

Master of Science in

ELECTRICAL AND ELECTRONIC ENGINEERING

2-year program - 120 ECTS

	Specialization							Credits
Core courses (min. 12 credits)	Α	В	С	D	E	F	G	
Convex optimization				D	Е			5
Fundamentals of analog and mixed signal VLSI design	Α	В	C	D			G	4
Fundamentals of inference and learning	Α	В		D	Е	F		4
Semiconductor devices I	Α	В					G	4
Smart grids technologies								5
Wireless receivers: algorithms and architectures	Α		С	D		F	G	4

Lab	Α	В	С	D	Е	F	G	4
Lab in acoustics								4
Lab in EDA based design				D				4
Lab in electrical energy systems								4
Lab in microwaves	Α						G	4
Lab in nanoelectronics	Α	В						4
Lab in signal and image processing				D				4
Lab on app development for tablets and smartphones				D	Ε			4
Lab on cell-free synthetic biology			C					4
Large-scale data science for real-world data				D				4

Students may choose a 30 ECTS specialization in:

A Microelectronic circuits and systems

B Electronic technologies and device-circuit interactions

C Bioelectronics

D Internet of Things (IoT)

E Data science and systems

F Signal, image, video and communication

G Wireless and photonic circuits and systems

Or/and a 30 ECTS minor included in the 120 ECTS. Recommended minors with this Master:

- Biomedical technologies
- Computational science and engineering
- Energy
- Management, technology and entrepreneurship
- Space technologies

Industrial internship

The program includes a compulsory industrial internship with a minimal duration of 8 weeks (30 ECTS if extended to 4-6 months).

School of Engineering go.epfl.ch/master-electrical-electronic-engin contact: philippe.gay-balmaz@epfl.ch

	Specialization						Credits		
Options	Α	В	С	D	Е	F	G		
Adaptation and learning Advanced A/MS VLSI: A-to-D Converter	Α	В	С		Е	F		4	
Advanced analog integrated circuit design	Α	В	С	D			G	3	
Advanced computer architecture Advanced lab in electrical energy systems	A			-				8	
Advanced lab in electrical engineering								4	
Advanced multiprocessor architecture Advanced VLSI design	A A			D D				6	
Advanced wireless receivers	A			D			G	3	
Analog circuits for biochip Applied biomedical signal processing	Α		С	D D		г		3	
Applied data analysis				D	Е	1		8	
Applied machine learning				D	Ε	r		4	
Audio Automatic speech processing					Е	F		3	
Basics in bioinstrumentation		_	С	7				4	
Bioelectronics and biomedical microelectronics Biomicroscopy I, II	A	В	C	D			G	3 7	
Bio-nanochip design			С	D				3	
Causal inference Cellular and molecular biology I			С	D	Е	F		4	
Classical and quantum photonic transducers								3	
Computational neurosciences: neuronal dynamics Computational photography			С			F		5 6	
Computer graphics						F		6	
Data visualization				D	Е	г		6	
Deep learning Deep learning for autonomous vehicles				D	Е	r		4	
Deep learning for optical imaging					Е	F		3	
Design technologies for integrated systems Discrete optimization	Α	В	С	D	Е	F		6 5	
Distributed information systems				D	_	F		6	
Distributed intelligent systems	A					F		5 2	
Electromagnetic compatibility Embedded systems design	Α			D				6	
Energy conversion and renewable energy								4	
Energy storage systems Fundamentals and processes for photovoltaic devices								3	
Fundamentals of biomedical imaging			С					4	
Fundamentals of biosensors and electronic biochips Fundamentals of VLSI design	Λ	B	C	D				3	
How to design for value for space applications	А	ь		D				2	
Hydropower plants: generating and pumping units					_	г		2	
Image analysis and pattern recognition Image and video processing				D	E	F		4 6	
Imaging optics	Α							3	
Industrial automation Industrial electronics I, II								3 8	
Information theory and coding	Α			D	Е	F		8	
Introduction to the design of space mechanisms Lasers: theory and modern applications	Α						G	2	
Lessons learned from the space exploration								2	
Machine learning Mathematics of data: from theory to computation	Α				E			8	
Media security				D	L	F		6	
Microwaves, the basics of wireless communications	A		С	D		F	G	4	
Mobile networks Model predictive control	A			D D				8	
Multivariable control								4	
Nanoelectronics Networked control systems	Α		С	D				2	
Network machine learning				D	Е	F		4	
Neural interfaces New space economy			С					6	
Optical detectors	Α						G	3	
Optics laboratories I	A			D			G	3	
Optimal decision making Photonic systems and technology	Α			ט		F	G	4	
Physical models for micro- and nanosystems	A							2	
Physics of photonic semiconductor devices Power system restructuring and deregulation	A						G	4	
Power systems dynamics								3	
Project in electrical engineering Projet en technologies spatiales	A		С	D	Е	F	G	10 12	
Quantum electrodynamics and quantum optics	Α						G	6	
Quantum optics and quantum information	A A		_				G G	6	
Radio frequency circuits design techniques Reinforcement learning	А		С				G	6	
Scaling laws in micro- and nanosystems			С					2	
Selected topics in advanced optics Semiconductor devices II	A A	В		-			G	3	
Semiconductor physics and light-matter interaction								4	
Seminar in physiology and instrumentation Sensors in medical instrumentation			C					2	
Smart sensors for IoT				D	Í			3	
Social media Space mission design and operations						F		2	
Space mission design and operations Space propulsion								3	
Spacecraft design and system engineering					_			4	
Statistical inference and machine learning Statistics for data science	A	В		D	Е	F'		4	
Systems and architectures for signal processing	Α	Í			Í			2	
Systems programming for systems-on-chip TCP/IP networking	Α		С	D				6 8	
Test of VLSI systems	Α	Í			Í			2	
Transdisciplinary project						p		4	
Wave propagation along transmission lines						Г		2	