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Abstract—The number of smart devices around us continues
to increase as we enter the era of ubiquitous computing. These
devices typically use various sensors, store data about the user,
and connect to the Internet. They are also very personal: we
bring them around with us, or have them in our homes or
workplaces. As a result, these devices pose novel privacy risks.
The most prominent example of such a device is the smartphone.
Our research goal is to identify these privacy risks and propose
solutions, focusing first on smartphones.

In this proposal, we discuss three existing works and how
they relate to our research. We first examine existing issues
with smartphone privacy-protection mechanisms. Then we take
a look at machine learning techniques which could be used to
improve these mechanisms. Finally, we discuss an example of
such an application: using machine learning techniques to learn
user location privacy policies.

Index Terms—privacy, smart devices, Android, mobile, ma-
chine learning

I. INTRODUCTION

THE era of smart devices has arrived, and these devices
are becoming pervasive on and around us. These devices

are called “smart” because they improve on older devices
by including new features, and may learn from interacting
with a user. Some examples are the Nest thermostat [1],
smartwatches such as the Apple watch [2], smart TVs [3],
and smartphones. A new trend is the “smart home”, where
many smart sensing and actuating devices are controlled by
a smart hub or smartphone. These devices pose significant
privacy concerns because they are extremely personal, and
have the ability to collect and send data about the user.
Manufacturers include features without considering the privacy
implications or properly informing users. Some examples are
smart TVs reporting your activity [4] or sending audio samples
from voice recognition to the cloud for analysis [5], and
Android’s and Apple’s constant collection of nearby WiFi
network information [6].

The devices mentioned above include minimal, if any,
privacy controls. At the same time, some smart devices are
now enabling installation of third-party apps. This trend will
likely continue, with apps being available for installation on
most smart devices. Following in the footsteps of Android, the
most mature and popular smart device OS, it is likely that a
permission system will be introduced on each device.

There are several problems with Android permissions: users
don’t understand what they mean [7], they are “all-or-nothing”,
revocation is not supported, they are static, and they are
too coarse-grained. Because of coarse-grainedness and poor
user understanding, there is a widespread problem of apps
requesting more permissions than they need in order to collect
user data [8]. In a study conducted by GPEN (Global Privacy
Enforcement Network) and published in September 2014, 85%

of apps studied did not have a clear privacy policy, and 1/3
appeared to request excessive permissions [9].

Much work has been done to address these limitations
and even develop alternatives, but more work is needed
[10], [11], [12], [13], [14]. Android has recently introduced
changes to the permission system in Android M [15], solving
the “all-or-nothing” problem, enabling dynamic permissions,
and allowing revocation. Usability is still an issue—users
must manually configure their permission settings. Previous
work has shown that users’ decisions about sharing personal
information are context-dependent [16], [17], [18], [19], [20],
[21]. On average, a user interacts with 26.8 apps each month
[22]. Thus, configuring 26.8 apps with 5 permissions each [23]
and 5 different contexts results in approximately 657 man-
ual decisions. When considering multiple smart devices, the
manual configuration approach becomes even more infeasible.
Some recent works address usability issues by crowdsourcing
user permission decisions [24], or clustering users into profiles
based on their configurations [25]. Such approaches improve
usability by lessening user burden, but sacrifice per-user
customization. Finally, existing solutions only provide binary
permission options for users: allow or deny. This provides no
tradeoff between privacy and utility. For example, if a user is
using a weather application, an approximate location will still
provide accurate weather, but will not reveal the user’s exact
location. Thus, the app retains utility, and the user gains some
privacy.

A more scalable and user-friendly approach is needed to
address the number of access control decisions users will
make on smart devices. We propose using machine learning
techniques to provide smart privacy protection, with predictive
capabilities. By modeling, predicting, and responding automat-
ically to app requests for user data, we remove the burden of
manual configuration from users and gain usability. Context-
awareness applies naturally to such an approach: contextual
information can be supplied to the model as features. The
model learned for each user would be customized to that user’s
preferences. Additionally, we aim to go a step further and
add protective capabilities. Granularity levels for private data
provide tradeoffs between privacy and utility and serve as a
privacy-protection mechanism.

In what follows, we analyze background works in Android,
machine learning, and applying machine learning to privacy.
In Section II we discuss a work by Enck et al. [26], which
concretely shows that the Android permission system is in-
sufficient to protect user privacy and that many apps leak
user data. It also provides good background into the technical
challenges involved in implementing privacy protections. In
Section III we discuss a work by Lewis and Catlett [27],
which proposes a way to improve a standard machine learning
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technique, uncertainty sampling. Uncertainty sampling is used
to train an accurate classifier with minimal manual labeling
of instances. Using such an approach would minimize user
burden, which is key for usability. In Section IV we discuss
a work by Cranshaw et al. [28], which demonstrates how
machine learning can be used to learn user location privacy
policies. This work is important because the authors apply
machine learning to privacy, albeit at a smaller scale than we
intend to do. Finally, in Section V we discuss our current
research, particularly efforts to develop a prototype Android
app providing smart permission management—SmarPer.

SmarPer is an implementation of the ideas we have been
discussing so far. SmarPer intercepts app requests for user data
at runtime and allows the user to decide whether to deny, allow,
or obfuscate access to their private data. Obfuscation reduces
the level of detail available to the requesting app; it is an
implementation of both a privacy/utility tradeoff and a privacy-
protection mechanism. SmarPer learns how the user responds
over time based on some manual decisions and contextual in-
formation; it introduces context-aware and automatic decisions
via machine learning, and creates a customized model for each
user.

II. TAINTDROID: AN INFORMATION-FLOW TRACKING
SYSTEM FOR REALTIME PRIVACY MONITORING ON

SMARTPHONES

In this section we discuss the work by Enck et al. [26]. This
work is seminal in the field of Android privacy and provides
a concrete motivation for our thesis, demonstrating the issues
with Android permission management, and the technical chal-
lenges involved in implementing privacy protections.

A. The problem

The Android permission system has several shortcomings,
resulting in users having low visibility into how their data
is used. After a user agrees to install an app, the app can
use the permissions it requested with any frequency, with no
further notification to the user. The app can also exfiltrate
user data without user knowledge. These issues have been
partly addressed since then, in the new version of Android
announced in May 2015, which introduces dynamic, runtime
permissions [15]. Enck et al. aim to address these issues and
create a tool to provide users with greater visibility into how
Android apps access their data. A key challenge is identifying
what information is leaving the device, and where is it being
sent.

B. Their solution

Taint tracking, or dynamic taint analysis, refers to
marking—or tainting—sensitive information in the system,
and tracking whether it is exposed (reaches a network inter-
face) or affects other data in the system. Existing approaches
to taint tracking use instruction-level instrumentation or whole
system emulation, both of which incur serious slowdowns [29],
[30], [31]. Implementing taint tracking for the x86 instruction
set has proven challenging, particularly in avoiding false

Fig. 1. TaintDroid architecture [26]. This figure illustrates the four areas of
the Android OS where the authors implemented taint tracking: IPC messages,
interpreter variables, native methods, and files.

positives and false negatives [32], [33]. Enck et al. create a re-
altime system-wide taint tracking modification to the Android
OS (TaintDroid). TaintDroid tracks private data as it moves
through the Android OS, from taint source (e.g., sensor),
through trusted applications (pre-installed on the phone), to
untrusted applications (installed by the user), and finally to
taint sink (e.g., network interface). Outgoing connections are
flagged if they are suspected to contain private data. In this
section, we describe the TaintDroid implementation.

Taint markings and taint tags: The authors introduce the
following terminology. A taint tag is a set of taint markings
from the universe L of all possible taint markings on the
system. Two examples of taint markings are location and
phone number. The authors add taint tags for four areas of
the Android OS, shown in Figure 1. Each of those objects
has an associated taint tag, which can include multiple taint
markings. Taint tags can be empty (i.e., no tainted information
is inside). As an example, a variable in the Dalvik interpreter
which contains a GPS coordinate obtained from Android’s
LocationManager will have the “location” taint marking in
its taint tag.

Taint sources and sinks: The authors instrument the
following taint sources, which deliver the appropriate taint
markings, shown in parentheses, upon access: low-bandwidth
sensors via the associated sensor manager (location, sensors);
high-bandwidth sensors via data buffers and files (microphone,
camera); information databases via the associated files (con-
tacts); and device identifiers via the associated APIs (phone
number, ICC-ID, IMEI). The network interface is configured
as the only taint sink.

Taint tracking and taint tag storage: The authors
introduce taint tracking and taint tag storage in Android OS,
in the four areas shown in Figure 1. The majority of taint-
tracking occurs during execution of interpreted code. For this
purpose, the authors instrument the Dalvik interpreter. Dalvik
provides variable semantics—which distinguish pointers from
data values—and thus makes it easy to identify what needs
to be tracked. This avoids the issues present in other taint
tracking systems, such as accidental tainting of the stack
pointer [32]. The authors introduce taint-propagation rules for
relevant Dalvik opcodes. Taint tags are stored adjacent to the
relevant values in registers, providing spatial locality.

Taint propagation and storage for native code is imple-
mented manually: the authors provide a taint propagation map-
ping (i.e., whether taint tags should propagate from method
arguments to method return value) for certain methods. For
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the rest, the authors implement a heuristic.
For IPC messages, the authors propagate taint tags at the

message level. Tainting at the variable level here could be
subverted by a malicious app by unpacking the parcel in a
non-standard way. They note that tainting at the message level
can introduce false positives.

Finally, for secondary storage, the authors propagate taint
tags at the file level. Once again, the authors note that this
could introduce false positives, but accepted this tradeoff for
an increase in performance.

C. Results

App study: To evaluate TaintDroid, the authors tested 30
popular apps and reported on the information leaks discovered.
The 30 apps were selected from a 2010 survey of the 50 most
popular Android apps. All of the apps required the Internet
permission, plus at least one other permission to access private
data: phone state, location, camera, or audio. The authors
installed these apps on a phone with TaintDroid, and then
manually used the apps for approximately 100 minutes.

They discovered abuse of personal data by apps, with
only a few apps displaying good practices. Two thirds of
the apps handled user data suspiciously. Two apps revealed
phone number, IMSI, and ICC-ID; nine apps revealed IMEI,
and 15 apps revealed user location to advertisement servers.
Bad practices discovered include apps sending data to remote
servers prior to the first run of the app, apps using the
IMEI as a client ID, apps not displaying an end-user license
agreement (EULA) stating what information is collected, or
apps displaying an inaccurate EULA. Two apps used good
practices: one displayed a privacy notice stating that the app
collects the IMEI, and the other collects only the hash of the
IMEI. TaintDroid did not produce any false positives.

Benchmarks: To evaluate the overhead of TaintDroid and
potential impact on the user experience, the authors conduct
several benchmark tests. The first test is a macrobenchmark.
Here the authors compare the amount of time it takes to
conduct certain operations on vanilla Android vs TaintDroid.
The operations tested are app load time, creating a contact
in the address book, reading from the address book, placing
a phone call, and taking a picture. Increase in overhead for
TaintDroid ranged from 3% to 29%.

The next test was a Java microbenchmark: an Android port
of CaffeineMark 3.0. The results exhibited some variation
across the tests: the greatest difference in performance was
with the “string” benchmark (approx. 20% overhead). The
authors attribute this to their heuristic for native methods.
Overall, TaintDroid incurs a 14% overhead compared to
vanilla Android, and a 4.4% memory overhead.

Finally, the authors conduct an IPC benchmark, to quantify
overhead on IPC (i.e., Binder messages). They implemented
simple client and service applications which perform Binder
transactions as quickly as possible. The results show that Taint-
Droid incurs a 27% overhead compared to vanilla Android,
and a 3.5% memory overhead.

D. Discussion
To our knowledge, this is the first work to quantify app

information leakage on Android. The authors contribute the
first taint tracking system for a mobile phone.

With regards to our thesis, this work demonstrates the issues
with Android permissions. It also provides background into
the technical aspects of implementing privacy protections on
Android, as well as the Android OS itself. Implementing taint-
tracking, on Android or other smart devices, is insufficient
to improve privacy protection: it provides only monitoring,
not mitigation capabilities. Although TaintDroid flags outgoing
connections, these must be confirmed manually by an expert.
Information could be sent out of the device as a result of
an informed user action; for example, getting weather based
on the current location. Such instances do not constitute
information leakage. We could envision combining SmarPer
with TaintDroid, to determine if an app will send data off
the device after access. However, this type of approach may
introduce performance issues.

The authors mention themselves that there are several
limitations to TaintDroid, specifically in the approach taken,
the implementation, and in the taint sources used. They make
no guarantees or proofs about completeness of private data
tracked. A design limitation is that TaintDroid only tracks data
flows, as opposed to control flows, for performance reasons.
Implementation-wise, certain objects which are created in the
native address spaces are untracked.

III. HETEROGENEOUS UNCERTAINTY SAMPLING FOR
SUPERVISED LEARNING

In this section we discuss the work by Lewis and Catlett
[27]. This work proposes an improvement to the usability and
speed of the uncertainty sampling technique proposed in a
previous paper by Lewis and Gale [34]. Uncertainty sampling
is a machine learning technique used to minimize the number
of instances a user must label as positive and negative for
training a binary classifier. It is employed when large amounts
of unlabeled data are available in order to minimize the amount
of labeling the user must do. In fact, it is a technique used
by Fang et al. [35] to automatically configure user privacy
settings on online social networks with minimal user input,
which drew us to this work.

In the context of our thesis, minimizing the amount of re-
quired user input to train a classifier decreases user burden and
thus improves usability. We envision potentially incorporating
such a technique into our novel privacy protections for smart
devices. Additionally, smart devices are resource-constrained
platforms, so the techniques we use need to be fast and have
minimal impact on the user experience.

A. The problem
The basic uncertainty sampling procedure is shown in

Figure 2. Of particular interest is step 2.d: re-training a clas-
sifier on all newly labeled instances. If the classifier training
procedure is resource-intensive or time-consuming, this may
become a barrier to using uncertainty sampling in practice. In
this work, the authors aim to make uncertainty sampling more
usable in practice by addressing the repeated training phase.
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Fig. 2. The procedure for uncertainty sampling [27]. A binary classifier
(in this case) is trained on all labeled instances. The instances of which the
classifier is least sure about—i.e., P (C1) and P (C2) are close to 0.5—are
presented to a human to label and added to the training set, then the process
repeats.

B. Their solution

The authors propose a “heterogeneous” approach to un-
certainty sampling: they modify uncertainty sampling to use
two classifiers. In the context of Figure 2, steps 1 and 2 are
implemented with an efficient classifier (i.e., training phase is
cheap). Step 3 is added: use the generated uncertainty samples
to train your final classifier, the one you want to use for the
classification task. Thus, if the training phase for this classifier
is time-consuming or resource-intensive, it only needs to be
done once instead of several times, resulting in performance
improvements.

Document classification task, constraints: The authors
target binary document classification as their application of
interest. This informs several choices and restrictions. First,
texts for document classification typically reside in large
databases which support boolean queries. As a result, they
choose C4.5 as their final classifier, to be used in the new
third step. C4.5 produces a decision tree, and can also produce
decision rules, which are easy to translate into boolean queries.
Next, the authors chose a dataset which mimics many of the
properties seen in document classification tasks: few instances
are positive, the classes are noisy, and the classification cannot
be perfectly determined from the text in the document. The
authors use a dataset of 371,454 newspaper article titles and
associated subject categories. The authors choose a subset of
10 categories from this dataset (“bonds”, “dukakis”, etc). Each
word in the title becomes a binary attribute, resulting in 67,331
attributes. The categories mirror human labeling of instances.
Finally, the data is extremely sparse, so the classifier used
for uncertainty sampling should be able to handle sparse data
easily.

Modifications to C4.5: The authors make custom modifi-
cations to C4.5 to implement heterogeneous uncertainty sam-
pling. In binary document classification, the prior probability
of a class P (C1) is typically extremely small. However, the
authors had decided on C4.5 which does not support priors.
Instead, the authors introduce a loss ratio to specify the cost
of false positives and false negatives. A loss ratio greater
than 1 indicates that false positives are more costly than false
negatives.

Probabilistic classifier: For steps 1 and 2 of uncertainty
sampling, the authors use a highly efficient probabilistic classi-
fier of their own design, first described in the work by Lewis
and Gale [34]. Importantly, this classifier can easily handle

Fig. 3. The results for the “bonds” category [27]. The 0.15% value indicates
the percent of positive instances in the training set—this value is small for
document classification tasks. Black dots represent the set of 299 uncertainty
samples, white dots represent the set of 999 uncertainty samples, long dashes
represent the set of 1,000 random samples, and short dashes represent the set
of 10,000 random samples. The error rates for the uncertainty samples and
the set of 10,000 random samples are comparable.

sparse data. The classification task is binary, with two classes,
C1 and C2 . The classifier uses the following estimate for the
probability that an instance w, which consists of a series of
words wi, belongs to class (i.e., category) C1 :

P (C1 |w) =
exp(a + b

∑d
i=1 log

P (wi |C1 )
P (wi |C2 )

)

1 + exp(a + b
∑d

i=1 log
P (wi |C1 )
P (wi |C2 )

)

Importantly, the authors make the assumption that the fea-
tures (words) are independent. This is not a correct assumption
for natural language. To correct for this, they weight the sum
of the log probabilities by the parameter b. The parameter a
represents the quantity P(C1 )

1−P(C1 )
. In the context of document

classification, P(C1 ) is hard to estimate from the data since it
is very small (i.e., few instances are positive). This problem is
compounded since the training data is not a random sample.

This classifier is trained via the following proce-
dure: The values P (wi |C1 ), P (wi |C2 ), and P (wi) are
estimated for every wi . wi ’s with large values of
P (wi) × logP (wi |C1 )/P (wi |C2 ) were chosen as features.∏d

i=1
P (wi |C1 )
P (wi |C2 )

is computed for each instance, and then a and
b are determined by logistic regression.

C. Results

The authors conducted a series of tests to evaluate hetero-
geneous uncertainty sampling. Specifically, the authors test
if 1.) heterogeneous uncertainty sampling produces accurate
classifiers with less training instances than random sampling,
2.) the effect of varying the loss ratio, and 3.) the effect of
using different classifiers for uncertainty sample selection and
the final classification. It was infeasible to use C4.5 for both,
so the authors instead test using the probabilistic classifier for
both.

The authors conducted 10 uncertainty sampling trials on
their 10 chosen subject categories. Each trial started with
providing the probabilistic classifier with 3 initial positive
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instances. Uncertainty sampling with a subsample size of 4
proceeded for 249 rounds. From each trial, the authors selected
groups of uncertainty samples of size 299 and 999 (after
sampling for 74 rounds and 249 rounds, respectively). These
groups of uncertainty samples were then used to train C4.5
rules, with the loss ratio varying from 1 to 20. To compare
to random sampling, the authors trained C4.5 rules on sets of
1,000 and 10,000 random samples (technically 997 and 9,997;
the initial 3 positive instances were not random). The results
for the “bonds” category are shown in Figure 3.

The authors also compare the average percent error and
standard deviation for uncertainty samples of size 999 and
random samples of size 10,000, both when using C4.5 and the
probabilistic classifier for the final classification, in Table 2 of
the paper. As a baseline, the authors compare the performance
of both to a dummy classifier called “Reject All”, which
classifies all instances as negative—the accuracy of which may
be satisfactory, given that in this scenario most instances are
negative. Table 3 of the paper shows number of false positives
and false negatives for the same data.

D. Discussion

In general, heterogeneous uncertainty sampling performed
well. Uncertainty sampling with 999 instances produced clas-
sifiers with accuracy comparable to classifiers trained on
10,000 random instances. With a loss ratio of 5, uncertainty
samples performed significantly better (p=.03) than the random
samples. Loss ratios between 3 and 20 appeared to produce
accurate classifiers. The authors state that these results indicate
heterogeneous uncertainty sampling can indeed be effective.

In the context of our thesis, these results are promising.
They indicate that a heterogeneous approach to uncertainty
sampling still yields accurate classifiers, and requires less
training data (and thus, user labeling) than random sampling.
Thus, using such an approach when devising novel privacy
protection mechanisms for smart devices looks feasible. Min-
imizing user input is key for reducing user burden and
maximizing usability, and efficiency is crucial for resource-
constrained platforms. A visible slowdown in the device could
also frustrate the user, so we would like to avoid this as much
as possible.

Our main critique of this paper is that the authors’ ap-
proach could be more robust. It is understandable that the
authors were constrained by their tools—for instance, C4.5
does not support priors, so the authors introduced a loss
ratio instead. The authors’ probabilistic classifier makes some
invalid independence assumptions in the context of natural
language, which the authors acknowledge and counterbalance
by setting the parameter b by logistic regression. We are
skeptical of whether the authors’ classifier will always provide
accurate estimates. Indeed, the authors themselves state in their
previous paper [34] that the classifier appears to work well
for text categorization, but that they have not compared the
performance to other, more complex classifiers.

IV. USER-CONTROLLABLE LEARNING OF LOCATION
PRIVACY POLICIES WITH GAUSSIAN MIXTURE MODELS

In this section, we discuss the work by Cranshaw et al. [28].
The authors model evolving user location privacy policies with
Gaussian mixture models, while still letting the user audit the
model’s decisions. In the context of our thesis, this work shows
a concrete example of how machine learning techniques can
be applied to model and predict user privacy preferences over
time. Additionally, the authors make a great effort to maximize
usability through gradual model evolution, and giving the user
the power to view and change the built model. These are also
important considerations for SmarPer.

A. The problem

Location-based services are moving from a check-in model
to a continuous tracking model, in order to better facilitate
spontaneous encounters, or offer recommendations about new
places to visit. Additionally, there are now health-tracking
applications which also continuously monitor the user. These
types of continuous tracking services pose privacy risks. At
the same time, privacy controls are limited and coarse-grained.
The user is left with the task of specifying a complex sharing
policy with coarse-grained controls, which is not usable and
frustrating.

B. Their solution

The authors propose using user-controllable Gaussian mix-
ture models to learn user sharing preferences by creating a
mapping between the user’s policy and the model. A Gaussian
mixture model combines multiple Gaussian distributions to
model data. The goals of the authors are to maximize usability:
the user should be in control of the generated model at all
times, and the model should evolve gradually as new data
arrives, to maximize understandability. The authors decide
to use a generative model, because these models are easier
to extend to the semi-supervised learning approach, which
would improve accuracy by leveraging unlabeled data and thus
further decrease user burden.

Formalizing location-sharing: Gaussian mixture models
appear to be a natural model for location-sharing in the
Locaccino 1 continuous-tracking application. An observation
x of a user is defined as a point (lat, lon, t) in a three-
dimensional space. Users create location rules per friend
which specify under which conditions their friend can see
their location. Location rules can be based on latitude and
longitude, time, or both.

A location rule, meanwhile, can be represented as a cuboid
in the same three-dimensional space. If an observation falls
into one of the “allow” rule cuboids, the user’s location will
be revealed. Thus, to create a machine learning model, the
authors slightly relax the previous concepts and use Gaussian
mixture models with axis-aligned Gaussians. Each Gaussian
in the mixture model corresponds to one location rule. The
authors create a Gaussian mixture classifier which consists of
two Gaussian mixture models: one for deny rules, and one for

1http://www.locaccino.org
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For j rounds:
1) Add some data to training set.
2) Train the NewEachRound model, M∗

j , on the training data.
3) Compute symmetrized KL-divergence between the Gaussians

in θi,j−1 and θ∗i,j , represented as D[ki, k
∗
i ] for arbitrary

Gaussians ki and k∗i .
4) If the number of Gaussians is equal for either the deny models,

the allow models, or both: create a mapping of Gaussians
between θi,j−1 and θ∗i,j .

• Entries in D are weights in a bipartite graph, on which
the minimum cost matching is computed.

• Result is a mapping m, where m[ki] gives the Gaussian
k∗i to which ki is mapped.

5) Conduct a local operation: add, swap, or delete a Gaussian,
to create Mj by moving Mj−1 closer to M∗

j .
6) Evaluate both Mj and M∗

j on the test data.

Fig. 4. The basic training and evaluation procedure. The model M∗
j informs

the gradual evolution of the model Mj−1 at each round into Mj . KL-
divergence is used as a metric for determining the difference between the
two models.

allow rules. Classification is based on which model provides
the higher maximum likelihood estimate.

Training, model evolution, and testing procedure: The
authors train and evaluate models in rounds, since they are
interested in gradual model evolution. Each round begins
with adding some new data to the training set. The authors
maintain two Gaussian mixture classifiers, one which evolves
gradually, and one which is trained anew at each round. They
conduct one local operation at each round to move the gradual
model towards the freshly-trained model, and then evaluate
the performance of both on the test data. The specific steps of
the procedure are shown in Figure 4. The authors introduce
the following notation: a Gaussian mixture classifier M at the
round j is denoted as Mj = (θ0,j , θ1,j), indicating the mixture
models for “deny” and “allow”, respectively.

The authors implement four algorithms to test gradual
model evolution. We describe the first algorithm, Max-
MatchedKL, in detail and then state how the other algorithms
differ. The three local operations available to these algorithms
are to add, delete, or swap Gaussians from M∗j into Mj−1 to
create Mj . First, some notation: K∗i , Ki represent the number
of Gaussian components in M∗j and Mj−1, respectively.
MaxMatchedKL will add a Gaussian if K∗i > Ki, delete if
K∗i < Ki, and swap if K∗i = Ki. The Gaussian chosen to
add is given by computing maxki D[ki, k

∗
i ] for each Gaussian

in θ∗i,j . For deletion, the authors compute maxk∗
i
D[ki, k

∗
i ]

for Gaussians in θi,j−1. To swap, the authors maximize
instead over matched Gaussians in the mapping m, and choose
argmax

k
(D[k,m[k]]). The change to the model at this round

is only accepted if it will increase the likelihood given the
data. MaxMatchedWeightedKL introduces probabilistic adding,
deleting, swapping. When choosing Gaussians to add, delete,
or swap, they are weighted by their relative importance to the
mixture model. RandomMatchedKL is a randomized version
of MaxMatchedKL, and likewise RandomMatchedWeightedKL
is a randomized version of MaxMatchedWeightedKL.

C. Results

The authors collected a dataset of user-specified location-
sharing policies and observations from Locaccino. They sam-
pled 2,000 location observations from each user, uniformly,
without replacement. These were split into a training and
testing set: the first (temporal) 60% of the observations were
used for training, and the last 40% as testing. Evaluating an
unlabeled observation on the policy of each user gives the true
classification.

Gaussian mixture models are trained and evaluated for 30
rounds, using the procedure described in the previous section.
At each round, the next 75 labeled observations are added to
the training data, and the model is evaluated on the test data.
The test data remains the same for each round. Importantly,
Locaccino policies (and subsequently, the classifiers trained)
are per-friend, so even though the authors only had data from
11 users, they had 88 location-sharing policies to test for each
of their four algorithms.

The authors then plot the accuracy of their four algorithms
and compare the accuracy to the NewEachRound classifier.
After 30 rounds, the average accuracy of NewEachRound was
0.87, whereas the average accuracies for the user-controllable
models ranged from 0.85 to 0.76. They also chart the mean
KL-divergence between rounds for each model, i.e. how much
the model changed each round, along with the standard
deviation. The mean KL-divergence for NewEachRound was
2.15 bits per round, and for the other models this ranged from
0.97 to 1.49.

D. Discussion

This work demonstrates that user location-sharing policies
(from Locaccino, specifically) can be modeled and predicted
accurately by machine learning algorithms. It also shows
that models which are restricted evolve incrementally can be
similarly accurate to models which are not.

In the context of our thesis, this work shows an example
of how machine learning techniques can be applied to learn
user privacy policies, and contributes some important usability
aspects. Models which evolve incrementally are more intelli-
gible to the user, and the authors have shown that such models
do not suffer a drop in accuracy. Importantly, the user should
also have input into the model. If the user has no visibility or
control over the generated model, this also becomes a usability
issue. However, the authors do not test the user-controllable
aspect of their work. In addition, with our thesis we plan to go
a step further: in addition to smart prediction and modeling of
user preferences, we will include additional granularity levels
for private data (a privacy/utility tradeoff).

The selection of testing and training data by the authors
could be improved. First, the authors sample from user obser-
vations with no temporal restrictions. A better approach would
be to use the first 2,000 observations of the user. Second, the
test data remains the same throughout the experiment (last
60% of observations). The test data could be a sliding window
of the next temporal set of user observations. Additionally,
more in-depth evaluation of results would be helpful. The
authors present only accuracy for each of their four algorithms.
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False positives and false negatives could be included as well,
and an analysis of relative cost of each error to the user—false
positives (sharing location erroneously) should probably be a
more costly error.

V. RESEARCH PROPOSAL

Smart devices pose novel privacy risks, and include little
to no privacy controls for the user. We have begun to see
the emergence of apps for smart devices other than smart-
phones. Eventually, as devices become more sophisticated
and mature, they may go the way of Android and provide
privacy protections via permissions. Users will be left with the
problem of manually configuring their preferences across all
devices with coarse-grained controls. We believe that machine
learning could be used to provide smart privacy features for
such devices. We begin our investigation with Android, the
most mature smart device OS: much work has been done on
privacy protections for Android, but usability and utility issues
remain. In the previous sections, we discussed three papers
which provide the foundation for our first research direction:
creating usable privacy protection mechanisms for Android via
machine learning.

With regard to this first direction, we have built a smart
permissions prototype for Android, SmarPer. SmarPer intro-
duces usable, context-aware, fine-grained, and automatic pri-
vacy protections for permission decisions. SmarPer learns and
predicts user permission decisions from context and a handful
of manual user permission decisions at runtime. Learning the
user’s preferences and responding automatically decreases user
burden and increases usability. SmarPer also provides privacy
protection capabilities in the form of a privacy/utility tradeoff.
Implementing this tradeoff is challenging, and requires deep
knowledge of Android OS. In addition, the user can view
and audit decisions made automatically by SmarPer. SmarPer
builds on previous work from LCA1, SPISM [36], which
introduced semi-automatic, context-aware information sharing
decisions for instant messaging applications. We have devel-
oped a working SmarPer prototype, based on the open source
project XPrivacy [37]. SmarPer currently includes dynamic
permission decisions at runtime, finer-grained permission de-
cisions, additional granularity levels for private data access
(privacy/utility tradeoff), and logging of decisions and contex-
tual information in a database. Our next steps for this direction
are quality assurance and running a data collection campaign.
We will use the collected data to inform our choice of machine
learning technique for modeling and predicting future user
decisions. After development of an initial model we will run
another campaign, this time to evaluate the effectiveness of
our predictive model.

Our next direction is to evaluate how Android applications
access user data. There has been a great deal of work on
how to identify malicious Android applications, or applications
which behave suspiciously [38], [39], [40], [41]. However,
there is little work on analyzing how benign applications
access user data over time [42], [43], [21]. For example, how
many requests for user data do apps make in the background,
when the user is not using the app? Are any requests made

when the user is sleeping and not using their phone? Users
have little visibility into how apps access their data. This
type of analysis will demonstrate the privacy risk from benign
Android applications.

A complementary analysis will follow, to analyze how
users are making use of existing permission mechanisms (for
example with AppOps or LBE Privacy Guard, which allow
permission revocation after installation). Such an analysis has
been hinted at in [25], but their work focused on predicting
how users will configure their settings. Some questions that
could be answered by such an analysis are: how many users
revoke a permission? Do users change their settings often, per-
haps based on context? Do users like this type of permission
manager better than one which offers less control, or do they
find it confusing? A study like this could provide additional
insight into developing novel privacy protection mechanisms.

Finally, we will move to analyze privacy risks of other smart
devices, starting with the smart hub in the smart home. A
smart hub, such as Apple’s HomeKit [44] or the SmartThings
Hub [45], provides centralized control over all of a user’s
smart devices, either via a physical device or on a smartphone.
Eventually, all of the connected devices and the hub may use
permissions, or some other access control mechanism. We
believe our Android smart permission techniques could also
be applied to this space.
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