EPFL

Master of Science in ENERGY SCIENCE AND TECHNOLOGY

2-year program - 120 ECTS

Students must choose 22 ECTS of optional courses in one of these three orientations:

A Energy conversion devices

- B Energy systems
- C Energy management and sustainability

Orientation	А	В	С	21
Advanced control systems		В		3
Advanced energetics		В		5
Advanced lab in electrical energy systems	Α	В		4
Applied data analysis	А	В	С	8
Development engineering			С	4
Distributed intelligent systems			С	5
Electromagnetic compatibility	Α			4
Energy storage systems	А			3
Energy and comfort in buildings		В		5
Engines and fuel cells	А			4
Environmental transport phenomena	Α			5
Hydropower schemes and pumped-storage	Α			4
Industrial automation	Α			3
Industrial electronics II	Α			4
Material flow analysis and resource management			С	4
Model predictive control	А	В		4
Modelling and optimization of energy systems		В		4
Power system restructuring and deregulation			С	3
Renewable energy (for ME)		В		4
Sanitary engineering for development			С	3
Semiconductor devices I	А			4
Smart grids technologies	А	В	С	5
Solar energy conversion	Α			4
Sustainability assessment of urban systems			С	3
Water and wastewater treatment			С	5

Entry requirements

Candidates should have a Bachelor's degree from a reputable university and excellent academic performance. The strong interdisciplinary character of the Master's degree in Energy Science and Technology is reflected in the fact that the program is open to a wide range of Bachelor's degree holders in applied sciences and engineering, including but not limited to electrical, mechanical, environmental sciences and engineering.

	Credit
Common core courses	24
Convex optimization	5
Electrochemistry for materials technology	3
Energy conversion and renewable energy	4
Energy supply, economics and transition	2
Fundamentals and processes for photovoltaic devices	3
Heat pump systems	3
Hydraulic turbomachines	4
5	

S

20

Complement

Students must follow levelling courses depending on their background and choose additionnal optional core courses to reach 20 ECTS.

EE/MT: students with background in Electrical Engineering or Microengineering ME: students with background in Mechanical Engineering SIE: students with background in Environmental Science and Engineering

Additional mandatory courses for EE/MT:	7
Heat and mass transfer	4
Life cycle assessment in energy systems	3
Additional mandatory courses for ME:	10
Fundamentals of electrical circuits and systems I	2
Life cycle assessment in energy systems	3
Power systems analysis	5
Additional mandatory courses for SIE:	13
Fundamentals of electrical circuits and systems I, II	4
Heat and mass transfer	4
Power systems analysis	5
Additional mandatory courses for students from another study program:	16
Fundamentals of electrical circuits and systems I, II	4
Heat and mass transfer	4
Life cycle assessment in energy systems	3
Power systems analysis	5

Optional core courses	Α	В	С	4 to 13
Advanced heat transfer				3
Air pollution			С	5
Discrete optimization				5
Energy systems engineering				3
Fundamentals of electrical circuits and systems I, II				4
Heat and mass transfer				4
Hydroacoustic for hydropower plants				3
Hydropower plants: generating and pumping units				2
Industrial electronics I	Α			4
Life cycle assessment in energy systems				3
Lifecycle performance of product systems				3
Liquid-gas interfacial heat and mass transfer				3
Machine learning I				4
Negotiation techniques				2
Nuclear fusion and plasma physics				4
Power systems analysis				5
Principles of finance				5
Principles of microeconomics				4
Solid waste engineering				4
Thermodynamics of energy conversion and storage				3
Water resources engineering				5

Industrial internship

The program includes a compulsory industrial internship with a minimal duration of 8 weeks.

School of Engineering

go.epfl.ch/master-energy-science-technology contact: philippe.gay-balmaz@epfl.ch