EPFL

Master of Science in CHEMICAL ENGINEERING AND BIOTECHNOLOGY

2-year program - 120 ECTS

Students may opt for a 30 ECTS catalysis/sustainability specialization. In this case, 18 ECTS of specialization labeled courses must be taken on top of the core courses and the chemical engineering lab and project.

	Spec.	Credits
Catalysis/sustainability core courses		8
Automated and data-driven laboratories	•	2
Sustainable chemicals manufacture: concepts/tools	•	4
Sustainable chemistry and chemical engineering in Industry	•	2

Options		18
Catalysis		
Advanced nuclear magnetic resonance	•	3
AI for chemistry	•	3
Asymmetric catalysis for fine chemicals synthesis	•	3
Catalyst design for synthesis	•	2
Energy conversion by semiconductor devices	•	2
Machine learning for physicists	•	6
Optical methods in chemistry	•	3

Sustainability		
Environmental Economics	•	4
Environmental system analysis and assessment	•	5
Fate and behaviour of environmental contaminants	•	4
Introduction to ethics and critical thinking	•	3
Science of climate change	•	4

Students may also opt for a 30 ECTS minor instead of the industrial internship.

Recommended minors:

- Engineering for sustainability
- Materials science and engineering
- Physics

	Spec.	Credits
Core courses		10
Chemical engineering		
Diffusion and mass transfer		4
Heterogeneous reaction engineering	•	4

Management and safety		
Safety of chemical processes	•	2

Options		28
Theme A: Energy and sustainability		
Automated and data-driven laboratories	•	2
Catalysis for emission control and energy processes	•	3
Catalysis for energy storage	•	3
Modeling and optimization of energy systems		4
Nanomaterials for chemical engineering application		3
Process intensification and green chemistry	•	3
Solid state chemistry and energy applications		3
Sustainable chemicals manufacture: concepts/tools	•	4
Sustainable chemistry and engineering in industry	•	2
Thermodynamics of energy conversion and storage		3

Theme B: Biotechnology		
Bioprocesses and downstream processing	•	4
Biotechnology lab	•	4
Food biotechnology		2
Nanobiotechnology		3
Pharmaceutical biotechnology		3
Principles and applications of systems biology		3
Selected topics in life sciences		3
Synthetic biology		4

Theme C: Materials and food engineering		
Chemistry of food processes		2
Chimie des denrées alimentaires		2
Entrepreneurship in food and nutrition science		4
Food biotechnology		2
Organic electronic materials		4
Physical and chemical analyses of materials	•	3
Physical chemistry of polymeric materials		4
Polymer chemistry and macromolecular engineering		3
Risk management	•	2
Solid state chemistry and energy applications		3
Sustainability and materials	•	3

Laboratory and projects		16
Chemical engineering lab and project	•	4
Chemical engineering product design		4
Process development		8

School of Basic Sciences go.epfl.ch/master-chemical-engineering Contact: scgc@epfl.ch