<table>
<thead>
<tr>
<th>Time</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00</td>
<td>Role and duties</td>
</tr>
<tr>
<td>10:15</td>
<td>Safety at work</td>
</tr>
<tr>
<td>11:30</td>
<td>Doors label</td>
</tr>
<tr>
<td>13:15</td>
<td>Health at work</td>
</tr>
<tr>
<td>14:00</td>
<td>Barcode creation</td>
</tr>
<tr>
<td>14:45</td>
<td>Break</td>
</tr>
<tr>
<td>15:00</td>
<td>Accident simulation</td>
</tr>
<tr>
<td>15:45</td>
<td>Summary of the day and questions</td>
</tr>
</tbody>
</table>
Merci

Stéphane Karlen
Head of OHS
Vision

«Establish a safe, healthy and pleasant work environment in which the community can thrive.»

- Identified hazards
- Controlled risks
- Ergonomic and functional workplaces
- A healthy environment
Two services provide support on **Safety and Security** to EPFL staff.
Occupational health and safety (OHS): organization

Occupational Health and safety (OHS)
(head S. Karlen)

Health (OHS-ST)
sante@epfl.ch

Occupational Hygiene (OHS-HT)
hygienetravail@epfl.ch

Risk Prevention (OHS-PR)
https://go.epfl.ch/support-ohs
ohs-pr@epfl.ch

Adm. support: M. Mangili
OHS Missions

Training
- Mandatory safety training
 FOBS 1, 2, 3
- Advanced training
 Laser, cryo, radioprotection, etc.
- Specific training
 overhead cranes, etc.
- Student projects related

Support
- Identification of hazards
- Technical control of risks
- Portfolio of hazardous phenomena
- Risk and accident analysis

Compliance
- Audits
- Authorizations
- Directives
OHS - Health: activities and team

OHS-Health

Medical surveillance for workers handling:
- nanomaterials
- radioactivity
- biohazards
- chemical risks (lead, arsenic, etc.)

Health prevention

Return to work medical follow-up

Med. consultation with nurses

- Thibaut Gaillard
- Cesar Jaton
- Viviane Depuydt-Linder
- Chiyama Mathivathanasekaram
- Sophie Peuble-Bovon
- Françoise Maillefer

sante@epfl.ch
OHS - Occupational hygiene: activities and team

- Occupational hygiene services for EPFL community
- Prevention of occupational chronic risk of exposure
- Exposure assessments
- Maternity protection
- Ergonomics
- Advice on PPE selection

Hygienetravail@epfl.ch

Anna Maria Novello
Helena Palacios
Jean-Michel Poffet
Patrick Gerber
Marc Matthey
OHS - Risk prevention

- Support/ advice on laboratory hazards
- Trainings on specific laboratory hazards
- Risk analysis
- Delivery of authorizations for particularly hazardous chemicals
- Analysis of incidents/accidents
- Safety audits/ control

https://go.epfl.ch/support-ohs

Simona Frateschi
Kirstin Friedrich
Francesca Gaggini
Amela Groso
Sébastien Gex
Emanuele Ripiccin
Eleonora Simeoni
Astrid Olaya
Benjamin Uster
OHS – Prévention des risques: Team in detail

ATEX
Gas
Laser
Nano
Cryo
Magnet.
Radioprot.
Electricity
Bio

Chemistry, Storage, manipulation authorization
Roof, machinery safety, Workshop
ADR
Special Waste
Glove box / Mechanical safety
Main activities

- All emergencies:
 - Fire interventions
 - First aid
 - Theft on campus

- Central alarms (CEA)

- Security of events on the Campus

- Air safety (i.e. drones flights)

- Infrastructure related safety

https://www.epfl.ch/campus/security-safety/secours/

Contacts:

- securite@epfl.ch
- travaux.sis@epfl.ch
We come to you

Neuchâtel – Microcity

Fribourg – Smart Living Lab

Lausanne – Campus principal

Sion – Campus Energypolis

Geneva – Campus Biotech
Who are you?

- Postdocs
- Senior scientific personnel
- Administrative staff
- Technical staff
- Group leader
- PhD students
Why did EPFL decide to have CoSecs?
Accident also happen in Academia

USA, CA 2009
Chemical Fire

Canada 2012
Biohazard
1 disease

Canada 2012
Biohazard
1 disease

UK 2017
Explosion
Building evacuation

Russia 2016
Fire
? wounded

China 2018
Explosion

USA, CT 2011
Workshop tour

USA, HI 2016
Explosion
1 wounded

France 2006
Explosion
21 wounded

India 2011
Fire
Building destroyed

Brésil 2001
Biohazard
2 diseases

Zimbabwe 2017
Feu

Severity: – – – – +
Accident also happen in Academia
There is never a good accident!

2018 – Exton, USA, Frontage Laboratories
Died as a result of exposure to potassium cyanide.

Ge Guo

2019 – Versailles, France, INRA lab
In May 2010, she accidentally pricked her thumb through a double pair of latex gloves while working on mouse brain tissue containing mad cow disease proteins. She died nine years later.

Émilie Jaulain

2008 – Nova Scotia, Canada
Trimethylsilyldiazomethane (TMSD) poisoning. The laboratory fume hood was not working due to work on the roof of the building.

Roland Daigle
Network & collaboration

OHS / CoSec Training

25

1:14

350

6000 (23 moy)
Cosec specifications
Cosec Specifications
(cahier des charges)

- Be the **contact person** for OHS.
- Conduct **welcome sessions** regarding OHS topics for new employees and guests of the unit.
- Communicate **safety information to unit** personnel.
- Communicate **safety information to OHS**.
- Inform OHS of **safety related problems and incidents**.
- Be **familiar with alarm systems**, building evacuation procedures, and emergency equipment.
- Manage **the door safety sheets** once a year or whenever a change occurs.

LEX 1.5.1 Directive concerning occupational health and safety of the EPFL
Cosec Specifications
(cahier des charges)

- Periodically check and update personal protective equipment.
- Verify that requested changes in unit safety are implemented.
- Arrange for event announcements and attend specific meetings and training sessions.
- Impose emergency measures to eliminate any imminent danger of which he/she is aware.
- Manage, the cleaning of work areas, storage of chemicals, collection of waste and transfer to faculty stores.
- Assist OHS safety visits and manage the implementation of corrective actions.
Your role is key to **avoid accident**

- **Share** security information
- **Report** dangerous situations
- **To identify** dangerous situations
- **Check** the state of the shared safety equipment
- **Listen** to problems
- **Take part in safety actions**
OHS Challenges

- Pressure
- High turnover
- Multicultural
- Heterogenous and independent
- Constant evolution
Occupational Safety - Basics
Risk Management: Understand the risk

A hazard is something that has the potential to harm you.

Risk = Hazard × Exposure

The risk is the likelihood of a hazard causing you harm in case of contact.

Confinement principles

Working environment

Behavior

Rules & procedures

Class 2

Class 1
Hazard specs.
Hazard identification

• What is dangerous?
Hazard identification

• Why is dangerous?
• How much is dangerous?
<table>
<thead>
<tr>
<th>Hazard</th>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Hazard Icon]</td>
<td>![Risk Icon]</td>
<td>![Risk Icon]</td>
<td>![Risk Icon]</td>
</tr>
</tbody>
</table>
Risk Matrix

Hazard
- Class 1
- Class 2

Exposure
Chemical exposure – Fume hood
Confinement reliability issue
Minimum front air issue ...

Sash all the way up

Less effective control

Airfoil sill

Vapors can spill over the sill and into the room air.

>> 40 cm

chemical hood

Sash lowered to proper operating position

More effective control

Vapors are trapped within the hood.

≤ 40 cm

... leading to a weaker confinement

=> Increased probability of exposure
Confinement principle

Suitable usages of fume hood

- Sash closed: Large equipment or no manipulation
- Sash opening = 40 cm
- Sash opening < 40 cm: V max turned on
- Technical measures to ensure full confinement → i.e. Glove box

Confinement efficiency

Risk

P (exposure)
Risk Matrix

- What is dangerous?
- Why is dangerous?
- How much is dangerous?

- Working environment
- Behavior
Break
Vision

«Establish a safe, healthy and pleasant work environment in which the community can thrive.»

- Identified hazards
- Controlled risks
- Ergonomic and functional workplaces
- A healthy environment
Hazard identification
Types of hazardous material

Physics

Chemistry

Biology
And hazardous conditions

Physics

Chemistry

Biology
Key references to ease the job 😊
SAFETY DATA SHEET
according to Regulation (EC) No. 1907/2006

Catalogue No. 106009
Product name Methanol for analysis EN ISO 683-12, ACS, ISO Reag., Ph Eur

Flammable liquid, Category 2, H225
Acute toxicity, Category 3, Oral, H301
Acute toxicity, Category 3, Inhalation, H331
Acute toxicity, Category 3, Dermal, H331
Specific target organ toxicity - single exposure, Category 1, Eyes, H370

For the full text of the H-Statements mentioned in this Section, see Section 16.

2.2 Label elements
Labeling (REGULATION (EC) No 1272/2008)

Hazard pictograms
Signal word Danger

Hazard statements
H225 Highly flammable liquid and vapour.
H301 + H311 + H331 Toxic if swallowed, in contact with skin or if inhaled.
H370 Causes damage to organs (Eyes).

Precautionary statements
Prevention
P210 Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.
P240 Ground/bond container and receiving equipment. P260 Wear protective gloves/ protective clothing.
Response
P302 + P352 IF ON SKIN: Wash with plenty of soap and water.
P304 + P340 IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.
P308 + P310 IF exposed or concerned: immediately call a POISON CENTER or doctor/ physician.

Storage

WARNING
Read and understand operator's manual before using this machine. Failure to follow operating instructions could result in death or serious injury.

3.2.4 Loading the rotor

- Rotor capacity due to asymmetric loading of a rotor.
 - Load rotors symmetrically with identical tubes or plates and buckets.
 - Only load adapters with suitable tubes or plates.
 - Always use tubes or plates of the same type (e.g., material, size, and volume).
 - Check that loading is symmetrical by balancing the adapters and tubes or plates used with scales.

Risk from damaged or overloaded tubes.
- When loading the rotor, observe the safety precautions on dangers as a result of overloaded or damaged tubes (see Warnings for intended use on p. 45).
 - The device automatically detects imbalance during operation and stops the run immediately with an error message and a signal tone.
 - Check the load, balance the tubes and restart the run.

Fixed-angle rotors

Rotor lid
- Fixed-angle rotors may only be operated with the appropriate rotor lid in each case. This is clearly shown by the identical rotor name labeling on the rotor and on the rotor lid.
- To carry out an aerosol tight centrifugation, an aerosol tight rotor must be used in combination with the corresponding rotor lid or cap.

To load the rotor, proceed as follows:
1. Check the maximum load (adapter, tube and content) per rotor box.
2. Load and tighten rotor with only the tubes intended for them.
3. Insert tubes opposite each other in pairs into the rotor bores. To ensure symmetrical loading, tubes that are arranged opposite each other must be of the same type and contain the same filling quantity.

To minimize weight differences between filled sample tubes, we recommend taping with a scale. This will reduce wear on the drive and reduce running noise.
4. Attach and tighten rotor lid.
Operating Manual for MVE Liquid Nitrogen Dewars (SI Version)

M.D.D. Representative: Medical Device Division, Fujiitsu, Japan

GENERAL DESCRIPTION

The MVE Liquid Nitrogen Dewar is a double-wall type insulated vessel made of stainless steel with a refrigeration capacity of 4 liters. The dewar is designed to provide efficient cooling and maintain the liquid nitrogen temperature within ±0.1°C of the desired temperature. It is ideal for laboratory use where precise temperature control is required.

The MVE Liquid Nitrogen Dewar is designed with a combination of safety, durability, and performance. It is equipped with a manual valve for manual filling or emptying of the liquid nitrogen. The dewar is made of high-quality stainless steel and is designed to withstand high vacuum conditions. It is equipped with a pressure gauge and a vacuum valve for easy operation.

SAFETY

WARNING: Liquid nitrogen is extremely cold and can cause injury by frostbite. Use extreme caution when handling the dewar or transferring liquid nitrogen to avoid injury.

1. Avoid contact with liquid nitrogen.
2. Do not place the dewar in an area where it is exposed to direct sunlight or heat.
3. Use protective gloves and eye protection when handling liquid nitrogen.
4. Store the dewar in a well-ventilated area.

OPERATION

WARNING: Never empty a dewar of liquid nitrogen while it is still warm. This can lead to vacuum failure.

Never use a Dewar that contains liquid nitrogen. Dewars that contain liquid nitrogen can cause severe burns.

WARNING: The dewar is designed for laboratory use and is not intended for use in a vacuum chamber or other high-pressure environment.

It is important to follow the instructions provided with the dewar to ensure safe and efficient operation.

ENVIRONMENTAL CONDITIONS

- Indoor/outdoor use is allowed.
- Operating temperature: -25 to 65°C.
- Relative humidity: 10% to 80% noncondensing.
- Storage temperature: -20 to 40°C.
- Storage moisture: 10% to 60%.

In humid regions, a condenser may need to be used to prevent condensation while temporarily covering the Dewar.

1. Open the self-vacuum valve to release any vacuum that may have accumulated during the dewar's use. Lift the dewar off the base and place it in a suitable area.
2. Fill the dewar to the desired level and cover it to prevent condensation. If the dewar is not to be used, close the self-vacuum valve to prevent vacuum loss.
3. Keep the dewar in a cool location to prevent condensation and ensure that the liquid nitrogen is not depleted.
4. Place the dewar in a well-ventilated area to prevent any potential hazards.
5. Periodically check the dewar to ensure it is maintaining its vacuum.
6. Never attempt to repair the dewar or attempt to use it if it is damaged.
7. Always follow the manufacturer's instructions for proper use and maintenance.
8. Keep the dewar away from any heat sources to prevent any potential hazards.
Safety Corrective actions
How to protect and be protected?

The most efficient

The least efficient

*Or Substitution
Strategic Substitution

Risks

- No alternatives
- Impact on quality
- Impact on the process
- Loss of reference
- Additional costs
Technic

Risks

- Impact on the process
- Additional costs
Organizational

Risks

- Duty to remind
- Train and inform
Personnel

Risks
- Last "defense"
- Training for use
- Wearing oversight
- Impact on comfort
OHS team support
Missions

Training
- Mandatory safety training
 FOBS 1, 2, 3
- Advanced training
 Laser, cryo, radioprotection, etc.
- Specific training
 Overhead cranes, etc.
- Student projects related

Support
- Identification of hazards
- Technical control of risks
- Portfolio of hazardous phenomena
- Risk and accident analysis

Compliance
- Audits
- Authorizations
- Directives
OHS – Prévention des risques: Team in detail

ATEX Gas Laser Nano Cryo Magnet. Radioprot. Electricity Bio

Chemistry, Storage, manipulation authorization

Roof, machinery safety, Workshop

ADR Special Waste Glove box / Mechanical safety
EPFL - Hazard management system
The method ACHiL allow to obtain an overview by building and for the campus to:

▪ Facilitate the intervention of emergency services (DSPS-SIS, police, firefighters)
▪ Prioritize the hazards management.
▪ Identify at risk situation

The method is based upon directives and laws (internal, national, international)

Marendaz, Safety Science 53 (2013)
Hazards are categorized in three levels

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Absent</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No analysis needed</td>
<td>No analysis needed</td>
<td>Analysis relevance evaluated on a case-by-case basis</td>
<td>Analysis validating the existence of sufficient measures</td>
</tr>
<tr>
<td>Flammable</td>
<td>Absent</td>
<td>$V \leq 15,\text{L}$</td>
<td>$15,\text{L} < V \leq 50,\text{L}$</td>
<td>$V > 50,\text{L}$</td>
</tr>
<tr>
<td>Laser</td>
<td>Absent</td>
<td>Class 1 & 2</td>
<td>Class 3R</td>
<td>Class 3B & 4</td>
</tr>
<tr>
<td>Biological hazard</td>
<td>Absent</td>
<td>NSB 1</td>
<td>NSB 2</td>
<td>NSB 3 & 4</td>
</tr>
<tr>
<td>Cryogenics</td>
<td>Absent</td>
<td>$15\degree\text{C} > T > 5\degree\text{C}$</td>
<td>$5\degree\text{C} \geq T > -5\degree\text{C}$</td>
<td>$T \leq -5\degree\text{C}$</td>
</tr>
</tbody>
</table>
Missions

Training
- Mandatory safety training
 FOBS 1, 2, 3
- Advanced training
 Laser, cryo, radioprotection, etc.
- Specific training
 Overhead cranes, etc.
- Student projects related

Support
- Identification of hazards
- Technical control of risks
- Portfolio of hazardous phenomena
- Risk and accident analysis

Compliance
- Audits
- Authorizations
- Directives
High Risk lead to a risk analysis for targeted activities and into a defined environment.
Done on-site: We can fit with your reality

To get factual records to feed risk analysis methodology
Complementary training
Missions

Training

- Mandatory safety training
 - FOBS 1, 2, 3
- Advanced training
 - Laser, cryo, radioprotection, etc.
- Specific training
 - Overhead cranes, etc.
- Student projects related

Support

- Identification of hazards
- Technical control of risks
- Portfolio of hazardous phenomena
- Risk and accident analysis

Compliance

- Audits
- Authorizations
- Directives
Some courses are mandatory

Complementary training allow to **deepen** the basic knowledge in safety with emphasis on

- The effects of an exposition
- The accidents that occurred in academia
- The internal and external regulations
- Means to effectively protect oneself
- Waste management

△ hazards’ training are **compulsory**.

Frequency 1 to 4 times a year.
Where to find the complementary training?

memento.epfl.ch/ohs
Compliance
Missions

Training
- Mandatory safety training: FOBS 1, 2, 3
- Advanced training: Laser, cryo, radioprotection, etc.
- Specific training: overhead cranes, etc.
- Student projects related

Support
- Identification of hazards
- Technical control of risks
- Portfolio of hazardous phenomena
- Risk and accident analysis

Compliance
- Directives
- Audits
- Authorizations
PolyLex

Polylex search

The English version is provided for information purposes only and has no legal force. Only the French version is legally binding.

Search for: safety

<table>
<thead>
<tr>
<th>Lex</th>
<th>Title</th>
<th>Section, subsection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5.1</td>
<td>Directive concerning occupational health and safety (DSST)</td>
<td>Governance, Safety, Prevention and Health</td>
</tr>
</tbody>
</table>
| | The present directive determines the assignment of functions relating to health and safety in the workplace. It specifies the responsibilities of all the actors who must work as part of a network at EPFL. It also forms an integral part of risk management, at both CEPF and EPFL levels. | 01.12.2012
| | Effective as of 15.03.2021 | Status as of 15.03.2021 | Eric Du Pasquier |
| 1.5.2 | Directive on Protection of Non-Smokers on EPFL Premises | Governance, Safety, Prevention and Health |
| | This directive concerns the absence of smoke on the EPFL campus and the protection of non-smokers against the effects of二手 smoke. | 01.12.2012 |

Missions

Training

- Mandatory safety training
 FOBS 1, 2, 3
- Advanced training
 Laser, cryo, radioprotection, etc.
- Specific training
 overhead cranes, etc.
- Student projects related

Support

- Identification of hazards
- Technical control of risks
- Portfolio of hazardous phenomena
- Risk and accident analysis

Compliance

- Directives
- Audits
- Authorizations
Audit is a mandatory recorded visit

- It has to be formalized and recorded in EPFL system
- Approved by the head of the unit.
Return the signed report as soon as corrective measures have been implemented.

Date and signature of the unit responsible

General remarks

Delay to return the report
Visa & delay

The one responsible for the corrective measure.

Remarks

Examples

- Work taken care by the DII.
- Order made.
- Measure cannot be applied, what should be done?
Safety visits

The Occupational Health and Safety (OHS) regularly visits all EPFL laboratories to improve the health and safety of all collaborators. The audit is to control the safety standards and legal requirements, but also to better understand your working procedures and the related risks and hazards. The audit is announced one month in advance via e-mail.

A reminder sent around one week prior to the announced audit date is used to make an appointment. Do not hesitate to contact the OHS for any hazards/risks intrinsic to your unit so that the OHS could provide the best support possible.

The audit is done with the presence of the CoSEC, and with the laboratory responsible if present.

To prepare for this visit, the OHS sends to the CoSEC an audit criteria list for the visit of EPFL laboratories.

To allow chemicals management within the EPFL, a chemical inventory update is requested prior to the audit date.

Audit Guideline

Table of content

1. Door safety data sheet
2. Emergency equipment
3. General order
4. Lab and safety equipment
5. Authorizations & dispensations
6. Chemicals storage
7. Chemicals use
8. Special waste
9. Nanomaterials
10. Biosafety (microorganisms)

11. Cryogenics
12. Magnetic fields
13. Gas
14. Lasers
15. Radioactive sources
16. Electricity
17. ATEX
18. Incoherent light sources
19. Noise

Do not forget routine maintenance

- Safety door sheets
- Eye wash stations
- First-aid kits
- Your chemical authorizations and inventory
Right are granted to few people of the lab.

For lab infrastructure, taken by VPO-SE.

The decision to grant, adapt or refuse the request depends on
 - the nature of the project,
 - the priorities of the institute, faculty or VP,
 - the incurred costs.

For repairs, call 021 6934 000

departement.ch
Missions

Training
- Mandatory safety training
 FOBS 1, 2, 3
- Advanced training
 Laser, cryo, radioprotection, etc.
- Specific training
 overhead cranes, etc.
- Student projects related

Support
- Identification of hazards
- Technical control of risks
- Portfolio of hazardous phenomena
- Risk and accident analysis

Compliance
- Directives
- Audits
 - Authorizations
Chemical Authorizations
Authorizations

Some very hazardous chemicals/substances are under authorization.

The list of these chemicals is subject to change over time.
For all emergencies, 24h/24:
From an EPFL landline: **115**
From a personal mobile phone: **021 693 30 00**
From the EPFL Campus app: **SOS**

Report a laboratory accident: [Event manager](#)

For all questions: [Support SCC](#)

For chemical authorization requests: [Authorisation request](#)
Report your accidents and near-accidents!
For all emergencies, 24h/24:
From an EPFL landline: **115**
From a personal mobile phone: **021 693 30 00**
From the EPFL Campus app: **SOS**

Report a laboratory accident: [Event manager](#)

For all questions: [Support SCC](#)

For chemical authorization requests: [Authorisation request](#)
Event reporting

Swiss law

It is **compulsory** to announce all accidents and near-accidents.

Goal

- Understand what happened so it doesn’t happen to someone else.
- Indicators of new risks related to e.g. new technologies.
OHS Daily support
Why contact us?

Not sure of the security aspects?

- New material
- New experience or procedure

Don't hesitate to contact us!

It's easier to get us involved in the design phase.

>>> Safety Ticket ServiceNow
The ticketing service

For all emergencies, 24h/24:
From an EPFL landline: 115
From a personal mobile phone: 021 693 30 00
From the EPFL Campus app: SOS

Report a laboratory accident: Event manager

For all questions: Support SCC

For chemical authorization requests: Authorisation request

Laboratory Safety
CoSEC

Les Correspondants à la sécurité (CoSEC) représentent le premier contact sécuritaire auprès de chaque unité. Ils sont la première ligne officielle du système de santé et sécurité au travail de l’EPFL.

Ils ont force de contrôle, d’annonce, et d’arrêt de toutes activités dangereuses non maitrisées.

Le concept même de la sécurité dans les laboratoires à l’EPFL s’appuie sur l’excellent travail des Cosec.
Alias links

go.epfl.ch/...

General
 - audits
 - cossec
 - lab-safety
 - ohs

Hazards
 - hazards
 - biological-hazards
 - chemical-hazards
 - cryogenics-hazards
 - gas-hazards
 - laser-hazards
 - magnets-hazards
 - nano-hazards

Training
 - safety-training
 - complementary-training

Waste treatment
 - waste
 - biological-waste
 - chemical-waste
 - nano-waste
 - radioactive-waste
CoSec meetings as a continuous training

- 2 x ½ days per year
- Themes and organization: you are welcome to help!
Quiz

- This course is validated by a Quiz
- 15 days max after this course
Thank you for helping to ensure the proper functioning of EPFL.

Your role and actions allow the School, your colleagues and the research to move forward in a safe and healthy way!
END 😊