École polytechnique ### **Content** Why nuclear engineering at EPFL / ETHZ / PSI A few words on the context Some details on the curriculum # **Master Program in Nuclear Engineering** Since 2008 Two Federal universities... ... Two nuclear engineering professors Annalisa Manera Reactor technology Andreas Pautz Reactor physics ## **ETHZ-EPFL MSc in Nuclear Engineering** - 1st joint MSc program between ETHZ and EPFL - Established in 2008, more than 200 graduates - Two-year program, 120 ECTS credits - Scientific support and research projects through cooperation with the Paul Scherrer Institute ## **ETHZ-EPFL MSc in Nuclear Engineering** - 1st joint MSc program between ETHZ and EPFL - Established in 2008, more than 200 graduates - Two-year program, 120 ECTS credits - Scientific support and research projects through cooperation with the Paul Scherrer Institute - 1st semester at EPFL, 2nd at ETHZ, 3rd-4th at PSI - Small program (~ 15 students/y, above 20 now!) - Makes extensive use of the CROCUS reactor ## Why nuclear engineering at EPFL / ETHZ / PSI? - Master degree from two of Europe's top schools - Small program (15-20 students/year) with intensive contact and close supervision by professors and teaching/research staff - Highly international and intercultural experience - Good job prospects with a long-term perspective in Switzerland (plant operation past 2040!), and worldwide - Large needs in nuclear competence in long-term operation, decommissioning, waste disposal, but also in non-power generation areas - Very close cooperation with Swiss industrial partners - Exciting research opportunities at EPFL, ETHZ, and PSI, e.g. continuation with a PhD on new reactor types Vincent Lamirand # **ETHZ-EPFL MSc in Nuclear Engineering** A survey was organized in 2017 For more information visit <u>master-nuclear.ch</u> ### **Context** - Switzerland - Long-term perspective: plant operation past 2040 - International - France: 71% in 2019, 50% target in the future - USA investing in nuclear power : 4 sites + extensions - Numerous operating plants and new-builts in Russia - China planning on 28 plants by 2020 plus 150 by 2035 - Low-carbon emissions - Role for effective action to mitigate climate change ### **General scope** #### Focus Fundamentals & technology of employing nuclear fission for a safe and sustainable energy supply - Nuclear techniques in medicine & industry, and also nuclear fusion - Program restructured in 2018 #### Integration into energy systems as a whole Nuclear + Renewables + Efficient energy use = Sustainability of energy supply #### Degree open to Bachelors in various disciplines Physics, Chemistry, Mechanical, Electric, etc., as per high level of interdisciplinarity needed ### **Program features** #### Degree awarded Master of Science EPF-ETH in Nuclear Engineering #### Combined implementation on semester basis 1st semester (autumn) courses at Lausanne 2nd semester (spring) courses at Zurich 3rd semester (autumn) block courses at PSI Internship during summer 4th semester (spring)MSc thesis #### Flexibility and support granted - Large spectrum of elective courses - Tutor aided program: a professor to be identified by each student ### **Program features** #### 3rd semester - Industrial internship - to be started around July - 3 months minimum - "Block" courses & semester project at PSI - Semester project selected during a PSI visit at the end of 2nd semester (typically around mid-May) #### 4th semester - MSc thesis (30 ECTS), typically at PSI, EPFL or ETHZ - 25 weeks of research - can be a continuation of your semester project theme - Conditions - start of MSc thesis: at least 80 ECTS of courses - MSc degree: full 90 ECTS of courses + thesis completed ### Curriculum eleven compulsory courses 50 Industrial internship conducted partly outside semesters Semester project during 3rd semester, at PSI Management or Humanities courses min. 4 during 1st or 2nd semester Elective core courses 20 Including "Free" elective courses **ECTS** # **Large facilities at PSI** Hot cells with manipulators # **EPFL ETH** zürich ### **Large facilities at PSI** #### **ARTIST** Aerosol Trapping In a Steam Generator experiment International project to investigate aerosol and droplet retention in a model steam generator #### PANDA Thermal-hydraulics facility for safety investigations of light water reactors ### The CROCUS reactor at EPFL #### **Reactor type** - LWR with partially submerged core - Room T (controlled) and atmospheric P - Forced water flow (160 l.min⁻¹) #### **Operation** - 100 W (zero-power reactor) - i.e. maximum 2.5×10⁹ cm⁻².s⁻¹ - Control: B₄C rods and spillway #### Core Ø60 cm/100 cm, 2-zone • Inner: 336 UO₂ 1.806 wt% 1.837 cm Outer: 176 U_{met} 0.947 wt% 2.917 cm ### In few words... #### Focus - Neutronics - Thermohydraulics - Nuclear Material Science - Nuclear Safety - Waste Management - Radiation Protection - CROCUS reactor (EPFL) - Swiss Light Source synchrotron - Hot Lab facility (PSI) - Proton therapy center (PSI) - Numerous thermal-hydraulics experimental facilities (ETHZ, PSI) #### For more information: https://www.epfl.ch/schools/sb/sph/en/master/master-in-nuclear-engineering/ http://www.master-nuclear.ethz.ch/ or <u>Valerie.Schaererbusinger@epfl.ch</u> / Andreas.Pautz@epfl.ch