
A	Mathematical	  
Theory	of	Co-Design

1

Laboratory	for	Information	and	Decision	Systems	
Massachusetts	Institute	of	Technology

Andrea	Censi

Research	Scientist,	Principal	Investigator

About me

‣ Previous experience:
- M.Eng in Automation & Robotics at Sapienza University
- Ph.D. in Control & Dynamical System at Caltech
- Visiting scholar at UZH (with Scaramuzza)  

‣ Interests: “Science of embodied autonomy”
- perception
- control
- calibration
- learning  

‣ Today: formalizing the problem of “co-design”

2

3

robotic system

languages 
interfaces

rules
procedures

actuators
sensors

energetics
communication  

computation  
…

perception
inference
planning
control  
coordination
…

environment  
prior knowledge  

data  
tests

simulations

“robots” “humans” “infrastructure”

hardware software

‣ There is a lack of formal approaches  
to the design of autonomous robotic systems.

4

Duckietown:  
a case study  
in minimality

Kiva / Amazon Robotics  
(D’Andrea)

5

minimize cost
subject to teaching goals

camerasonar

sensing

…

Raspberry PI Arduino

computation

…

 PWM shield

actuation

…

DC shield

…

…

energetics

6000 mAh 10000 mAh

communication

WiFi  
dongle

access  
point

RGB  
LEDs

…

6

task
specification

“automated roboticist”

minimize  
(resources usage)

subject to  
(functionality constraints)

optimal 
designcatalogue  

of parts

7

‣ Contribution: a theory of co-design

heterogenous domains

propulsion computation

communication

sensing

energetics
…

8

recursive  
co-design constraints

‣ Contribution: a theory of co-design

9

trade-offs of  
functionality and resources

resourcesfunctionality

‣ Contribution: a theory of co-design

10

Roomba
$900

Roomba 980
$200

11

cleaning robots

storage  
space

vacuumsmops

functionality

cost
operation  
time

resources

12

estimation  
accuracy

platform 
velocity

functionality

cost payload

resources

+ PLICP scan matcher [Censi ICRA’07,08,09]

Kuka’s Omnimove MIT/DRAPER (PI: Roy)

13

distributed / vision

safety performance

functionality

complexity
of platform

complexity
of infrastructure

resources

centralized / vision distributed / network

14

‣ The quest for “minimality” in robotics 

- actuation/control: Bicchi, Mason, Rodriguez,
Goldberg, Wood, Fearing, Ijspeert, …

- sensing: Floreano, Lavalle, O’Kane, Davison, …

- representations/inference: Soatto, Milford, …

15

“functional requirements”
“desired behavior”

“required performance”
“specifications”

design
problem required

resources
provided  

functionality

‣ A design problem is a relation  
between provided functionality  
and required resources.  
 

16

design
problemprovided  

functionality
required
resources

any partially ordered set any partially ordered set

‣ A design problem is a relation  
between provided functionality  
and required resources.  
 

17

‣ A design problem is a relation  
between provided functionality  
and required resources.  
 

choice of  
battery mass [ g ]

cost [ CHF ]

capacity [ J ]

max current [ A ]

computation  
[flops]

power [W]speed [rad/s]

torque [Nm]

cost [CHF]

current [A]

mass [kg]

travel distance [m] total cost ownership [CHF]
carry payload [kg]

of missions

18

‣ Given the functionality to be provided,  
what are the minimal resources required?

design
problemprovided  

functionality
required
resources

‣ Given the resources that are available,  
what is the maximal functionality that can be provided?

19

‣ Given the functionality to be provided,  
what are the minimal resources required?

design
problemprovided  

functionality
required
resources

20

capacity [ J ]
mass [ g ]

cost [ CHF ]

‣ Given the functionality to be provided,  
what are the minimal resources required?

cost [ CHF ]mass [ g ]capacity [ J ]

21

‣ A design problem can be concretely represented as a map  
 
 
from functionality to “minimal subsets” of resources.

22

capacity [J] mass [g]

‣ Monotonicity: increasing the functional requirements  
does not decrease the resources required.

23

capacity [J] mass [g]

‣ Monotonicity: increasing the functional requirements  
does not decrease the resources required.

capacity [J] mass [g]

24

capacity [J]

‣ Monotonicity: increasing the functional requirements  
does not decrease the resources required.

mass [g]
cost [CHF]

capacity [J] mass [g] cost [CHF]

25

What is the order on trade-off curves?

‣ Monotonicity: increasing the functional requirements  
does not decrease the resources required.

‣ Background needed to understand the problem:
- posets
- minimal elements
- antichains
- monotonicity
- upper sets and upper closure

26

‣ Background not needed:

‣ Background needed to understand the solution:
- Scott-continuity
- Kleene’s fixed point theorem
- order theory: height and width of poset

27

‣ Poset = a set together with a partial order

IEEE754 floating point

 +inf

 3.4 × 10+38  

 …

 1.2 × 10-38

 0  

 -0  

 …

 -inf

NaN

28

‣ Poset = a set together with a partial order

apples # oranges

‣ Example: products of posets

29

‣ Poset = a set together with a partial order

 PWM  
shield

RGB  
LEDs

Raspberry PI

intelligent  
traffic light

mapping car

autonomous  
car

empty set

communicating  
car

‣ Example: subsets, ordered by inclusions

30

‣ Antichain = a set of elements that are mutually incomparable:

not an antichainexample of antichain

31

‣ Upper closure () of a subset S of a poset P:

upper closure

32

upper closure

‣ Definition. Choose this partial order for antichains:

add definition of monotonic?

33

‣ Definition. A design problem is monotone if the map

is monotone.

34

autonomy

perception planning control

programming

robotics

calculus

logic

computer  
vision

signal processing
chalk

Raspberry PI

blackboard

camera

battery

actuators

equipment 
required

teaching  
goals

35

autonomy

perception planning control

programming

robotics

calculus

logic

computer  
vision

signal processing
chalk

Raspberry PI

blackboard

camera

battery

actuators

equipment 
required

teaching  
goals

36

autonomy

perception planning control

programming

robotics

calculus

logic

computer  
vision

signal processing
chalk

Raspberry PI

blackboard

camera

battery

actuators

equipment 
required

teaching  
goals

37

autonomy

perception planning control

programming

robotics

calculus

logic

computer  
vision

signal processing
chalk

Raspberry PI

blackboard

camera

battery

actuators

equipment 
required

teaching  
goals

38

range-finder

camera

Co-design constraints

Co-design constraints
39

battery

battery must power motor

chassis must  
carry battery

chassis requires  
motors to move

chassis motor

budget behaviors

components components must
support behaviors

budget must  
be sufficient  

for components

behaviors implemented 
should justify the cost

40

resources required  
by the first system

functionality provided  
by the second system

chassis required  
torque [Nm]

provided  
torque [Nm]

motor

chassis motor

composition

41

choice of  
motor

speed [rad/s]

torque [Nm]

cost [CHF]

max current [A]

mass [kg]

choice 
of chassis

payload mass [kg]

max velocity [m/s]

cost [CHF]

required motor velocity [rad/s]
required motor torque [Nm]

max current [A]
max velocity

 cost
cost [CHF]

torque

speed

motor  
mass

extra  
payload [kg]

abstraction

✓ monotone

42

‣ Theorem. The interconnection of any number of monotone design
problems is monotone.

✓ monotone ✓ monotone

✓ monotone

✓ monotone

43

✓ Co-design problem  
= interconnection of design problems

✓ Design problem = monotone relations  
between functionality and resources.

✓ Interconnection preserves monotonicity.

‣ Semantics as an optimization problem

‣ Solution techniques

functionality resources

A mathematical theory of co-design

‣ …we need to evaluate the map h for the entire graph.

44

‣ Assuming we know the maps h for the subproblems,

?

Semantics as an optimization problem

45

for each node i: for each edge (i, j):

chosen 
by user

objective

constraints

parameters

variables
! not convex
! not differentiable
! not continuous
! not even defined on

continuous spaces

to minimize

Semantics as an optimization problem

46

‣ The problem is loops (“feedback”)

‣ The problem is loops (“feedback”)

47

✓
✓

✓

✓

✓

✓ ✓

✓ ✓

✓

without loops:

with loops: ✓

?
?

48

‣ Consider the case of 1 loop, with a scalar variable.

actuation

energetics battery weight

liftpower
required

power  
provided

endurance

49

‣ Consider the case of 1 loop, with a scalar variable.

50

‣ Consider the case of 1 loop, with a scalar variable.

51

‣ Consider the case of 1 loop, with a scalar variable.

“least fixed point” “Kleene’s algorithm”

52

Banach fixed-point theorem Kleene fixed-point theorem(s)
(Knaster-Tarski)

If:

complete partial order-

- monotone

If also:

Scott-continuous-

Then:

-

Then:

-

complete metric space

If:

-

contraction-

Then:

-

-

53

0

‣ “Start with no resources; increase as needed”.

54

‣ Everything generalizes to the case with multiple cycles.

55

actuation

energetics battery weight

liftpower
required

endurance

‣ Everything generalizes to the case with multiple cycles.

56

actuation

energetics battery weight

liftpower
required

endurance

cost

cost

profit customer

minimum  
endurance

‣ Everything generalizes to the case with multiple cycles.

price
total  
cost

57

‣ Removing 2 edges removes all oriented cycles.  
(“minimal feedback arc set”)

58

battery weight

cost

59

cost × battery weight

60

61

Theorem. The set of minimal feasible resources can be obtained  
as the least fixed point of a monotone function in the space of antichains.

62

Corollary. The set of minimal solutions can be found using Kleene’s algorithm.

If the iteration diverges, it is a certificate of infeasibility.

✓ There exists a systematic procedure to solve MCDPs 
that finds all minimal solutions, or a certificate of infeasibility. 

‣ Surprising because not convex (or differentiable or continuous).  

‣ Performance depends on the structure of the graph.

- “thickness” of the edges that must be removed.

63

storage:

number of steps:

complexity of each step:

computation:

animation

64

A mathematical theory of co-design

✓ Co-design problem  
= interconnection of design problems

✓ Design problem = monotone relations  
between functionality and resources.

✓ Interconnection preserves monotonicity.

✓ Semantics as an optimization problem

‣ Formal language and more examples

✓ Solution techniques

65

travel distance [m] total cost ownership [CHF]
carry payload [kg]

of missions

add citations

66

computer

strategy

shipping

ae

engineering

customer
[km]

[g]

+ 1 W[W]power [W]
× 100 W/flops [W]

[m]

endurance [s]km-to-m

[m]

USD*g/lb-to-USD[USD*g/lb]

postage [USD]

× 0.5 USD/lb [USD*g/lb]

[USD]
[USD]

[USD]

× 10 USD

actuation
lift [N]g*m/s²-to-N[g*m/s²]

× 9.81 m/s²
[g]

[g] [g]

battery

capacity [J]

[W]

[W]

[N]

[J]

cost [USD]
[g]

power [W]
cost [USD]

maintenance

mass [g]
[g]

[g]

[USD]

[W]

[USD]

[g*m/s²]

[USD]
[USD]

ships [g]

[W]

[W]

[W]

perception

velocity [m/s]

sensor

fov []
framerate [Hz]

resolution [pixels/deg]

computation [flops]

[kg]

velocity [m/s]
endurance [s]

power [W]

[W]

g-to-kg
[kg]

velocity [m/s]
velocity [m/s]

[USD]

[]
[Hz]

[pixels/deg]

computation [flops]

budget [USD]

[km]

[g]

travel distance [m] total cost ownership [CHF]
carry payload [kg]

of missions

67

‣ MCDPL: A user-friendly language to describe MCDPs.

- inspired by Disciplined Convex Programming (CVX) [Grant & Boyd]  

‣ PyMCDP: An interpreter and solver.

http://mcdp.mit.edu/

http://github.com/AndreaCensi/mcdp

The user’s perspective

monotonic constraint

“interface”

68

 1 mcdp {
 2 provides capacity [J]
 3 requires mass [kg]
 4
 5 specific_energy = 100 Wh / kg
 6
 7 mass >= capacity / specific_energy
 8 }

capacity [J] mass [kg]
battery

69

lift [N] power [W]

 1 mcdp {
 2 provides lift [N]
 3 requires power [W]
 4
 5
 6 # Maximum lift provided
 7 lift <= 10 N
 8
 9 # Power as a function of lift
10 p0 = 1 W
11 p1 = 1.5 W/N^2
12 power >= p0 + p1 * (lift^2)
13 }

actuation

compositionality

interconnection

70

 1 mcdp {
 2 battery = new Battery
 3 actuation = new Actuation
 4
 5 gravity = 9.81 m/s^2
 6 weight = (mass required by battery) * gravity
 7
 8 lift provided by actuation >= weight
 9 }

capacity [J] mass [kg]battery
× gravity

weight [N] lift [N] power [W]actuation

parameters for  
specific type of battery

71

 1 mcdp {
 2 provides capacity [J]
 3 # Number of missions to be flown
 4 provides missions [R]
 5
 6 requires mass [g]
 7 requires cost [CHF]
 8 # Number of replacements needed
 9 requires maintenance [R]
10
11 specific_energy = 150 Wh/kg
12 specific_cost = 2.50 Wh/CHF
13 cycles = 600 []
14
15 # How many times should it be replaced?
16 num_replacements = ceil(missions / cycles)
17 maintenance >= num_replacements
18
19 mass >= capacity / specific_energy
20
21 unit_cost = capacity / specific_cost
22 cost >= unit_cost * num_replacements
23 }

mass [g]
cost [CHF]
maintenance []

capacity [J]

missions []

72

capacity [J] mass [g]

missions []
cost [CHF]
maintenance []

 1 mcdp {
 2 provides capacity [J]
 3 # Number of missions to be flown
 4 provides missions [R]
 5
 6 requires mass [g]
 7 requires cost [CHF]
 8 # Number of replacements needed
 9 requires maintenance [R]
10
11 specific_energy = 150 Wh/kg
12 specific_cost = 2.50 Wh/CHF
13 cycles = 600 []
14
15 # How many times should it be replaced?
16 num_replacements = ceil(missions / cycles)
17 maintenance >= num_replacements
18
19 mass >= capacity / specific_energy
20
21 unit_cost = capacity / specific_cost
22 cost >= unit_cost * num_replacements
23 }

 NiMH, 100 Wh/kg, 3.41 Wh/$, 500 cycles, "Nickel-metal hydride"
 NiH2, 45 Wh/kg, 10.50 Wh/$, 20000 cycles, "Nickel-hydrogen"
 LCO, 195 Wh/kg, 2.84 Wh/$, 750 cycles, "Lithium cobalt oxide"
 LMO, 150 Wh/kg, 2.84 Wh/$, 500 cycles, "Lithium manganese oxide"
NiCad, 30 Wh/kg, 7.50 Wh/$, 500 cycles, "Nickel-cadmium"
 SLA, 30 Wh/kg, 7.00 Wh/$, 500 cycles, "Lead-acid"
 LiPo, 150 Wh/kg, 2.50 Wh/$, 600 cycles, "Lithium polymer"
 LFP, 90 Wh/kg, 1.50 Wh/$, 1500 cycles, "Lithium iron phosphate"

(Wikipedia)

73

 1 choose (
 2 LiPo: new Battery_LiPO,
 3 LMO: new Battery_LMO
 4)

LiPo

LMO

74

mass cost

maintenance

missionscapacity

$ mcdp-solve batteries "<100 Wh, 500 []>"
query: ⟨capacity:360000 J, missions:500 ⟩
Minimal resources needed:  
maintenance, cost, mass = ↑{
 ⟨1, 10 CHF, 2230 g⟩,
 ⟨1, 30 CHF, 1000 g⟩,
 ⟨1, 36 CHF, 520 g⟩
}

capacity [J] mass [g]

missions []
cost [CHF]
maintenance []

batteries

75

capacity [J] mass [g]

missions []
cost [CHF]
maintenance []

batteries

mass cost

maintenance

missionscapacity

76

capacity [J] mass [g]

missions []
cost [CHF]
maintenance []

batteries

mass cost

maintenance

missionscapacity

77

capacity [J] mass [g]

missions []
cost [CHF]
maintenance []

batteries

mass cost

maintenance

missionscapacity

78

79

endurance [s]

extra power [W]

capacity [J]

lift

power

total power

total mass

g

extra payload [g]

energy  
required

total weight

actuator  
mass

total costcost

cost

 # missions

labor# replacements cost

mass

80

missions
cost [CHF]
mass [g]

endurance [s]
extra power [W]

extra payload [kg]

81

missions
cost [CHF]
mass [g]

endurance [s]
extra power [W]

extra payload [kg]

add mcdp-command

82

83

extra  
power [W]

velocity [m/s]

travel 
distance 
[m] endurance [s]

computer

perception

missions cost [CHF]

total mass [g]

endurance [s]

resolution

frequency

power[flops]

sensor

mass

total cost [CHF]

payload [kg] payload [kg]

sensor/computer  
mass

84

travel distance [m]
total cost ownership [CHF]

carry payload [kg]

missions
total mass [g]

85

costumer

functionality
resources

travel distance [m]
total cost ownership [CHF]

carry payload [kg]

missions
total mass [g]

86

computer

strategy

shipping

ae

engineering

customer
[km]

[g]

+ 1 W[W]power [W]
× 100 W/flops [W]

[m]

endurance [s]km-to-m

[m]

USD*g/lb-to-USD[USD*g/lb]

postage [USD]

× 0.5 USD/lb [USD*g/lb]

[USD]
[USD]

[USD]

× 10 USD

actuation
lift [N]g*m/s²-to-N[g*m/s²]

× 9.81 m/s²
[g]

[g] [g]

battery

capacity [J]

[W]

[W]

[N]

[J]

cost [USD]
[g]

power [W]
cost [USD]

maintenance

mass [g]
[g]

[g]

[USD]

[W]

[USD]

[g*m/s²]

[USD]
[USD]

ships [g]

[W]

[W]

[W]

perception

velocity [m/s]

sensor

fov []
framerate [Hz]

resolution [pixels/deg]

computation [flops]

[kg]

velocity [m/s]
endurance [s]

power [W]

[W]

g-to-kg
[kg]

velocity [m/s]
velocity [m/s]

[USD]

[]
[Hz]

[pixels/deg]

computation [flops]

budget [USD]

[km]

[g]

cost [CHF]
battery capacity [J]

‣ Removing 2 edges removes all 22 oriented cycles.

‣ These are the co-design constraints  
that tie everything together.

87

Summary

88

‣ Need: formal design methods for complex autonomous systems.

89

resources constraints

Watts, CHF, …

trade-offs of  
functionality and resources

resourcesfunctionality

recursive  
co-design constraints

heterogenous domains

propulsion
computation

communication

sensing

energetics

A mathematical theory of co-design

90

A mathematical theory of co-design

design
problemprovided  

functionality
required
resources

‣ A design problem is abstracted as a relation  
between provided functionality and required resources.  
 

91

‣ Multi-scale: from components to systems.

travel distance [m] total cost ownership [CHF]
carry payload [kg]

number of missions []

A mathematical theory of co-design

computercomputation  
[flops]

power [W]

capacity [J]
mass [kg]battery

cost [CHF]

motorspeed [rad/s]

torque [Nm]

cost [CHF]

current [A]

weight [kg]

92

‣ Compositionality and abstraction properties

A mathematical theory of co-design

abstraction

93

‣ Algorithmic results:

- There exists a systematic solution guaranteed to  
find all minimal solutions, or certificate of infeasibility.

- Complexity depends on the structure of the co-design graph.

computer

strategy

shipping

ae

engineering

customer
[km]

[g]

+ 1 W[W]power [W]
× 100 W/flops [W]

[m]

endurance [s]km-to-m

[m]

USD*g/lb-to-USD[USD*g/lb]

postage [USD]

× 0.5 USD/lb [USD*g/lb]

[USD]
[USD]

[USD]

× 10 USD

actuation
lift [N]g*m/s²-to-N[g*m/s²]

× 9.81 m/s²
[g]

[g] [g]

battery

capacity [J]

[W]

[W]

[N]

[J]

cost [USD]
[g]

power [W]
cost [USD]

maintenance

mass [g]
[g]

[g]

[USD]

[W]

[USD]

[g*m/s²]

[USD]
[USD]

ships [g]

[W]

[W]

[W]

perception

velocity [m/s]

sensor

fov []
framerate [Hz]

resolution [pixels/deg]

computation [flops]

[kg]

velocity [m/s]
endurance [s]

power [W]

[W]

g-to-kg
[kg]

velocity [m/s]
velocity [m/s]

[USD]

[]
[Hz]

[pixels/deg]

computation [flops]

budget [USD]

[km]

[g]

A mathematical theory of co-design

94

A mathematical theory of co-design

business case

engineering problem required 
resources

provided 
resources

provided 
functionality

required 
funtionality

95

‣ Concrete implementation as a formal language.

A mathematical theory of co-design

 1 mcdp {
 2 provides capacity [J]
 3 # Number of missions to be flown
 4 provides missions [R]
 5
 6 requires mass [g]
 7 requires cost [CHF]
 8 # Number of replacements needed
 9 requires maintenance [R]
10
11 specific_energy = 150 Wh/kg
12 specific_cost = 2.50 Wh/CHF
13 cycles = 600 []
14
15 # How many times should it be replaced?
16 num_replacements = ceil(missions / cycles)
17 maintenance >= num_replacements
18
19 mass >= capacity / specific_energy
20
21 unit_cost = capacity / specific_cost
22 cost >= unit_cost * num_replacements
23 }

 1 mcdp {
 2 provides lift [N]
 3 requires power [W]
 4
 5
 6 # Maximum lift provided
 7 lift <= 10 N
 8
 9 # Power as a function of lift
10 p0 = 1 W
11 p1 = 1.5 W/N^2
12 power >= p0 + p1 * (lift^2)
13 }

96

task
specification

“automated roboticist” optimal 
designcatalogue  

of parts

How components work together.

‣ Future work: theory - tools - robotics - other fields

What components do.

resourcesfunctionality

97

health care hospitals

power plant
coal [ton/day]

 water [l/day]

water [l/day]

houses [sqft]

total people

cops

doctors

power [W]

trips/day

beds

water consumption (l/day)

living  
standards# incidents  

per day
drivers

protection

citizens

99

resource 
allocation

computation graph

- max latency [-s]

architecture graph
power consumption [W]min throughput [s]

nodes: components  
edges: signals

nodes: processors
edges: network links

P2
P2

100

“what you want to see”“what you need to do”

S

G

101

‣ Convergence speed?

- Linear, quadratic, … convergence  
do not make sense without a metric.

‣ Option 1: add a metric (additional assumptions)

‣ Option 2: derive bounds for the “pure” theory  
that are parametrization invariant.

group = order isomorphisms

102

‣ Coproduct - “Choose between technologies”

`

103

‣ Coproduct - “Choose between technologies”

`

resources

functionality

104

105

0 2 4 6 8 10
0

2

4

6

8

10

minimal  
solutions

unfeasible

feasible

106

0 2 4 6 8 10
0

2

4

6

8

10

minimal  
solutions

107

minimal  
solutions

0 2 4 6 8 10
0

2

4

6

8

10

“Don’t	care”	-	There	are	no	feasible	points	here	
not	dominated	by	ones	already	found.

unfeasible
unclassi@ied

current	antichain

minimal	solutions

‣ The set of all minimal solutions can be found as a fixed point

‣ Height of a poset:  
maximum cardinality of its chains.

109

‣ Width of a poset:  
maximum cardinality of its antichains.

Griggs. Maximum antichains in the product of chains. 1984
Bezrukov, Roberts. On antichains in product posets. 2008
.

‣ Heights and widths of products

‣ Dealing with infinite solutions.

110

- Option 1: Restrict attention to sets that are finitely representable
- Option 2: Work out generic approximation bounds.

111

‣ Finite lower/upper (inner/outer) approximations.

112

0

2

4

6

8

exact solution
computed  

finite lower bound
computed  

finite upper bound

