

EPFL

Master of Science in

APPLIED MATHEMATICS

2-year program - 120 ECTS

Students must choose at least 30 ECTS worth of courses labelled A.

Optional courses are classified in the following tracks:

- · Algebra and geometry
- · Algorithmic and discrete mathematics
- Analysis
- · Numerical analysis
- Probability and interactions / Statistics

On top of the Optional courses (40 ECTS) students must choose 4 ECTS in another engineering program, except if they opt for a 30 ECTS engineering minor.

Approved courses sample:

- · Applied biomedical signal processing
- Applied data analysis
- Data vizualisation
- · Deep learning
- Information security and privacy
- · Information theory and coding
- Investments
- Mathematics of data
- Optimisation for machine learning
- · Quantitative risk management
- Relativity and cosmology
- Signal processing
- Statistical signal and data processing through applications

Students opting for a minor in engineering may shorten their industrial internship.

School of Basic Sciences go.epfl.ch/master-applied-mathematics Contact: sma@epfl.ch

		"
		edits
0.1		نّ 40
Optional courses Algebra and geometry	Α	40
Abstract analysis on groups		5
Advanced analytic number theory Algebraic geometry II - Schemes and sheaves		5 10
Algebraic geometry III - Selected topics		5
Complex manifolds Differential geometry IV - General relativity		5 5
Ergodic theory		5
Géométries euclidienne et hyperbolique		5
Number theory - Modular forms Number theory - Selected topics		5 5
Number theory - Cryptography	Α	5
Representation theory III - Quantum groups Riemann surfaces		5 5
Student seminar in pure mathematics		5
Topology IV.a -Algebraic K-theory		5
Topology IV.b - Cohomology rings Topology IV.b - Homotopy theory		5 5
Topology V.a - Homotopical algebra		5
Algorithmic and discrete mathematics	^	-
Algebraic methods in combinatorics Diophantine approximation	A	5 5
Integer optimisation	Α	5
Mathematical modeling of behavior Metric embeddings	A	5 5
Probabilistic methods in combinatorics	Α	5
Analysis		_
Calculus of variations Dispersive PDEs		5 5
Distribution and interpolation spaces		5
Harmonic analysis Introduction to dynamical systems		5 5
Lattice models	Α	5
Nonlinear Schrödinger equations		5
Optimal transport Spectral theory	A A	5 5
Numerical analysis	71	
Computational linear algebra	A A	5 5
Computational optimal transport Error control in scientific modeling	A	5
HPC for numerical methods and data analysis	Α	5
Kinetic and non-equilibrium conservation laws Numerical integration of dynamical systems	Α	5 5
Numerical integration of stochastic differential equations	A	5
Numerics for fluids, structures and electromagnetics Optimization on manifolds	A A	5 5
Randomized matrix computations	A	5
Stochastic simulation	Α	5
Topics in machine learning Probability and interactions / Statistics	A	5
Advanced stochastic analysis	Α	5
Applied biostatistics	A	5
Applied statistics Biostatistics	A A	5 5
Cellular automata and models of artificial life	Α	5
Concentration of measures Empirical processes	Α	5 5
Foundations of probabilistic proofs	A	6
Gaussian processes	A	5
Introduction to multi-scale stochastic dynamics Introduction to random geometry	A	6 5
Introduction to stochastic PDEs	Α	5
Large deviations Martingales in financial mathematics	A A	5 5
Multivariate statistics	A	5
Nonparametric estimation and inference	Α	5
Probabilistic models of modern AI Regression methods	A A	5 5
Statistical analysis of network data	A	5
Statistical computation and visualisation	A	5
Statistical inference Statistical machine learning	A A	5 5
Statistical mechanics and Gibbs measures	Α	5
Statistical theory Statistics for genomic data analysis	A A	5 5
Theory of stochastic calculus	A	5
Topics in high-dimensional probability	A	5
Other courses Gödel and recursivity		5
Set theory		5