A Mathematical Theory of Co-Design

Andrea Censi

Research Scientist, Principal Investigator

Laboratory for Information and Decision Systems Massachusetts Institute of Technology

About me

- Previous experience:
 - M.Eng in Automation & Robotics at **Sapienza** University
 - Ph.D. in Control & Dynamical System at Caltech
 - Visiting scholar at **UZH** (with Scaramuzza)
- Interests: "Science of embodied autonomy"
 - perception
 - control
 - calibration
 - learning
- Today: formalizing the problem of "co-design"

There is a lack of formal approaches

to the design of autonomous robotic systems.

••• •••

Kiva | Amazon Robotics (*D'Andrea*)

Duckietown: a case study in minimality

minimize cost subject to teaching goals

Contribution: a theory of co-design

heterogenous domains

Contribution: a theory of co-design

recursive co-design constraints

Contribution: a theory of co-design

trade-offs of functionality and resources

functionality

resources

Roomba **\$200**

Roomba 980 **\$900**

cleaning robots

resources

Kuka's Omnimove

MIT/DRAPER (PI: Roy)

+ PLICP scan matcher [Censi ICRA'07,08,09]

functionality

distributed / vision

resources

- The quest for "minimality" in robotics
 - actuation/control: Bicchi, Mason, Rodriguez, Goldberg, Wood, Fearing, Ijspeert, ...
 - sensing: Floreano, Lavalle, O'Kane, Davison, ...
 - representations/inference: Soatto, Milford, ...

A design problem is a relation between provided functionality and required resources.

"functional requirements" "desired behavior" "required performance" "specifications" A design problem is a relation between provided functionality and required resources.

any partially ordered set

any partially ordered set

A design problem is a relation between provided functionality and required resources.

• **Given the functionality** to be provided, what are the **minimal resources** required?

Given the resources that are available, what is the <u>maximal</u> functionality that can be provided? • **Given the functionality** to be provided, what are the **minimal resources** required?

• **Given the functionality** to be provided, what are the **minimal resources** required?

A design problem can be concretely represented as a map
h : 𝔅 → subsets(𝔅)

from **functionality** to "**minimal subsets**" of **resources**.

• **Monotonicity**: increasing the functional requirements does not decrease the resources required.

• **Monotonicity**: increasing the functional requirements does not decrease the resources required.

Monotonicity: increasing the functional requirements does not decrease the resources required.

• **Monotonicity**: increasing the functional requirements does not decrease the resources required.

What is the order on trade-off curves?

Background needed to understand the problem:

- posets
- minimal elements
- antichains
- monotonicity
- upper sets and upper closure
- Background needed to understand the solution:
 - Scott-continuity
 - Kleene's fixed point theorem
 - order theory: height and width of poset

Background not needed:

$$\partial \ \nabla \ \nabla^2$$

• **Poset** = a set together with a **partial order** \leq

• **Poset** = a set together with a **partial order** \leq

Example: products of posets

• **Poset** = a set together with a **partial order** \leq

Example: subsets, ordered by inclusions

Antichain = a set of elements that are mutually incomparable:

$$(a \preceq b) \Rightarrow (a = b)$$

example of antichain

not an antichain

▶ **Upper closure** (↑) of a subset *S* of a poset *P*:

$$\uparrow S = \{ y \in P : \exists x \in S : x \preceq y \}$$

Definition. Choose this partial order for antichains:

$$A \preceq B \quad \doteq \quad \uparrow A \supseteq \uparrow B$$

add definition of monotonic?

Definition. A design problem is **monotone** if the map

 $h: \mathcal{F} \to \operatorname{antichains}(\mathfrak{R})$

is monotone.

camera

chalk

Co-design constraints

range-finder

Co-design constraints

Theorem. The interconnection of any number of monotone design problems is monotone.

A mathematical theory of co-design

- ✓ Design problem = monotone relations between functionality and resources.
- Co-design problem= interconnection of design problems
- \checkmark Interconnection preserves monotonicity.
- Semantics as an optimization problem
- Solution techniques

Semantics as an optimization problem

- Assuming we know the maps *h* for the subproblems,
- ...we need to evaluate the map *h* for the entire graph.

Semantics as an optimization problem

 $f_i \succeq r_i$

 h_i

 $\mathbf{r}_i \in \underline{h}_i(\mathbf{f}_i)$

The problem is loops ("feedback")

The problem is loops ("feedback")

Banach fixed-point theorem

If:

- $\langle \mathfrak{X}, d \rangle$ complete metric space
- $f: \mathfrak{X} \to \mathfrak{X}$ contraction

 $d(f(x), f(y)) \le c \, d(x, y), \quad 0 \le c < 1$

Then:

 $- \exists ! \, \overline{x} : \, \overline{x} = f(\overline{x})$

(Knaster-Tarski)

If:

- $\langle \mathcal{P}, \preceq \rangle \,$ complete partial order
- $f: \mathcal{P} \to \mathcal{P}$ monotone

$$x \preceq y \ \Rightarrow \ f(x) \preceq f(y)$$

Then:

- $\exists \operatorname{lfp}(f) = \min_{\preceq} \{x \mid f(x) = x\}$

If also:

- f Scott-continuous

Then:

-
$$\operatorname{lfp}(f) = \lim_{n \to \infty} f^n(\bot)$$

$$\overline{x} = \lim_{n \to \infty} f^n(x_0), \quad \forall x_0$$

"Start with no resources; increase as needed".

• Everything generalizes to the case with **multiple cycles**.

• Everything generalizes to the case with **multiple cycles**.

• Everything generalizes to the case with **multiple cycles**.

Removing 2 edges removes all oriented cycles. ("minimal feedback arc set")

Theorem. The **set of minimal feasible resources** can be obtained as the least fixed point of a monotone function in the space of antichains.

Corollary. The set of minimal solutions can be found using Kleene's algorithm.

 $S \subset \operatorname{antichains}(\mathcal{R})$ $S_0 = \{ \perp_{\mathcal{R}} \}$ $S_{k+1} = \Phi_{f_1}(S_k)$ S^{\star}

If the iteration diverges, it is a certificate of infeasibility.

- ✓ There exists a systematic procedure to solve MCDPs that finds all minimal solutions, or a certificate of infeasibility.
- Surprising because not convex (or differentiable or continuous).
- Performance depends on the structure of the graph.
 - "thickness" of the edges that must be removed.

storage:width(\mathcal{R})computation:height(A \mathcal{R}) × (width(\mathcal{R}))2number of steps:height(A \mathcal{R})complexity of each step:(width(\mathcal{R}))2

A mathematical theory of co-design

- ✓ Design problem = monotone relations between functionality and resources.
- Co-design problem= interconnection of design problems
- ✓ Interconnection preserves monotonicity.
- ✓ Semantics as an optimization problem
- \checkmark Solution techniques
- Formal language and more examples

The user's perspective

- **MCDPL**: A user-friendly language to describe MCDPs.
- inspired by Disciplined Convex Programming (CVX) [Grant & Boyd]
- **PyMCDP**: An interpreter and solver.

http://mcdp.mit.edu/
http://github.com/AndreaCensi/mcdp

monotonic constraint


```
mcdp {
 1
 2
3
4
5
6
7
        provides lift [N]
        requires power [W]
        # Maximum lift provided
        lift <= 10 N
 8
 9
        # Power as a function of lift
10
        p0 = 1 W
        p1 = 1.5 W/N^2
11
12
        power >= p0 + p1 * (lift^2)
13 }
```



```
mass [g]
capacity [J]
                      - +
                                       cost [CHF]
# missions []
                                       maintenance []
   mcdp {
 1
        provides capacity [J]
 2
        # Number of missions to be flown
 3
        provides missions [R]
 4
 5
 6
        requires mass
                           [q]
        requires cost
 7
                           [CHF]
 8
        # Number of replacements needed
        requires maintenance [R]
 9
10
                                            parameters for
11
        specific energy = 150 Wh/kg
        specific cost = 2.50 Wh/CHF
12
                                            specific type of battery
        cycles = 600 []
13
14
15
        # How many times should it be replaced?
        num replacements = ceil(missions / cycles)
16
17
        maintenance >= num replacements
18
19
        mass >= capacity / specific_energy
20
21
        unit cost = capacity / specific cost
22
        cost >= unit cost * num replacements
23
   }
```

71

(Wikipedia)


```
1 choose (
2 LiPo: new Battery_LiPO,
3 LMO: new Battery_LMO
4 )
```


<pre>\$ mcdp-solve batteries "<100 Wh, 500 []>"</pre>
<pre>query: <capacity:360000 j,="" missions:500=""></capacity:360000></pre>
Minimal resources needed:
<pre>maintenance, cost, mass = ↑{</pre>
$\langle 1, 10 \text{ CHF}, 2230 \text{ g} \rangle$,
$\langle 1, 30 \text{ CHF}, 1000 \text{ g} \rangle$,
$\langle 1, 36 \text{ CHF}, 520 \text{ g} \rangle$
}

Removing 2 edges removes all 22 oriented cycles.

battery capacity [J]

These are the co-design constraints that tie everything together.

Summary

• **Need**: formal design methods for complex autonomous systems.

trade-offs of functionality and resources

A design problem is abstracted as a relation between provided functionality and required resources.

• Multi-scale: from components to systems.

Compositionality and abstraction properties

- Algorithmic results:
 - There exists a systematic solution guaranteed to find all minimal solutions, or certificate of infeasibility.
 - Complexity depends on the **structure of the co-design graph**.

Concrete **implementation** as a formal language.

```
1
   mcdp {
 2
        provides capacity [J]
 3
        # Number of missions to be flown
        provides missions [R]
 4
 5
 6
        requires mass
                           [g]
        requires cost
 7
                          [CHF]
 8
        # Number of replacements needed
        requires maintenance [R]
 9
10
        specific energy = 150 \text{ Wh/kg}
11
12
        specific cost = 2.50 Wh/CHF
13
        cycles = 600 []
14
15
        # How many times should it be replaced?
        num replacements = ceil(missions / cycles)
16
        maintenance >= num replacements
17
18
        mass >= capacity / specific energy
19
20
21
        unit cost = capacity / specific_cost
        cost >= unit cost * num replacements
22
23 }
```

```
mcdp {
 1
       provides lift [N]
        requires power [W]
       # Maximum lift provided
 7
       lift <= 10 N
       # Power as a function of lift
       W = 1 W
       p1 = 1.5 W/N^2
11
       power >= p0 + p1 * (lift^2)
12
13 }
```

2

3

4

5

6

8

9

10

Future work: theory - tools - robotics - other fields

Convergence speed?

- Linear, quadratic, ... convergence do not make sense **without a metric**.

- Option 1: add a metric (additional assumptions)
- **Option 2:** derive bounds for the "pure" theory that are **parametrization invariant**.

group = *order isomorphisms*

Coproduct - "Choose between technologies"

Coproduct - "Choose between technologies"

 $h_{\mathsf{dp}_1\sqcup\mathsf{dp}_2}(\mathsf{f}) = \underset{\preceq_{\mathcal{R}}}{\operatorname{Min}} h_{\mathsf{dp}_1}(\mathsf{f}) \cup h_{\mathsf{dp}_2}(\mathsf{f})$

 $\underset{\preceq_{\mathbb{N}\times\mathbb{N}}}{\operatorname{Min}} \langle x, y \rangle$ $x + y \ge \lceil \sqrt{x} \, \rceil + \lceil \sqrt{y} \, \rceil + c$ s.t.

 $\underset{\preceq_{\mathbb{N}\times\mathbb{N}}}{\operatorname{Min}} \langle x, y \rangle$ s.t. $x + y \ge \lceil \sqrt{x} \rceil + \lceil \sqrt{y} \rceil + c$

minimal solutions

 $\underset{\preceq_{\mathbb{N}\times\mathbb{N}}}{\operatorname{Min}} \langle x, y \rangle$ $x + y \ge \lceil \sqrt{x} \, \rceil + \lceil \sqrt{y} \, \rceil + c$ s.t.

minimal solutions

 $\underset{\preceq_{\mathbb{R}\times\mathbb{R}}}{\operatorname{Min}} \langle x, y \rangle$ $x + y \ge \lceil \sqrt{x} \, \rceil + \lceil \sqrt{y} \, \rceil + c$ s.t.

minimal solutions

The set of all minimal solutions can be found as a fixed point

 $\underset{\preceq_{\mathbb{N}\times\mathbb{N}}}{\operatorname{Min}} \langle x,y\rangle$ $x + y \ge \lceil \sqrt{x} \rceil + \lceil \sqrt{y} \rceil + 20$ s.t.

- current antichain
 - unfeasible
 - unclassified

- minimal solutions
 - "Don't care" There are no feasible points here not dominated by ones already found.
Height of a poset: maximum cardinality of its chains.

Width of a poset: maximum cardinality of its antichains.

Heights and widths of products

 $\operatorname{height}(\mathcal{P} \times \mathcal{Q}) = \operatorname{height}(P) + \operatorname{height}(Q) - 1$

width(\mathcal{P})width(\mathcal{Q}) \leq width($\mathcal{P} \times \mathcal{Q}$) \leq min{ $|\mathcal{P}|$ width(\mathcal{Q}), $|\mathcal{Q}|$ width(\mathcal{P})}

٠

Griggs. *Maximum antichains in the product of chains*. 1984 Bezrukov, Roberts. *On antichains in product posets*. 2008

Dealing with infinite solutions.

- **Option 1:** Restrict attention to sets that are finitely representable
- **Option 2:** Work out generic approximation bounds.

Finite lower/upper (inner/outer) approximations.

 $h_L(n_L, \mathsf{f}) \preceq h(\mathsf{f}) \preceq h_U(n_U, \mathsf{f})$

 $\lim_{n_L,n_U\to\infty} \frac{h_L(n_L,\mathsf{f})}{h_L(n_L,\mathsf{f})} = h(\mathsf{f}) = h_U(n_U,\mathsf{f})$

 $\underset{\preceq_{\mathbb{R}\times\mathbb{R}}}{\operatorname{Min}} \langle x, y \rangle$ $x + y \ge \lceil \sqrt{x} \, \rceil + \lceil \sqrt{y} \, \rceil + c$ s.t.

112