SEM images pairs
- determination of identical crack paths on both fracture surfaces
- first physical crack extension from coalescence with precrack → CTOD_i at initiation

<u>Global K_{JIc} measurements:</u> K_{JIc} (293K) ~ 217 MPa \sqrt{m} K_{JIc} (77K) ~ 219 MPa \sqrt{m}

Pre-crack

3-D reconstruction of the fracture surface at the transition of the fatigue pre-crack to the ductile fracture region

31.5 µn

20002600

Fracture toughness of CoCrFeMnNi

using ASTM E1820 & stereophotogrammetry

$$J_i = \frac{1}{d_n} \sigma_0 COD_i$$

$$J_{Ic} = K_{JIc}^2 / E^2$$

CTOD_i

 σ_{y}

 σ_{UTS}

- J_{i}
- $K_{\rm i}$ ($\Delta a \rightarrow 0$)
- K_{Jlc} ($\Delta a = 200 \ \mu m$)
- K_{ss} (stable crack growth)

<u>293K</u>

57 ± 19 μm 410 MPa 763 MPa 195 kJ/m² 191 MPa.m^{1/2} 217 MPa.m^{1/2} >300 MPa.m^{1/2} 77K 49 ± 13 μm 759 MPa 1280 MPa 219 kJ/m² 203 MPa.m^{1/2} 219 MPa.m^{1/2} >300 MPa.m^{1/2}

Ashby map (strength vs. toughness) & Conclusions

- <u>High-Entropy Alloys</u>
 → new aspect of metallurgy in the quest for new materials with interesting properties
- <u>CoCrFeMnNi single-phase fcc alloy</u>

→ excellent damage-tolerance properties which don't degrade at cryogenic temperatures

• <u>@ 293K:</u> $\sigma_{UTS} \sim 763 \text{ MPa}$ $K_{Jlc} = 217 \text{ MPa.m}^{1/2} (K_i = 191 \text{ MPa.m}^{1/2})$ deformation by *planar dislocation slip*

- Toughness → associated with continuous steady hardening (n ~ 0.4)
 - \rightarrow suppressing plastic instability & localization
 - \rightarrow appears to be a characteristic of plastic deformation by twinning
- III σ_{UTS} ~ 1.3 GPa & K_{Jlc} ~ 220 MPa√m @ 77K → extremely damage-tolerant III (properties exceed those of many materials including many austenitic stainless steels)

