COMPUTATIONAL AND QUANTITATIVE BIOLOGY
The program offers students well versed in quantitative subjects and equipped with computational skills the opportunity to address the biological questions associated with processes across a broad range of temporal and spatial scales, often arising from the interpretation of massive amounts of data. EPFL provides a unique environment to form this future generation of multidisciplinary life scientists.

Doctoral courses overview
- Biostatistics
- Data analysis for science and engineering
- Ethics in scientific research
- Image processing for Life Sciences
- Machine learning
- Mathematical foundations of signal processing
- Meet-ups of Physics of Living Systems
- Nature, in code – Biology in JavaScript
- Scientific writing in biomedical research
- Seminars in Computational and Quantitative Biology
- Thematic summer/winter schools

Research opportunities
- Applied Mathematics
- Biochemistry
- Biomaging
- Bioinformatics
- Biophysics
- Computational Neurosciences
- Developmental Biology
- Digital Epidemiology
- Genomics & Functional genomics
- Machine Learning
- Microbiology
- Neural Data Science
- Protein Design
- Structural Biology
- Systems Biology

Application deadlines: May 1st and November 15th
phd.epfl.ch/edcb – edcb@epfl.ch

Life sciences are witnessing a revolution and those exciting times in computational biology as many of the transformative changes occurring in experimental techniques require the development of adequate theoretical, quantitative and computational approaches to accelerate discoveries in research domains as diverse as cancer, immunology, microbiology, neuroscience, development, epidemiology, and medicine. But this is only the beginning! We are excited that this new program will offer our PhD students the possibility to be part of the next big breakthroughs in biology.

PROF. FELIX NAEF
LABORATORY OF COMPUTATIONAL SYSTEMS BIOLOGY

The explosion of high-throughput data techniques has opened up opportunities to discover exciting new biology. The EPFL provides substantial hardware infrastructure and computational expertise to allow me to operate at the forefront of computational and quantitative biology. I have been fortunate to work closely with experimentalists to develop and apply quantitative methods to gain insights from high-dimensional data, and use these insights to design new experiments to make novel discoveries. My PhD work spans across molecular biology, tissue physiology, and sleep and circadian rhythms, allowing me to develop depth in quantitative biology and breadth as a life scientist in general.

I enjoy being able to have deep discussions with my advisor and other excellent scientists, from technical details to big picture plans. The frequent invited speakers whose work I admire, and the apéros afterwards stimulate discussions with the broader scientific community. The proximity with other universities, e.g., UNIL, allow me to collaborate easily across campuses. Outside of work, the nearby lake and mountains are great for skiing, hiking, and barbecues. This excellent quality of life and high calibre science at the EPFL makes it an ideal place for me to grow and develop as a scientist.

JAKE YEUNG
PHD STUDENT AT THE LABORATORY OF COMPUTATIONAL SYSTEMS BIOLOGY