Distributed Computing R. Guerraoui

The Quest for a Resilient Universal Computer

Universality

memory tape

Algorithmi

Turing

Pascal

The Quest for a Resilient Universal Computer

Consensus Universality [L78]

Theorem: A network of computers can reliably emulate a universal machine iff they can solve consensus

Two Big Questions

I. When can we solve consensus?Diagnostic of the infrastructure

~ 2. When can we circumvent consensus?

Diagnostic of the problem

Christian Cachin Rachid Guerraoui Luís Rodrigues

Introduction to

Reliable and Secure Distributed Programming

Second Edition

ALGORITHMS FOR CONCURRENT SYSTEMS Rachid Guerraoui Petr Kuznetsov

1.1 RDMA

Remote shared / protected memory

Consensus with 2f+1 and f+1 (vs 3f+1 and 2f+1) and 2 steps (vs 4 steps) –

Γμ: SMR in 1μs / 1ms

[PODC, ASPLOS]

1.2 Synchrony

What is the minimal amount of synchrony needed to solve consensus?

What is the complexity of consensus given some synchrony

[DISC/PODC, OSDI]

2.1 Does Asset Transfer need Consensus?

X000 implementations

[PODC/DISC, DSN]

2.2 Does Learning need Consensus?

[ICML, NeurIPS, ICLR, AISTATS]