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About me

‣ Previous experience:
- M.Eng in Automation & Robotics at Sapienza University
- Ph.D. in Control & Dynamical System at Caltech
- Visiting scholar at UZH (with Scaramuzza)  

‣ Interests: “Science of embodied autonomy”
- perception
- control 
- calibration
- learning  

‣ Today: formalizing the problem of “co-design”
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robotic system

languages 
interfaces

rules
procedures

actuators
sensors

energetics
communication  

computation  
…

perception
inference
planning
control  
coordination
…

environment  
prior knowledge  

data  
tests

simulations

“robots” “humans” “infrastructure”

hardware software

‣ There is a lack of formal approaches  
to the design of autonomous robotic systems.



4

Duckietown:  
a case study  
in minimality

Kiva / Amazon Robotics  
(D’Andrea)
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minimize cost
subject to teaching goals

camerasonar

sensing

…

Raspberry PI Arduino

computation

…

 PWM shield

actuation

…

DC shield

…

…

energetics

6000 mAh 10000 mAh

communication

WiFi  
dongle

access  
point

RGB  
LEDs

…
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task
specification

“automated roboticist”

minimize  
(resources usage)

subject to  
(functionality constraints)

optimal 
designcatalogue  

of parts
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‣ Contribution: a theory of co-design

heterogenous domains

propulsion computation

communication

sensing

energetics
…
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recursive  
co-design constraints

‣ Contribution: a theory of co-design
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trade-offs of   
functionality and resources

resourcesfunctionality

‣ Contribution: a theory of co-design
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Roomba
$900 

Roomba 980
$200 
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cleaning robots

storage  
space

vacuumsmops

functionality

cost
operation  
time

resources
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estimation  
accuracy

platform 
velocity

functionality

cost payload 

resources

+ PLICP scan matcher [Censi ICRA’07,08,09]

Kuka’s Omnimove MIT/DRAPER (PI: Roy)
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distributed / vision

safety performance

functionality

complexity
of platform

complexity
of infrastructure

resources

centralized / vision distributed / network
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‣ The quest for “minimality” in robotics 

- actuation/control: Bicchi, Mason, Rodriguez, 
Goldberg, Wood, Fearing, Ijspeert, …

- sensing: Floreano, Lavalle, O’Kane, Davison, …

- representations/inference: Soatto, Milford, …
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“functional requirements”
“desired behavior”

“required performance”
“specifications”

design 
problem required 

resources
provided  

functionality

‣ A design problem is a relation  
between provided functionality  
and required resources.  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design 
problemprovided  

functionality
required 
resources

any partially ordered set any partially ordered set

‣ A design problem is a relation  
between provided functionality  
and required resources.  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‣ A design problem is a relation  
between provided functionality  
and required resources.  
 

choice of  
battery mass [ g ]

cost [ CHF ]

capacity [ J ]

max current [ A ]

computation  
[flops]

power [W]speed [rad/s]

torque [Nm]

cost [CHF]

current [A]

mass [kg]

travel distance [m] total cost ownership [CHF]
carry payload [kg]

# of missions
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‣ Given the functionality to be provided,  
what are the minimal resources required?

design 
problemprovided  

functionality
required 
resources

‣ Given the resources that are available,  
what is the maximal functionality that can be provided?
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‣ Given the functionality to be provided,  
what are the minimal resources required?

design 
problemprovided  

functionality
required 
resources
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capacity [ J ]
mass [ g ]

cost [ CHF ]

‣ Given the functionality to be provided,  
what are the minimal resources required?

cost [ CHF ]mass [ g ]capacity [ J ]



21

‣ A design problem can be concretely represented as a map  
 
 
from functionality to “minimal subsets” of resources.
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capacity [ J ] mass [ g ]

‣ Monotonicity: increasing the functional requirements  
does not decrease the resources required.
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capacity [ J ] mass [ g ]

‣ Monotonicity: increasing the functional requirements  
does not decrease the resources required.

capacity [ J ] mass [ g ]
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capacity [ J ]

‣ Monotonicity: increasing the functional requirements  
does not decrease the resources required.

mass [ g ]
cost [ CHF ]

capacity [ J ] mass [ g ] cost [ CHF ]



25

What is the order on trade-off curves?

‣ Monotonicity: increasing the functional requirements  
does not decrease the resources required.



‣ Background needed to understand the problem:
- posets
- minimal elements
- antichains 
- monotonicity
- upper sets and upper closure
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‣ Background not needed:

‣ Background needed to understand the solution:
- Scott-continuity 
- Kleene’s fixed point theorem
- order theory: height and width of poset 
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‣ Poset = a set together with a partial order 

IEEE754 floating point

             +inf 

        3.4 × 10+38  

               … 

        1.2 × 10-38 

               0  

              -0  

               …  

            -inf

NaN
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‣ Poset = a set together with a partial order 

# apples # oranges

‣ Example: products of posets
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‣ Poset = a set together with a partial order 

 PWM  
shield

RGB  
LEDs

Raspberry PI

intelligent  
traffic light

mapping car

autonomous  
car

empty set

communicating  
car

‣ Example: subsets, ordered by inclusions
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‣ Antichain = a set of elements that are mutually incomparable:

not an antichainexample of antichain
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‣ Upper closure (   ) of a subset S of a poset P: 

upper closure
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upper closure

‣ Definition. Choose this partial order for antichains:

add definition of monotonic?
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‣ Definition. A design problem is monotone if the map

is monotone.
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autonomy

perception planning control

programming

robotics

calculus

logic

computer  
vision

signal processing
chalk

Raspberry PI

blackboard

camera

battery 

actuators

equipment 
required

teaching  
goals
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autonomy

perception planning control

programming

robotics

calculus

logic

computer  
vision

signal processing
chalk

Raspberry PI

blackboard

camera

battery 

actuators

equipment 
required

teaching  
goals
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autonomy

perception planning control

programming

robotics

calculus

logic

computer  
vision

signal processing
chalk

Raspberry PI

blackboard

camera

battery 

actuators

equipment 
required

teaching  
goals
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autonomy

perception planning control

programming

robotics

calculus

logic

computer  
vision

signal processing
chalk

Raspberry PI

blackboard

camera

battery 

actuators

equipment 
required

teaching  
goals
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range-finder

camera

Co-design constraints



Co-design constraints
39

battery

battery must power motor

chassis must  
carry battery

chassis requires  
motors to move

chassis motor

budget behaviors

components components must 
support behaviors

budget must  
be sufficient  

for components

behaviors implemented 
should justify the cost
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resources required  
by the first system

functionality provided  
by the second system

chassis required  
torque [Nm]

provided  
torque [Nm]

motor

chassis motor

composition
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choice of  
motor 

speed [rad/s]

torque [Nm]

cost [CHF]

max current [A]

mass [kg]

choice 
of chassis

payload mass [kg]

max velocity [m/s]

cost [CHF]

required motor velocity [rad/s]
required motor torque [Nm]

max current [A]
max velocity

 cost 
cost [CHF]

torque

speed

motor  
mass

extra  
payload [kg]

abstraction



✓ monotone
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‣ Theorem. The interconnection of any number of monotone design 
problems is monotone.

✓ monotone ✓ monotone

✓ monotone

✓ monotone
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✓ Co-design problem  
= interconnection of design problems

✓ Design problem = monotone relations  
between functionality and resources.

✓ Interconnection preserves monotonicity.

‣ Semantics as an optimization problem

‣ Solution techniques

functionality resources

A mathematical theory of co-design



‣ …we need to evaluate the map h for the entire graph.
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‣ Assuming we know the maps h for the subproblems,

?

Semantics as an optimization problem



45

for each node i: for each edge (i, j):

chosen 
by user

objective

constraints

parameters

variables
! not convex
! not differentiable
! not continuous
! not even defined on 

continuous spaces 

to minimize

Semantics as an optimization problem
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‣ The problem is loops (“feedback”)



‣ The problem is loops (“feedback”)
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✓
✓

✓

✓

✓

✓ ✓

✓ ✓

✓

without loops:

with loops: ✓

?
?
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‣ Consider the case of 1 loop, with a scalar variable.

actuation

energetics battery weight

liftpower
required

power  
provided

endurance
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‣ Consider the case of 1 loop, with a scalar variable.
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‣ Consider the case of 1 loop, with a scalar variable.
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‣ Consider the case of 1 loop, with a scalar variable.

“least fixed point” “Kleene’s algorithm”
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Banach fixed-point theorem Kleene fixed-point theorem(s)
(Knaster-Tarski)

If:

complete partial order- 

- monotone

If also:

Scott-continuous- 

Then:

- 

Then:

- 

complete metric space

If:

- 

contraction- 

Then:

- 

- 
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0

‣ “Start with no resources; increase as needed”.
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‣ Everything generalizes to the case with multiple cycles.
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actuation

energetics battery weight

liftpower
required

endurance

‣ Everything generalizes to the case with multiple cycles.
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actuation

energetics battery weight

liftpower
required

endurance

cost

cost

profit customer

minimum  
endurance

‣ Everything generalizes to the case with multiple cycles.

price
total  
cost
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‣ Removing 2 edges removes all oriented cycles.  
(“minimal feedback arc set”)
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battery weight

cost
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cost × battery weight



60
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Theorem. The set of minimal feasible resources can be obtained  
as the least fixed point of a monotone function in the space of antichains.
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Corollary. The set of minimal solutions can be found using Kleene’s algorithm.

If the iteration diverges, it is a certificate of infeasibility.



✓ There exists a systematic procedure to solve MCDPs 
that finds all minimal solutions, or a certificate of infeasibility. 

‣ Surprising because not convex (or differentiable or continuous).  

‣ Performance depends on the structure of the graph.

- “thickness” of the edges that must be removed.
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storage:

number of steps:

complexity of each step:

computation:

animation
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A mathematical theory of co-design

✓ Co-design problem  
= interconnection of design problems

✓ Design problem = monotone relations  
between functionality and resources.

✓ Interconnection preserves monotonicity.

✓ Semantics as an optimization problem

‣ Formal language and more examples

✓ Solution techniques
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travel distance [m] total cost ownership [CHF]
carry payload [kg]

# of missions 

add citations
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computer

strategy

shipping

ae

engineering

customer
[km]

[g]

+ 1 W[W]power [W]
× 100 W/flops [W]

[m]

endurance [s]km-to-m

[m]

USD*g/lb-to-USD[USD*g/lb]

postage [USD]

× 0.5 USD/lb [USD*g/lb]

[USD]
[USD]

[USD]

× 10 USD

actuation
lift [N]g*m/s²-to-N[g*m/s²]

× 9.81 m/s²
[g]

[g] [g]

battery

capacity [J]

[W]

[W]

[N]

[J]

cost [USD]
[g]

power [W]
cost [USD]

maintenance 

mass [g]
[g]

[g]

[USD]

[W]

[USD]

[g*m/s²]

[USD]
[USD]

ships [g]

[W]

[W]

[W]

perception

velocity [m/s]

sensor

fov []
framerate [Hz]

resolution [pixels/deg]

computation [flops]

[kg]

velocity [m/s]
endurance [s]

power [W]

[W]

g-to-kg
[kg]

velocity [m/s]
velocity [m/s]

[USD]

[]
[Hz]

[pixels/deg]

computation [flops]

budget [USD]

[km]

[g]

travel distance [m] total cost ownership [CHF]
carry payload [kg]

# of missions 
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‣ MCDPL: A user-friendly language to describe MCDPs.

- inspired by Disciplined Convex Programming (CVX) [Grant & Boyd]  

‣ PyMCDP: An interpreter and solver.

http://mcdp.mit.edu/

http://github.com/AndreaCensi/mcdp

The user’s perspective



monotonic constraint

“interface”

68

 1 mcdp {
 2     provides capacity [J]
 3     requires mass     [kg]
 4
 5     specific_energy = 100 Wh / kg 
 6
 7     mass >= capacity / specific_energy
 8 }

capacity [J] mass [kg]
battery
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lift [N] power [W]

 1 mcdp {
 2     provides lift  [N]
 3     requires power [W]
 4     
 5     
 6     # Maximum lift provided    
 7     lift <= 10 N
 8
 9     # Power as a function of lift
10     p0 = 1 W
11     p1 = 1.5 W/N^2
12     power >= p0 + p1 * (lift^2) 
13 }

actuation



compositionality

interconnection
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 1 mcdp {   
 2   battery = new Battery
 3   actuation = new Actuation
 4
 5   gravity = 9.81 m/s^2
 6   weight = (mass required by battery) * gravity
 7    
 8   lift provided by actuation >= weight 
 9 }

capacity [J] mass [kg]battery
× gravity

weight [N] lift [N] power [W]actuation



parameters for  
specific type of battery
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 1 mcdp {
 2     provides capacity [J]
 3     # Number of missions to be flown
 4     provides missions [R]
 5
 6     requires mass     [g]
 7     requires cost     [CHF]
 8     # Number of replacements needed
 9     requires maintenance [R]
10
11     specific_energy = 150 Wh/kg
12     specific_cost =  2.50 Wh/CHF
13     cycles = 600 []
14
15     # How many times should it be replaced?
16     num_replacements = ceil(missions / cycles)
17     maintenance >= num_replacements
18
19     mass >= capacity / specific_energy
20     
21     unit_cost = capacity / specific_cost
22     cost >= unit_cost * num_replacements
23 }

mass [g]
cost [CHF]
maintenance []

capacity [J]

# missions []
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capacity [J] mass [g]

# missions []
cost [CHF]
maintenance []

 1 mcdp {
 2     provides capacity [J]
 3     # Number of missions to be flown
 4     provides missions [R]
 5
 6     requires mass     [g]
 7     requires cost     [CHF]
 8     # Number of replacements needed
 9     requires maintenance [R]
10
11     specific_energy = 150 Wh/kg
12     specific_cost =  2.50 Wh/CHF
13     cycles = 600 []
14
15     # How many times should it be replaced?
16     num_replacements = ceil(missions / cycles)
17     maintenance >= num_replacements
18
19     mass >= capacity / specific_energy
20     
21     unit_cost = capacity / specific_cost
22     cost >= unit_cost * num_replacements
23 }

 NiMH,  100 Wh/kg,   3.41 Wh/$,     500 cycles,  "Nickel-metal hydride" 
 NiH2,   45 Wh/kg,  10.50 Wh/$,   20000 cycles,  "Nickel-hydrogen" 
  LCO,  195 Wh/kg,   2.84 Wh/$,     750 cycles,  "Lithium cobalt oxide" 
  LMO,  150 Wh/kg,   2.84 Wh/$,     500 cycles,  "Lithium manganese oxide"  
NiCad,   30 Wh/kg,   7.50 Wh/$,     500 cycles,  "Nickel-cadmium" 
  SLA,   30 Wh/kg,   7.00 Wh/$,     500 cycles,  "Lead-acid" 
 LiPo,  150 Wh/kg,   2.50 Wh/$,     600 cycles,  "Lithium polymer" 
  LFP,   90 Wh/kg,   1.50 Wh/$,    1500 cycles,  "Lithium iron phosphate"

(Wikipedia)
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 1 choose (
 2    LiPo: new Battery_LiPO,
 3    LMO:  new Battery_LMO
 4 )

LiPo

LMO
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mass cost

maintenance

missionscapacity

$ mcdp-solve batteries "<100 Wh, 500 []>"        
query: ⟨capacity:360000 J, missions:500 ⟩ 
Minimal resources needed:  
maintenance, cost, mass = ↑{ 
    ⟨1, 10 CHF, 2230 g⟩,  
    ⟨1, 30 CHF, 1000 g⟩,  
    ⟨1, 36 CHF, 520 g⟩ 
}

capacity [J] mass [g]

# missions []
cost [CHF]
maintenance []

batteries
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capacity [J] mass [g]

# missions []
cost [CHF]
maintenance []

batteries

mass cost

maintenance

missionscapacity
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capacity [J] mass [g]

# missions []
cost [CHF]
maintenance []

batteries

mass cost

maintenance

missionscapacity
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capacity [J] mass [g]

# missions []
cost [CHF]
maintenance []

batteries

mass cost

maintenance

missionscapacity
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endurance [s]

extra power [W]

capacity [J]

lift

power

total power

total mass

g

extra payload [g]

energy  
required

total weight

actuator  
mass

total costcost

cost

 # missions

labor# replacements cost

mass
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# missions
cost [CHF]
mass [g]

endurance [s]
extra power [W]

extra payload [kg]
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# missions
cost [CHF]
mass [g]

endurance [s]
extra power [W]

extra payload [kg]

add mcdp-command
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extra  
power [W]

velocity [m/s]

travel 
distance 
[m] endurance [s]

computer

perception

# missions cost [CHF]

total mass [g]

endurance [s]

resolution

frequency

power[flops]

sensor

mass

total cost [CHF]

payload [kg] payload [kg]

sensor/computer  
mass 
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travel distance [m]
total cost ownership [CHF]

carry payload [kg]

# missions
total mass [g]
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costumer

functionality
resources

travel distance [m]
total cost ownership [CHF]

carry payload [kg]

# missions
total mass [g]
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computer

strategy

shipping

ae

engineering

customer
[km]

[g]

+ 1 W[W]power [W]
× 100 W/flops [W]

[m]

endurance [s]km-to-m

[m]

USD*g/lb-to-USD[USD*g/lb]

postage [USD]

× 0.5 USD/lb [USD*g/lb]

[USD]
[USD]

[USD]

× 10 USD

actuation
lift [N]g*m/s²-to-N[g*m/s²]

× 9.81 m/s²
[g]

[g] [g]

battery

capacity [J]

[W]

[W]

[N]

[J]

cost [USD]
[g]

power [W]
cost [USD]

maintenance 

mass [g]
[g]

[g]

[USD]

[W]

[USD]

[g*m/s²]

[USD]
[USD]

ships [g]

[W]

[W]

[W]

perception

velocity [m/s]

sensor

fov []
framerate [Hz]

resolution [pixels/deg]

computation [flops]

[kg]

velocity [m/s]
endurance [s]

power [W]

[W]

g-to-kg
[kg]

velocity [m/s]
velocity [m/s]

[USD]

[]
[Hz]

[pixels/deg]

computation [flops]

budget [USD]

[km]

[g]

cost [CHF]
battery capacity [J]

‣ Removing 2 edges removes all 22 oriented cycles. 

‣ These are the co-design constraints  
that tie everything together.
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Summary 



88

‣ Need: formal design methods for complex autonomous systems.
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resources constraints

Watts, CHF, …

trade-offs of   
functionality and  resources

resourcesfunctionality

recursive  
co-design constraints

heterogenous domains

propulsion
computation

communication

sensing

energetics

A mathematical theory of co-design
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A mathematical theory of co-design

design 
problemprovided  

functionality
required 
resources

‣ A design problem is abstracted as a relation  
between provided functionality and required resources.  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‣ Multi-scale: from components to systems.

travel distance [m] total cost ownership [CHF]
carry payload [kg]

number of missions []

A mathematical theory of co-design

computercomputation  
[flops]

power [W]

capacity [J]
mass [kg]battery

cost [CHF]

motorspeed [rad/s]

torque [Nm]

cost [CHF]

current [A]

weight [kg]
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‣ Compositionality and abstraction properties

A mathematical theory of co-design

abstraction
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‣ Algorithmic results:

- There exists a systematic solution guaranteed to  
find all minimal solutions, or certificate of infeasibility.

- Complexity depends on the structure of the co-design graph.

computer

strategy

shipping

ae

engineering

customer
[km]

[g]

+ 1 W[W]power [W]
× 100 W/flops [W]

[m]

endurance [s]km-to-m

[m]

USD*g/lb-to-USD[USD*g/lb]

postage [USD]

× 0.5 USD/lb [USD*g/lb]

[USD]
[USD]

[USD]

× 10 USD

actuation
lift [N]g*m/s²-to-N[g*m/s²]

× 9.81 m/s²
[g]

[g] [g]

battery

capacity [J]

[W]

[W]

[N]

[J]

cost [USD]
[g]

power [W]
cost [USD]

maintenance 

mass [g]
[g]

[g]

[USD]

[W]

[USD]

[g*m/s²]

[USD]
[USD]

ships [g]

[W]

[W]

[W]

perception

velocity [m/s]

sensor

fov []
framerate [Hz]

resolution [pixels/deg]

computation [flops]

[kg]

velocity [m/s]
endurance [s]

power [W]

[W]

g-to-kg
[kg]

velocity [m/s]
velocity [m/s]

[USD]

[]
[Hz]

[pixels/deg]

computation [flops]

budget [USD]

[km]

[g]

A mathematical theory of co-design
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A mathematical theory of co-design

business case

engineering  problem required 
resources

provided 
resources

provided 
functionality

required 
funtionality 
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‣ Concrete implementation as a formal language.

A mathematical theory of co-design

 1 mcdp {
 2     provides capacity [J]
 3     # Number of missions to be flown
 4     provides missions [R]
 5
 6     requires mass     [g]
 7     requires cost     [CHF]
 8     # Number of replacements needed
 9     requires maintenance [R]
10
11     specific_energy = 150 Wh/kg
12     specific_cost =  2.50 Wh/CHF
13     cycles = 600 []
14
15     # How many times should it be replaced?
16     num_replacements = ceil(missions / cycles)
17     maintenance >= num_replacements
18
19     mass >= capacity / specific_energy
20     
21     unit_cost = capacity / specific_cost
22     cost >= unit_cost * num_replacements
23 }

 1 mcdp {
 2     provides lift  [N]
 3     requires power [W]
 4     
 5     
 6     # Maximum lift provided    
 7     lift <= 10 N
 8
 9     # Power as a function of lift
10     p0 = 1 W
11     p1 = 1.5 W/N^2
12     power >= p0 + p1 * (lift^2) 
13 }
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task
specification

“automated roboticist” optimal 
designcatalogue  

of parts

How components work together.

‣ Future work: theory - tools - robotics - other fields

What components do.

resourcesfunctionality
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health care hospitals

power plant
coal [ton/day]

 water [l/day]

water [l/day]

houses [sqft]

total people

# cops

# doctors

power [W]

# trips/day

# beds

water consumption (l/day)

living  
standards# incidents  

per day
# drivers

protection

# citizens
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resource 
allocation

computation graph

- max latency [-s]

architecture graph
power consumption [W]min throughput [s]

nodes: components  
edges: signals

nodes: processors
edges: network links

P2
P2
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“what you want to see”“what you need to do”

S

G
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‣ Convergence speed?

- Linear, quadratic, … convergence  
do not make sense without a metric.

‣ Option 1: add a metric (additional assumptions)

‣ Option 2: derive bounds for the “pure” theory  
that are parametrization invariant.

group = order isomorphisms
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‣ Coproduct  - “Choose between technologies”

`
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‣ Coproduct  - “Choose between technologies”

`

resources

functionality
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0 2 4 6 8 10
0

2

4

6

8

10

minimal  
solutions

unfeasible

feasible
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0 2 4 6 8 10
0

2

4

6

8

10

minimal  
solutions
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minimal  
solutions

0 2 4 6 8 10
0

2

4

6

8

10



“Don’t	care”	-	There	are	no	feasible	points	here	
not	dominated	by	ones	already	found.

unfeasible
unclassi@ied

current	antichain

minimal	solutions

‣ The set of all minimal solutions can be found as a fixed point



‣ Height of a poset:  
maximum cardinality of its chains.
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‣ Width of a poset:  
maximum cardinality of its antichains.

Griggs. Maximum antichains in the product of chains. 1984
Bezrukov, Roberts. On antichains in product posets. 2008
.

‣ Heights and widths of products



‣ Dealing with infinite solutions.
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- Option 1: Restrict attention to sets that are finitely representable  
- Option 2: Work out generic approximation bounds.
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‣ Finite lower/upper (inner/outer) approximations.
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