

Application of Laser Diagnostics to the Study of Turbulence – Flame Interactions

Bruno Coriton

Tuesday, February 9, 2016 Institute of Mechanical Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland

Personal Experience

Outline

- I. Introduction and overview of research strategy
- II. Imaging of reaction rates in turbulent counterflow premixed flames
- III. High-speed 3D velocity measurements for the study of localized extinctions
- IV. Concluding remarks

Combustion Energy Usage

- > 80% of world energy is provided by combustion (~75% in Switzerland).
- Used in all sectors (transportation, chemical processes, electricity production, home appliances, etc).

Source: Annual Energy Review, 2011, EIA

Combustion Energy Usage

Challenges

- Emissions (CO, NOx, CO₂, soot, etc)
- Limited resources of non-renewable combustibles (fossil fuel, coal, natural gas)
- Fuel economy independence

Technical solutions

- Clean combustion technology
- Improved efficiency
- Alternative fuels and fuel-flexible devices

Strategy: Lean Premixed Combustion

Emissions of CO, CO₂ and NO in methane/air combustion (thermochemical equilibrium) Premixed Combustion allows for control of the fuel/air ratio

Strategy: Lean Premixed Combustion

Emissions of CO, CO₂ and NO in methane/air combustion (thermochemical equilibrium)

"The leaner, the cleaner"

Fundamental Research Challenges

- Stability of lean premixed flames in intense turbulence.
- Pollutant emissions affected by the chemistryturbulence interaction.
- Lean flames are sensitive to external perturbations (heat losses, dilution, strain, etc).
- Safety (flashbacks)

Fundamental Research Challenges

Practical Combustion Systems

Turbulence-Chemistry Interaction: A Central Challenge

Well-characterized turbulent flames for canonical studies of turbulence – flame interactions

Turbulence-Chemistry Interaction: Theoretical Framework

Karlovitz number: $Ka_t =$

t_{chemical} t_{Kolmogorov}

Flamelet Regimes

- Quasi-laminar flame front structure
- Singly connected reaction zone

Non-Flamelet Regime

- Local Extinctions
- Distributed Reaction Zones
- Leakage of Reactants and Products across flame fronts

Laser Diagnostics for Turbulent Combustion Studies

Laser diagnostics are a <u>non-intrusive means</u> of measuring a <u>wide range of quantities</u>, such as:

- Velocity vectors Particle Image Velocimetry (PIV), Laser Doppler Velocimetry (LDV)
- Intermediate species (OH, CH₂O, CO, etc) and forward reaction rates Laser Induced Fluorescence (LIF), Raman scattering, Soft X-Ray absorption.
- Temperature Rayleigh Scattering
- Scalar Mixing and Mixture fraction LIF imaging of "tracers" (Kr, Acetone, etc)

Features of laser diagnostics in combustion:

- Multiple simultaneous measurements
- Probe domain: point, line, plane or volume
- Spatial resolution: $10\mu m to 100\mu m$
- Temporal resolution: 10ns to 100ns, ~10µs for PIV
- Data acquisition rate: 1Hz to 10kHz

Outline

- I. Introduction and overview of research strategy
- II. Imaging of reaction rates in turbulent counterflow premixed flames
- III. High-speed 3D velocity measurements for the study of localized extinctions
- IV. Concluding remarks

Motivations

DLR Swirl Stratified Combustor

(Kutne et al., 2010)

Practical turbulent flames are exposed to external perturbations such as

- heat loss/gain,
- dilution by hot products,
- large bulk strain rate,
- Reactant stratification...

Motivations

Turbulent flame stabilization often involves the mixing of reactants with products of combustion.

Turbulent Counterflow Burner

Large range of flow conditions:

- Bulk Strain Rate, $K_{bulk} = 2U_u/d_{nozzle}$
- Turbulent Reynolds Number, $Re_t = u'l'/v$
- Non-adiabaticity, T_b ≠ T_{ad}
- Stratification, $\phi_u \neq \phi_b$

K _{bulk}	<u>1400/s</u> – 2240/s	
Re _t	470 - <u>1050</u>	
Τ _b	1500K – 2000K (<u>1850K</u>)	
φ _u	lean (0.7) to rich (1.2)	
φ _b	lean (0.7) to rich (1.2)	

$$Ka_{t} = \frac{t_{ch}}{t_{\eta}} = \left(\frac{\nu}{S_{L}}\right)^{3/2} \left(\frac{l_{F}}{l}\right)^{1/2} = O(1-10)$$

Turbulent Flame Phenomenology

Laminar Premixed Flame Structure

Flame chemistry involves many species and chemical reactions.

Two reaction-zone regions:

- Fuel-consumption layer: CH2O + OH → H2O + HCO correlates with peak of heat release rate (Najm *et al.*, 1998).
- CO oxidation layer: CO + OH \rightarrow CO₂ + H dominant pathway for CO oxidation

Laser diagnostics are the only way to measure reaction rates in turbulent flames.

Reaction Rate Imaging CO + OH \rightarrow CO₂ + H

Simultaneous recording of single-photon OH-LIF and two-photon CO-LIF.

Reaction Rate Imaging CO + OH \rightarrow CO₂ + H

- Simultaneous recording of single-photon OH-LIF and two-photon CO-LIF.
- In combination, OH-LIF and CO-LIF signals yield a quantity proportional to the forward reaction rate (RR) for CO + OH → CO₂ + H.

 $RR = k(T)[CO][OH] \\ \propto f_{CO}(T)f_{OH}(T)[CO][OH]$

- *f_{CO}* and *f_{OH}* account for the temperature dependence of the CO-LIF and OH-LIF signals, respectively.
- $f_{CO}(T)f_{OH}(T)$ proportionality to k(T) is estimated with a deviation of $\pm 5\%$ for the premixed flames studied.

Reaction Rate Imaging

- Simultaneous recording of single-photon OH-LIF and two-photon CO-LIF.
- In combination, OH-LIF and CO-LIF signals yield a quantity proportional to the forward reaction rate (RR) for CO + OH → CO₂ + H.

 $RR = k(T)[CO][OH] \\ \propto f_{CO}(T)f_{OH}(T)[CO][OH]$

- *f_{CO}* and *f_{OH}* account for the temperature dependence of the CO-LIF and OH-LIF signals, respectively.
- $f_{CO}(T)f_{OH}(T)$ proportionality to k(T) is estimated with a deviation of $\pm 5\%$ for the premixed flames studied.

Turbulent Flame Front Structure

Turbulent Flame Front Structure

 $CH_2O + OH \rightarrow H_2O + HCO$ Plot along line (1)

CRE

Turbulent Flame Front Structure

- Turbulent flame structure is flamelet-like.
- We are going to monitor RR_{max} as a function of Δ_f (distance from GMLI).

Effect of combustion products on $CO + OH \rightarrow CO_2 + H$

Scatter plot of Peak RR_{CO+OH}

Effect of combustion products on $CO + OH \rightarrow CO_2 + H$

RR_{max} scattering is due to turbulence – chemistry interaction.

Scatter plot of Peak RR_{CO+OH}

Effect of combustion products on $CO + OH \rightarrow CO_2 + H$

- RR_{max} scattering is due to turbulence chemistry interaction.
- Two regions:
 - Near-field ($\Delta_f < 1.7$ mm)
 - Far-field ($\Delta_f > 1.7$ mm).
- Attenuation of burning rate in the near field.
- RR_{max} is unaffected by counterflowing products in the far-field.

Scatter plot of Peak RR_{CO+OH}

Flame structure properties in Near Field and Far Field

Decrease in reaction rates correlates with depletion of OH radicals in the vicinity of the GMLI.

Same results in Fuel Consumption Layer and CO oxidation Layer

 $CO + OH \rightarrow CO_2 + H$

- Depletion of OH radicals near the GMLI is responsible for RR attenuation.
- Both CO and CH₂O species remain produced by fuel pyrolysis/oxidation.

 $CH_2O + OH \rightarrow H_2O + HCO$

Part II – Summary

- Significant RR attenuation and localized extinctions occur along the GMLI.
- No extinction outside the zone of influence of counterflowing products.
- Zone of influence of combustion products: ~1.7 mm.
- Depletion of OH correlates with extinction
- OH LIF signal can be used as a marker of localized extinctions in these flames.

Part II – Impact

Peer-reviewed publications:

- **B. Coriton**, J.H. Frank, A. Gomez, Combust. Flame (2016), *in press*.
- **B. Coriton**, J.H. Frank, A. Gomez, Combust. Flame 160 (2013) 2442-2456.
- **B. Coriton**, J.H. Frank, A.G. Hsu, M.D. Smooke, A. Gomez, Proc. Combust. Inst. 33 (2010) 1647-1654.
- M.W.A. Pettit, **B. Coriton**, A. Gomez, A.M. Kempf, Proc. Combust. Inst. 33 (2010) 1391-1399.
- **B. Coriton**, M.D. Smooke, A. Gomez, Combust. Flame 157 (2010) 2155-2164.
- G. Coppola, **B. Coriton**, A. Gomez, Combust. Flame 156 (2009) 1834-1843.

Collaborations with modeling groups:

- Joe Oefelein, Jackie H. Chen (Sandia National Labs)
- Steve B. Pope (Cornell University)
- Andreas M. Kempf (Univ. of Duisburg-Essen)
- CRAFT Tech Combustion Research and Flow Technology, Inc.
- "Target burner" TNF workshops

Dynamics of flame extinction/re-ignition High Speed OH-LIF Image Sequence -

Flame edge propagation (ϕ_u =1.0)

Localized Ignition (ϕ_u =0.5)

Outline

- I. Introduction and overview of research strategy
- II. Imaging of reaction rates in turbulent counterflow premixed flames
- III. High-speed 3D velocity measurements for the study of localized extinctions
- IV. Concluding remarks

Velocity Gradient Tensor

$$\nabla v = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} \end{bmatrix} = \frac{1}{3} \Delta I_3 + \Omega + S$$

• **Divergence:**
$$\Delta = \nabla v$$

(unavailable in 2D)

- Rate of Rotation: $\Omega = \frac{1}{2}(\nabla v \nabla v^T)$ (biased in 2D)
- Vorticity: $\omega = \nabla \times v$ (only out-of-plane component in 2D)
- Rate of Strain: $S = \frac{1}{2}(\nabla v + \nabla v^T)$ (biased in 2D)

Particle Image Velocimetry (PIV) Principle

Particle Image Velocimetry Configurations

Planar PIV 2 velocity components in 2-D

 $v = u\hat{i} + v\hat{j} + w\hat{k}$

$$\nabla v = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} \end{bmatrix}$$

Particle Image Velocimetry Configurations

Stereoscopic PIV 3 velocity components in 2-D

$$v = u\hat{i} + v\hat{j} + w\hat{k}$$

 $\nabla v = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} \end{bmatrix}$

Particle Image Velocimetry Configurations

Tomographic PIV 3 velocity components in 3-D

$$v = u\hat{i} + v\hat{j} + w\hat{k}$$

 $\nabla v = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} \end{bmatrix}$

Experimental Apparatus

Principle of Tomographic PIV

Data Acquisition

Probe Volume Reconstruction

Compressive Strain Rate in Turbulent Partially-Premixed Jet Flames

Turbulent DME/Air Flame (Re_D ~ 29,300)

Strain Rate Intermittency and Clustering

The level of localized extinctions in turbulent flames may well depend on the *agglomeration, occurrences and lifetime* of structures of very high strain rate.

Objectives

- Quantify the clustering and intermittency of elevated strain rate structures
- Evaluate the influence of combustion on the strain rate field

Approach: high-speed tomographic PIV

- Measure properties of strain rate in turbulent jets
- Compare the strain rate field in 3 turbulent jets of similar Reynolds numbers:
 - stable turbulent flame
 - unstable turbulent flame with frequent extinctions
 - turbulent air jet

Flow Conditions

Turbulent Flames

Cases	Air Jet	Flame C _{LP}	"Sandia" Flame C
Air/Fuel	N/A	3	3
V _{jet} (m/s)	27.5		
Re _{jet}	13,500	13,000	
V _{pilot} (m/s)	0.0	1.8	6.8

"Sandia" Flame C – Ref.: Barlow and Frank, 1998

10 kHz OH PLIF Recordings of Flames C and C_{LP}

Flame C

Flame is stable with rare occurrence of localized extinctions

High probability of localized extinction and intermittent blowoffs

Probe Volume Location

Probe Volume

Bursts of Strain Rate Structures

Isosurfaces for $|s_{thrs}| = 7,000 \text{ s}^{-1}$

- Bursts of strain rate
- Spotty structures in the core of the *Air* jet
- Large elongated structures in the flames
- Flame C_{LP} has features of both the Air jet and Flame C

How to quantify the agglomeration of strain rate structures?

- A *cluster* is a singly-connected group of voxels where $|s| > |s_{thrs}|$.
- $N_{\rm c}(t)$ = number of clusters in probe volume at an instant t.

Visualization of Strain Rate Clusters

Turbulent Air Jet

 N_c varies with both time and $|s_{thrs}|$.

Visualization of Strain Rate Clusters

Turbulent Flame C

CRF.

Bursts of Strain Rate Structures

• Intermittent appearances of high strain rate structures.

Bursts of Strain Rate Structures

- Intermittent appearances of high strain rate structures.
- Strain rate field is less connected in flame C than in Air.

Temporal Intermittency

t_i = time interval between appearances of clusters

- $< t_i > ~ 0 \text{ ms for } |s_{thrs}| < 5|s|'$
- Structures for |s_{thrs}| increasing above 5|s|' become rapidly intermittent.

Temporal Intermittency

t_i = time interval between appearances of clusters

- $< t_i > ~ 0 \text{ ms for } |s_{thrs}| < 5|s|'$
- Structures for |s_{thrs}| increasing above 5|s|' become rapidly intermittent.
- Combustion has negligible effect on temporal intermittency.

Part III – Summary

- High-speed tomographic PIV has the potential to unveil new information on the dynamics of turbulent flames at both the fundamental and practical levels.
- All the components of the gradient tensors are determined (vorticity, strain rate, invariants of the gradient tensor).
- Reduced uncertainty of out-of-plane motion and bias of 2D measurements in turbulent flows
- Identification and tracking of coherent structures and their interaction with flame fronts.

Part III – Impact

1st Demonstration of high-speed, tomographic PIV in reactive flows

- 8th US National Combustion Meeting, 2013
- Gordon Research Conference, 2013
- 35th International Symposium on Combustion, 2014

Peer-reviewed publications:

- **B. Coriton** and J.H. Frank, Proc. Combust. Instit. 36 (2016), *under review*.
- **B. Coriton** and J.H. Frank, Phys of Fluids (2016), *in press*.
- **B. Coriton** and J.H. Frank, Proc. Combust. Instit. 35 (2015).
- A.M Steinberg, **B. Coriton**, J.H. Frank, Proc. Combust. Instit. 35 (2015).
- B. Coriton, A.M. Steinberg, J.H. Frank, Exp. Fluids 55:1743 (2014).

Collaborations:

- Nicholas Ouellette (Yale University)
- Dula Parkinson (Lawrence-Berkeley National Labs)
- Adam M. Steinberg (University of Toronto)

Concluding Remarks

- Combustion will continue to provide a major portion of the world energy mix in the future.
- Fundamental understanding of combustion is necessary to develop future combustion technologies.
- The improvement of laser and imaging diagnostics make the study of advanced combustion processes possible.