This program provides education on the theory, technology and practice of intelligent robots, such as mobile robots, wearable robots, robotic manipulators, autonomous and brain-interfaced robots. In addition to classes spanning from electromechanical systems to advanced artificial intelligence, the program offers a large set of hands-on activities where students learn by designing, prototyping and validating robotic systems.
Thibault Asselborn: "This master's degree gave me the opportunity to develop a strong theoretical background and perform research within the world’s most prestigious laboratories."

Ilaria Lauzana: "This master’s program at EPFL allows you to get practical in so many ways. Once you get your diploma, you know you are ready for your future, be it in academia, in industry or in your own startup."

Portable bidirectional artificial hand prosthesis

This project aims at designing and testing a portable bidirectional prosthesis to amputees restoring motor and sensory functionalities lost with the healthy limb. In order to perform chronic experiments over several weeks with the patients, the system must be fully portable, comfortable for the patient, and able to run on battery power for at least a whole day. The system should be small in both size and weight, optimized for real-time execution, and designed to be as versatile as possible. During their master’s thesis, students were asked to develop and clinically evaluate a neuro-controlled upper limb prosthesis intuitively controlled and felt by the amputee as the natural one. At the end of the project, the proposed embedded system showed high levels of performance and imperceptible delays. The device can be used with battery power over long periods of time. These characteristics make this the first embedded computing device designed to be integrated in a real-time bidirectional hand prosthesis. The designed system is modular and highly adaptable. It can thus successfully be considered as a major first step in the direction of a fully embedded, fully portable system.

Robotic manipulation

Dexterous manipulation of objects is robotics 21st century primary goal and a cornerstone of industry 4.0. For decades, robotic manipulation was reduced to grasping a static object. Algorithms were derived from the mathematical models of these robotic systems, and optimized for this particular purpose. Yet, when faced with the uncertainty of the real world, these algorithms failed to deliver their theoretical promises. The past decade has made a leap forward. It benefits new sensors for perceiving touch and new mechanics for soft actuation. Most importantly, it leverages the immense progresses in machine learning to offer adaptive and robust control.

Students enrolled in the EPFL MSc in Robotics will get to learn and apply machine learning techniques to teach robots to manipulate objects. In the compulsory robotic practicals, students will get to train robots to recognize objects and stack them to build complex structures. Students will also be able to work on research projects as part of semester projects and master theses conducted in the LASA laboratory. In these projects, students will participate in developing new algorithms to control forces in the event the robot may enter in contact with a human to ensure safety. They will also get to know about methods for multi-arm manipulation for manipulating objects on fast moving conveyor belts.
Master of Science in ROBOTICS
2-year program - 120 ECTS

The program includes a compulsory industrial internship with a minimal duration of 8 weeks.

Students must choose 17 ECTS of optional courses in one of these three orientations:
A Industrial robotics
B Medical robotics
C Mobile robotics

The optional courses and project II (40 ECTS) include either:
Optional courses (30 ECTS) and 1 robotics project (10 ECTS)

OR
A minor (30 ECTS) with no practical project (Management, technology and entrepreneurship or Financial engineering for example) and 1 robotics project (10 ECTS)

OR
A minor (30 ECTS) that includes a practical project, and 10 ECTS of optional courses.
Recommended minors with this program:
- Biomedical technologies
- Computer science
- Engineering for sustainability
- Neuro-X
- Photonics
- Space technologies

Prerequisites for admission
Candidates holding an EPFL bachelor's degree in microengineering are automatically accepted. Holders of a bachelor's degree in computer science, electrical engineering, mechanical engineering, or any related field with an interdisciplinary background can apply and will go through the standard EPFL admission procedure.

School of Engineering
go.epfl.ch/master-robotics
contact: smt@epfl.ch