

28 février 2024

Programme Master Microtechnique

 Faculté des Sciences et Techniques de l'Ingénieur (STI)

Welcome to Microengineering!

Download the presentation

Prof. Christophe Moser Section Director

Dr. Sebastian Gautsch Adjunct

What is Microengineering?

Microengineering is a branch of engineering that deals with the design and fabrication of very small structures and devices, typically on the scale of micrometers or smaller. It involves the use of microfabrication techniques to create complex systems and machines with dimensions that are often measured in microns.

Microengineering encompasses a wide range of applications, including micro-electronics, micro-electromechanical systems (MEMS), microfluidics, nanotechnology, and bioengineering. Some examples of microengineering products include microsensors, micro-actuators, micro-optics, microfluidic chips, and microelectronic devices.

Microengineering plays an increasingly important role in many fields, including medicine, electronics, materials science, and environmental monitoring. By creating devices that are small, efficient, and precise, microengineering is enabling new applications and advancing scientific understanding in a variety of areas.

Historical background

Jaquet-Droz Automata (*La Chaux-de-Fonds* - 1768 et 1774)

Ancestors to modern robotics

Le dessinateur (2000 pièces)

EPFL Building on history

microtechnique

Medtech & Microtechnology Lab technologies & diagnostics Neurotechnologies Digital health Immunology Oncology

39 research institutes 1'000 companies 5'000 students

Why go Small ???

Size and Mass

IMU on Saturn V (1960)

IMU from Xsens (2019)

Speed

40'000 droplets per second

Energy consumption

Bachelor Microtechnique

Master program structure

https://www.epfl.ch/education/master/study-programs-structure/

Master Program structure

Products Design and Systems Engineering

Foundational course in the first semester letting groups of students create their own product from concept to prototype, including a first marketing plan. With invite speakers from Academia and Industry.

Florian Business developer

Orientations – Microengineering Master

Orientations are meant as **guidelines** to help students choose their courses

Orientations - Master Microengineering

Orientations - Master Microengineering

Machine learning programming: Distributed intelligent systems Model predictive control Advanced control systems

And

Bio-image informatic. Audio Neural signal and signal processing Translational neuroengineering Applied biomedical signal processing Introduction to Bioengineering

Lab on app development for tablets and smartphones Management de projet et analyse du risque Space mission design and operations

Aerial robotics **Evolutionary robotics** Intercultural presentation skills

Smart fabric printing

SYNOVA

Laser cutting

Advanced manufacturing

BÜHLER

Supply chain

Example of Industry players **Advanced Manufacturing** & Production

Master internship evaluations

Company evaluation (August '21 – August '23, 403 MT & RO students)

Excellent Good Sufficient Insufficient	
310	79 103
280	102 13 2
287	96 12
261	113 23 4
318	71 12
231	136 30 <mark>5</mark>
224	155 14 4
287	99 <mark>10</mark> 5
297	77 112
334	50 <mark>8 2</mark>
239	135 <mark>20 4</mark>
216	135 13 1
221	146 <mark>28 4</mark>
238	142 16 2
269	111 15 6
279	111 7.4
	Excellent Good Sufficient Insufficient 310 310 280 280 287 261 261 318 318 231 318 318 231 287 334 224 287 334 239 334 334 239 216 334 221 221 269 269 269 279

Speaker

EPFL What is Microenginering onboard a Rover?

microtechnique

Entrepreneurship!

Student Startup Launchpad

We foster student entrepreneurship as a driver for leadership, impact and innovation. We are building the next generation of students founders with a drive for excellence, an instinct for leadership and an aspiration for societal impact.

> applications are open blaze startup accelerator The 3-month program for EPFL promising student startups Application deadline Feb. 19 rogram starts in March

go.epfl.ch/blas

Master project in your Startup (PDM)

Research - IEM to host your projects

EPFL ICM institute of electrical and micro engineering

IEM covers the following major technical fields:

- Electronic Circuits and Devices
- Micro-manufacturing and Micro- and Nano-technologies
- Robotics
- IoT, Computer & Communication Engineering
- Optics, Photonics and wave engineering
- Machine learning, Information Science and Systems
- Power and Energy

Research in IEM :

- 37 Full Professors / Associate Professors / Tenure-Track Assistant Professors
- I SNSF-funded Professor
- 13 Adjunct Professors
- 11 Senior Scientists
- 1 Member of the US National Academy of Engineering
- 1 Member of the American Academy of Arts & Sciences
- 1 Member of the Academia Europaea
- 2 Members of Swiss Academy of Engineering Sciences
- 25 ERC grants : 12 Advanced, 6 Consolidator and 7 Starting grants since 2008

One Institute on 3 campuses

Geneva - Campus Biotech

- · Bio- and neuroengineering (Wyss center)
- Human Brain Project
- Center for neuroprosthetics

Neuchâtel - Microcity

Microengineering and nanotechnologies

Minors...

Bloc 2 (15 ECTS) Restricted course choice 7 courses, 46 ECTS possible, 3 orientations)

HS Project (6 ECTS

Semester Project I (10 ECTS

Product design and system engineering (10 ECTS)

Recommended and possible Minors

Data and internet of things	Interdiscipl.	EL	Atienza D.	r
Energy	Interdiscipl.	GM	Maréchal F.	г
Imaging	Interdiscipl.	MT	Sage Daniel	г
Engineering for sustainability	Interdiscipl.	SIE	Gilliéron P.Y., Leterrier	г
Technology management and entrepreneurship	Interdiscipl.	MTE	de Rassenfosse G.	г
Neuro-X	Discipl.	NX	Hummel F, Micera S.	г
Photonics	Interdiscipl.	MT	Martin O.	г
Physics of living systems	Interdiscipl.	SV	Persat A.	г
Quantum science and engineering	Discipl.	SIQ	Macris N. et Klinke H.	Г
Biomedical technologies	Interdiscipl.	MT	Guiducci C.	г
Spacial technologies	Interdiscipl.	EL	Kneib JP.	г
Computational science and engineering	Discipl.	MA	Pouchon O.	г
Architecture	Discipl.	AR	Kochnitzky Palluel L.	С
Computational Biology	Interdiscipl.	IN	Salathé M.	с
Biotechnology	Interdiscipl.	CGC	Pick H.	С
Chemistry and chemical engineering	Discipl.	CGC	Marendaz JL.	С
Cyber security	Discipl.	IN	Hazboun E.	С
Data science	Discipl.	SC	Hazboun E.	С
Integrated Design, Architecture and Sustainability	Interdiscipl.	AR	Andersen M., Rey E.	С
Territories in transformation and climate	Interdiscipl.	AR	Joost St.	С
Civil engineering	Discipl.	GC	Turberg P.	С
Electrical and electronic engineering	Discipl.	EL	Gay-Balmaz Ph.	С
Mechanical engineering	Discipl.	GM	Prenleloup A.	С
Systems Engineering	Interdiscipl.	MTE	Weber Th.	С
Computer science	Discipl.	IN	Hazboun E.	с
Life sciences engineering	Discipl.	SV	Grisoni B.	С
Financial engineering	Discipl.	IF	Fahlenbrach R.	С
Mathematics	Discipl.	MA	Pouchon O.	С
Physics	Discipl.	PH	Mari D.	С
Materials science and engineering	Discipl.	MX	Marselli B.	С
Environmental sciences and engineering	Discipl.	SIE	Gilliéron PY	С
Statistics	Discipl.	MA	Mhalla L.	С
Communication systems	Discipl.	SC	Hazboun E.	с

Recommanded in the study plans
 Choice of the courses with the advice of the initiating
 section and the person in charge of the minor

Minors administrated by our section

microlechnique					
section				section	
				Imaging	
Photonics				minor 2023-24	
minor 2023-24					
				Projet obligatoire du mineur en Imagerie	
Projet obligatoire du mineur en Photonique				Project in Imaging Div	rs enseignants
Project in photonics	Divers enseignants	10	AP	Bases en imagerie	
Bases en photonique pour étudiants n'ayant aucune formation en photonique				Mathematics of imaging (starting 24-25) Uns	er/Simeoni/Guizar
Ingénierie optique	Achouri/Martin O.	6	·/////////////////////////////////////	Autres cours	
Foundations of photonics Basic integrated photonic components: fundamentals and simulations	Benea-Cheimus	4	A	Instrumentation and Optics	
aser fundamentals and applications for engineers	Moser	3	8	Imaging optics Psa	lts / /
Lasers, theory and modern applications	Moser Chukippenberg	67	-	Metrology Cha	rbon/Fantner/Bru
Nonlinear optics for quantum technologies	Galland	4	2	Metrology practicals Cha	rbon/Fantner/Bru
Optics laboratories	Psalts/Pu	3	P	Optical detectors Bes	50 / /
Photonic systems and technology	Brès	4	P	Electron microscopy: advanced methods Hét	ert/Duncan
Physics of photonic serviconductor devices	Grandjean	100	P	Fundamentals of biophotonics Rac	enovic
Juantum electrodynamics and guantum optics	Rippenberg	0	A		
Quantum physics III	Yazyay	6		Image Processing and Analysis	
Selected topics in advanced optics	Martin O.	3	A	Image analysis and pattern recognition This	an /
Semiconductor physics and light-matter interaction	Butté	4	A	Image processing I Uns	er/Van de Ville
Advanced photonic transducers: classical and quantum applications	Benea-Cheimus	3	8	Image processing II Uns	er/Van de VilleiL
and abatanics				Deep learning for optical imaging Psa	ns /
undamentais & processes for photovoltaic devices	Balif	3	P	Come dational shateography 20	struck
undamentals of biophotonics	Radenovic	3	P	Computational photography Sus	SECITIK
mage processing I	Unser/Van de Ville	3	A	Visual Intelligence - machines and minds Zan	1 11 1
mage processing II	Liebling/Sage/Unser/Van de Ville	3		Mathematical foundations of signal procession Fan	ent/Simeoni/Reis
aser microprocessing	Hotmann	2	P	Harverhausen Harverhausen of Agrici processing Tag	
Acrotabrication technologies	GijsBrugger	4	A	Application-Specific Courses	
lanophotonics	Moselund	3		Bioimage informatics Set	z/Sage
Optical Design with ZEMAX OpticStudio	Pu	3	*	Biomicroscopy I Altu	a //
Aptical detectors	Briand'S dramanian	3	â	Biomicroscopy II Altu	a/Seitz
	Cristing Countries and	r .	111	Fundamentals of biomedical imaging Gru	etter
Biomedical photonics				Neural signal and signal processing Mic	ara/Van De Ville
Siomedical optics	Wagnières	3	A	Image processing for Earth observation Tul	
Stomicroscopy 1	Albig	3	-	Quantitative imaging for civil engineering And	0
Sjomicroscopy II	Albg + Selz A.	1		Sensing and spatial modeling for earth observation Ska	loud, Berne, Tuia
PACIED REGISTRE	viagnetus	-	- / /	Histoire de l'image I Lug	on

Dive into this fascinating field covering a large panel of engineering sciences

Contact : daniel.sage@epfl.ch & laurene.donati@epfl.ch

見たり

8 A/P

3 4

P

er/Van de Ville/Liebling/Sage

Biomedical technologies minor 2023-24

EPFL

Projet obligatoire du

Project in biomedica Rases biomédica

Cellular biology and

lew tools & resear ors in medical inst

8 A.P

3 P 4 4 P 2 A

nineur en Technologies biomédica	ales / / / /	
chnologies	Divers enseignants	
the cell	Manley	
chemistry for engineers	Zufferey	
es //	Roy	
and instrumentation	Radenovic	
hip	Camara/Schmid/Skrivervik	
hal processing	Lemay	
redical microelectronics	Schmid	
	Sage/Seitz	
ation *	Morten	
iences : neuronal dynamics	Gerstner	
rdiovascular system	Stergiopulos	
sculoskeletal system	Pioletti	
	Wagnières G.	
	Altug	
	Altug+Seitz A.	
	Сапага	
biological systems	Rahi Sahand J.	
dical imaging	Gruetter	
otonics	Radenovic A.	
nsons and electronic blochips	C. Guiducci	
	Achouri/Martin O.	
ICeB	Roke S.	
nechanics regulate life	Persat/Sakar	
logies	Brugger/Gijs	
I biophysics	Fierz B,	
	Lacour	
at processing	Mioera/Van De Ville	
and circuit mechanisms	Crochel/Pelersen	
rategies in personalized health	Trono	

xperience the future of b

Chétélat/lonescu Blanke/Courtine/

Join this program to transform the way we understand and treat the human body

Contact : carlotta.guiducci@epfl.ch

Explore cutting-edge technologies to control electrons and photons

Contact : olivier.martin@epfl.ch

Successful curricula (>1200 students)

Bachelor

Master Microengineering & Robotics

Gender balance

	100%	%	%	%	%											
	90%		10	=	129	13%	14%	17%	18%	20%	19%	20%	20%	21%	23%	
	80%															
	70%															
Effectif	60%															
of Total	50%	33%	%(%	%	%	, 9									
%	40%	0,	6	88	88	87%	86%	83%	82%	80%	81%	80%	80%	%62	%11	
	30%															
	20%															
	10%															
	0%															
		2010-11	2011-12	2012-13	2013-14	2014-15	2015-16	2016-17	2017-18	2018-19	2019-20	2020-21	2021-22	2022-23	2023-24	

Bachelor

Microengineering Master

Short Movie to learn more

Section de Microtechnique EPFL

 Faculté des Sciences et Techniques de l'Ingénieur (STI)

Faites défiler la page pour afficher plus de détails

6 🍌

Léonard Badet Head of Group Technology – Bobst Master Microtechnique terminé en 2017

Alumni Testimonies

Damien Wittwer Business Unit Manager Associate Master Microtechnique terminé en 2010

https://tube.switch.ch/videos/J6tEwLlxYr

Alumni Testimonies

Adrien Briod Founder and CTO Master Microtechnique terminé en 2009 Thès doctorat EPFL 2013

Worldwide recognition

EduRank	28. Federal Instit	ute of Technology Lausanne	
	For Engineering #4 in Europe #1 in Switzerland Enrollment 12,576	EPFL	
8. Federal Institute of Technolo Switzerland Lausanne	gy Lausanne	8. Federal Institute of Technology Laus	anne
Lin Europe	EPFL	#1 in Switzerland	FL
14. Federal Institute of Technolog Switzerland Lausanne	y Lausanne	20. Federal Institute of Technology Lausa	anne
in Switzerland	EPFL	#3 in Europe #1 in Switzerland	FL
ollment 12,576	_	23. Federal Institute of Technology Lau	sanne
		For Optical Engineering #4 in Europe	FL
ps://edurank.org/engineeri	ng/nanotechnolog	#1 in Switzerland	

We wish you a successful continuation of your Bachelor studies and hope that you will make the right choice for your Master !

