think•go climate conscious

atmosfair

The calculations in this report are compliant with the following standards:

Audited by:

TABLE OF CONTENTS

CO. EMISSIONS

FLIGHT	03
OFFSETTING CO ₂ EMISSIONS WITH ATMOSFAIR	12
ANNEXES	13
VDR STANDARD "CO ₂ -REPORTING BUSINESS TRAVEL"	14
OTHER CALCULATION METHODS	15
CLOSSARV	16

FLIGHT

SUMMARY	04
TOP 10 CITY PAIRS	05
CO ₂ PER SEAT CLASS	06
CO ₂ PER DISTANCE CLASS	07
SYNOPSIS OF DIFFERENT METHODS	08
FUEL PER 100 PKM	09
CO ₂ REDUCTION POTENTIAL	10
ATMOSFAIR AIRLINE REPORTING	11

TRAVEL	Amount	Unit
Kilometres	3,996	1,000 km
Miles ¹	2,483	1,000 miles
Segments ²	1,841	
City Pairs	365	
Average segment distance in km³	2,170	km
Average segment distance in miles ³	1,349	miles

FUEL	Amount	Unit
Fuel consumption total	114	tons fuel
Fuel consumption in altitudes > 9 km	99.2	tons fuel
Fuel share in altitudes > 9 km	87.1	%
Average fuel consumption (per 100 pkm ⁴)	3.6	litres

CO ₂ EMISSIONS	Amount	Unit
According to VDR		
CO ₂	360	tons CO ₂
CO ₂ per segment, average	0.20	tons CO ₂
CO ₂ per passenger kilometre, average	90.0	g CO ₂ /pkm
CO ₂ per passenger mile, average	145	g CO ₂ /pm
According to other methods		
CO ₂ GRI / GHG Protocol	443	tons CO ₂
CO ₂ DEFRA	784	tons CO ₂
CO ₂ ICAO	361	tons CO ₂
CO ₂ VFU	439	tons CO ₂

GLOBAL WARMING IMPACT⁵	Amount	Unit
According to VDR		
CO ₂ in altitudes < 9 km	46.2	tons CO ₂
CO ₂ in altitudes > 9 km	313	tons CO ₂
CO ₂ + RFI 2	673	tons CO ₂
CO ₂ + RFI 2.7	986	tons CO ₂
CO ₂ + RFI 4	1,300	tons CO ₂

¹ American miles

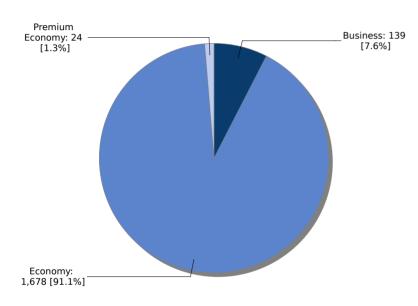
² One person, one way, from origin to destination ³ Total distance of all segments divided by number of segments

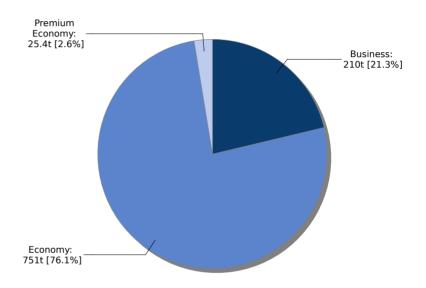
⁴ Product of number of passengers and kilometres travelled

⁵ For further information on other methods and global warming impact see glossary.

Top 10 city pairs by segments¹ and CO₂ emissions

Origin	Destination	Segments	Segments % of total	Flight segment length [km]	Flight segment length [miles]	Total distance [km]	Total distance [miles]	Cruise altitude [m]	CO ₂ emissions ² [tons CO ₂]	CO ₂ emissions ² + RFI 2.7 [tons CO ₂]	CO ₂ + RFI 2.7 % of total
TOP 10 CI	TY PAIRS SOR	1	MENTS								
AMS	GVA	79	4.3	781	485	61,699	38,346	12,500	5.40	12.5	1.3
FRA	GVA	76	4.1	507	315	38,532	23,948	12,100	5.04	9.76	1.0
CAG	GVA	63	3.4	911	566	57,393	35,670	12,100	3.69	8.87	0.9
GVA	LHR	61	3.3	852	530	51,972	32,301	12,100	6.04	14.3	1.4
CDG	GVA	61	3.3	457	284	27,877	17,326	7,600	3.11	5.50	0.6
GVA	MAD	60	3.3	1,107	688	66,420	41,280	12,500	4.47	11.2	1.1
BRU	GVA	49	2.7	581	361	28,469	17,694	12,100	2.79	5.78	0.6
GVA	WAW	47	2.6	1,360	845	63,920	39,727	12,500	6.82	17.7	1.8
GVA	IST	45	2.4	2,010	1,249	90,450	56,215	12,500	6.92	18.9	1.9
BCN	GVA	45	2.4	737	458	33,165	20,612	12,100	2.37	5.37	0.5
Other		1,255	68.2			3,475,649	2,160,130		313	876	88.9
TOP 10 CI	TY PAIRS SOR	TED BY CO, I	EMISSIONS								
BOS	ZRH	26	1.4	6,131	3,810	159,406	99,071	12,500	14.8	43.2	4.4
LAX	ZRH	12	0.7	9,654	6,000	115,848	72,000	12,500	11.7	34.6	3.5
EWR	GVA	17	0.9	6,347	3,945	107,899	67,060	13,100	11.7	34.2	3.5
SFO	ZRH	11	0.6	9,496	5,902	104,456	64,920	12,500	11.2	33.0	3.3
LHR	PHX	12	0.7	8,584	5,335	103,008	64,020	12,500	11.0	32.3	3.3
BOS	LHR	10	0.5	5,338	3,318	53,380	33,176	13,100	7.27	21.1	2.1
GVA	IST	45	2.4	2,010	1,249	90,450	56,215	12,500	6.92	18.9	1.9
GVA	WAW	47	2.6	1,360	845	63,920	39,727	12,500	6.82	17.7	1.8
ICN	MUC	8	0.4	8,621	5,358	68,968	42,864	12,500	6.02	17.7	1.8
JFK	ZRH	7	0.4	6,430	3,996	45,010	27,974	12,500	5.90	17.2	1.7
Other		1,646	89.4			3,083,201	1,916,222		266	716	72.6

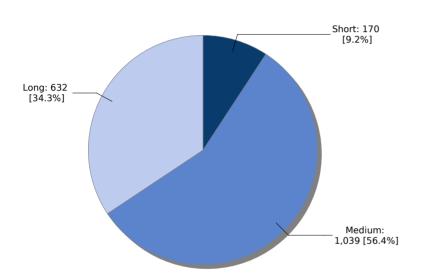

 $^{^{\}rm 1}$ One person, one way, from origin to destination $^{\rm 2}$ CO $_{\rm 2}$ emissions calculated according to VDR methodology.

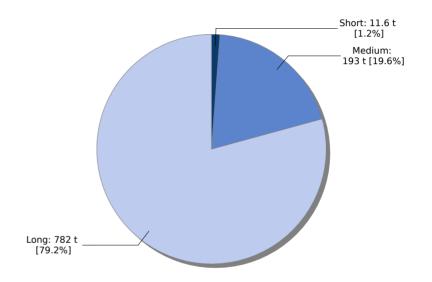

Seat class compared by segments¹ and CO₂ emissions

SEGMENTS PER SEAT CLASS:

CO, EMISSIONS² PER SEAT CLASS [CO, + RFI 2.7):

¹ One person, one way, from origin to destination


² CO₂ emissions calculated according to VDR methodology.


Distance class¹ compared by segments² and CO₂ emissions

SEGMENTS PER DISTANCE CLASS:

CO, EMISSIONS³ PER DISTANCE CLASS [CO, + RFI 2.7]:

¹ Short: < 500 km, < 310 miles; Medium: 500 km - 1600km, 310 - 1000 miles; Long: > 1600 km, > 1000 miles

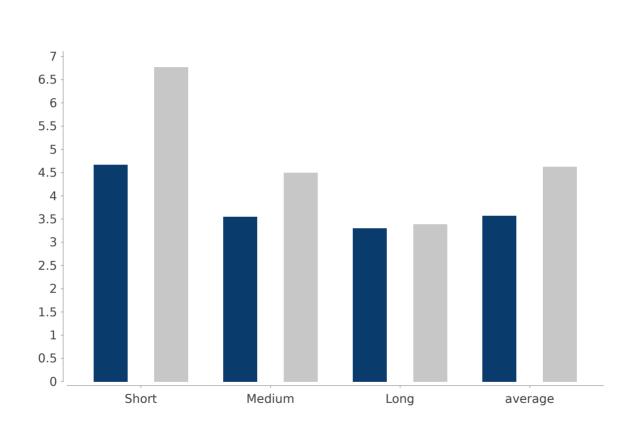
² One person, one way, from origin to destination

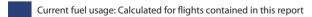
³ CO₂ emissions calculated according to VDR methodology.

Synopsis of different CO₂ calculation methods

	Short Range [< 500 km] [< 310 miles]	Medium Range [500 - 1,600 km] [310 - 1,000 miles]	Long Range [> 1,600 km] [> 1,000 miles]
Segments ¹	170	1,039	632
Total distance in kilometres [1,000 km]	66	947	2,983
Total distance in miles [1,000 miles] ²	41	589	1,854
CO ₂ EMISSIONS ACCORDING TO VDR STANDARD ³			
CO ₂ [tons CO ₂]	7.71	81.6	270
$CO_2 + RFI 2 [tons CO_2]$	9.67	137	526
CO_2 + RFI 2,7 [tons CO_2]	11.6	193	782
CO ₂ + RFI 4 [tons CO ₂]	13.6	249	1,037
CO ₂ EMISSIONS ACCORDING TO GRI / GHG PROTOCOL			
CO ₂ [tons CO ₂]	10.7	90.6	342
CO ₂ EMISSIONS ACCORDING TO DEFRA			
CO ₂ [tons CO ₂]	16.5	153	614
CO ₂ EMISSIONS ACCORDING TO ICAO ³			
CO ₂ [tons CO ₂]	10.5	101	249
CO, EMISSIONS ACCORDING TO VFU ³			
CO ₂ [tons CO ₂]	12.9	103	324

¹ One person, one way, from origin to destination

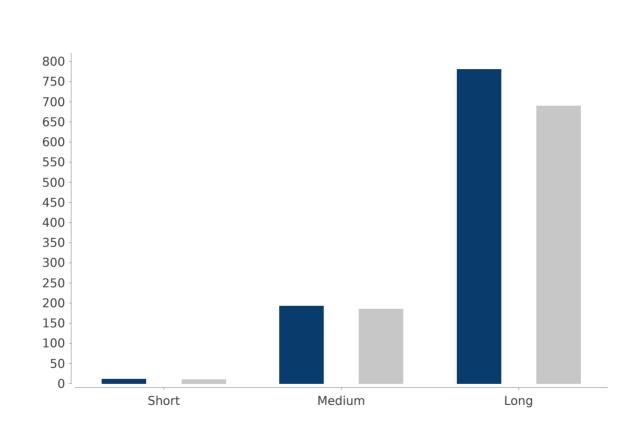

² American miles


³ For further information on other methods and RFI, see glossary

Fuel per 100 pkm¹ vs. international benchmarks

Worldwide average²

More informationen on the AAI: www.atmosfair.de/en/atmosfair_airline_index


¹ Product of number of passengers and kilometres travelled

² According to atmosfair Airline Index;

CO2 reduction potential by switching to economy class

Reduced CO₂ emissions¹: All flights changed to economy class

¹ CO₂ emissions calculated according to VDR methodology.

Applying the atmosfair Airline Index: Effects from selecting more climate efficient airlines

Flight selected from your upload data: BA727, 21.07.2021, GVA-LHR, Business Class

Airline ¹ of your choice	Aircraft your staff flew with	Resulting CO ₂ emissions ^{1, 2} in tons (CO ₂ + RFI 2.7)
British Airways	Airbus A319	0.43
Alternative airlines	Aircraft that would have been used	Alternative CO ₂ emissions ² in tons (CO ₂ + RFI 2.7)
Alternative airlines Thomson Airways	Aircraft that would have been used Boeing 737-800 (winglets) Passenger	Alternative CO ₂ emissions ² in tons (CO ₂ + RFI 2.7) 0.21
		2

The atmosfair Airline Index compares airlines based on their climate efficiency. This allows us to identify more climate efficient carriers on any specific connection as shown in the example above.

For obvious reasons we would focus on your company's most emission intensive citypairs in a full analysis. But we don't stop there. We also compare the price structure of the most climate efficient carriers to show you real win-win-potentials: a reduction of emissions while saving travel expenses at the same time. This cost saving effect can of course be even enhanced further if your company limits the number of airlines to achieve additional quantity rebates with cleaner and cheaper carriers. Are you interested in assessing the CO, efficiency of airlines serving your top city pairs? Contact us at airlineindex@atmosfair.de

¹ Code share partner are not listed. They appear in detailed atmosfair airline reportings.

² CO₂ emissions calculated according to VDR methodology.

CARBON OFFSETTING WITH ATMOSFAIR

DEALING WITH CO, EMISSIONS THAT CAN'T BE AVOIDED OR REDUCED

Travel activity type	CO ₂ emissions ¹ [tons]	Offsetting costs in EUR
FLIGHT ²	986	22,685

ATMOSFAIR OFFSET PROJECT EXAMPLES

Biogas from cow dung (Kenya): The project supplies small biogas units to dairy farmers which produce regenerative biogas.

Efficient fuel wood stoves (Nigeria): The efficient stoves save about 80% of energy and help to reduce deforestation and indoor air pollution.

WHY OFFSETTING?

Offsetting is an essential part of a comprehensive carbon strategy that aims at reducing your company's climate impact. It is an effective way to deal with those emissions that can't be avoided or further reduced through other measures. As a flexible instrument that is always available, offsetting minimises uncertainties within your carbon strategy and supports your organisation in reaching your self-set emission reduction targets. Furthermore, offsetting is a highly visible climate protection measure that can easily be communicated not only to your employees, customers and rating agencies but to all your stakeholders.

ATMOSFAIR - AWARD WINNING OFFSET PROJECTS

Atmosfair is a non-profit organisation. We offer to offset the ${\rm CO_2}$ emissions from your business travel activities through atmosfair projects, for example the installation of renewable energies in developing countries. atmosfair projects are UN-certified (CDM) and additionally comply with the Gold Standard. If you decide to offset with atmosfair you will receive a tax-deductible donation receipt (valid with the German tax of ce; other national regulation may apply).

atmosfair has been ranked No. 1 quality offset provider in international comparative studies since 2005. The assessed criteria were the quality of the offsetting projects and organisational as well as financial transparency.

¹ CO₂ emissions calculated according to VDR methodology.

² Category FLIGHT includes RFI 2.7 addition.

ANNEXES

VDR CO ₂ REPORTING STANDARD "BUSINESS TRAVEL"	14
OTHER CALCULATION METHODS	15
GLOSSARY	16

WHO IS BEHIND VDR?

The German Business Travel Association VDR advocates efficient, economical and safe worldwide travel for companies. It represents the interest of German business regarding conditions for corporate travel and supports its members as a competence center for political activities.

WHAT ARE THE BENEFITS OF USING THE VDR STANDARD?

The VDR standard for the CO₂ calculation of corporate travel is a standardised method to determine CO₂ emissions created by business travel worldwide. Although previous approaches made it possible to estimate CO₂ emissions from business travel, none of them took the specific characteristics of business trips into account. The VDR standard covers all relevant business travel activities (flights, hotel, rental cars, rail) and meets the requirements for worldwide application, accuracy, comparability and independence. The standard is exact enough to highlight the potential for CO₂ reductions. Companies that generate their CO₂ reports using this standard are entitled to label them with the VDR logo and seal reading "produced according to the VDR standard."

For full methodology details, please visit: www.atmosfair.de/en/co2-bilanz fuer unternehmen

Disclaimer: For maximum accuracy in calculating CO₂-emissions, we update our VDR database every year. For the travel activity flight for example these updates includes elements such as the most current flight plans, new airport locations, new aircraft types and most importantly new scientific findings if available.

Due to inaccurate or incomplete customer travel data it can happen that the most precise calculation method suggested by the VDR standard can not be applied. In these cases fallback calculation methods are used which achieve the maximum precision that can be achieved with the provided data. In any case the calculations which this report is based on are compliant with the VDR standard.

"... in atmosfair, the VDR has gained an experienced partner for creating their standard. The quality of atmosfair's calculation methods has often been proven, including by the Federal Environmental Agency."

Dr. Norbert Röttgen,

Former federal minister for the Environment, Nature Conservation and Nuclear Safety

OTHER CALCULATION METHODS

GHG: The Greenhouse Gas (GHG) Protocol, developed by World Resources Institute (WRI) and World Business Council on Sustainable Development (WBCSD), sets the global standard for how to measure, manage, and report greenhouse gas emissions. The GHG Protocol simplifies the calculation of specific CO₂ per passenger in comparison to the VDR standard. Only the following factors are considered:

- Flight distance (great circle distance between the airports, multiplied by a blanket uplift factor for detours).
- Flight class: domestic, short-haul international, long-haul international.
- Booking class: A distinction is made between economy, premium economy, business and first class.

GRI: The Global Reporting Initiative (GRI) is an international independent organisation that helps businesses, governments and other organisations understand and communicate the impact of business operations on critical sustainability issues. GRI's approach for calculating emissions is based on the method of the GHG Protocol.

DEFRA: The UK Department for Environment, Food and Rural Affairs (DEFRA) has developed a tool for calculating the CO₂ emissions of travel activities such as flight, train journeys and car rides, among others. DEFRA's approach is based on the calculation method of the GHG Protocol but uses slightly different emission factors. From 2018 these include an uplift factor of 1.9 for considering non-CO₂ effects of air travel, as recommended by DEFRA.

ICAO: The International Civil Aviation Organization (ICAO) has developed an online calculator for its website which calculates CO₂ emissions from air travel. The associated method uses flight profiles with ascend and descend phases, distinguishes between different types of aircrafts and also considers factors such as passenger load and co-loaded freight. Nonetheless, the ICAO calculator also has disadvantages:

- If the city pair for which the CO₂ is to be calculated is not in the ICAO data base, the ICAO calculator yields no result.
- The ICAO calculator considers CO₂ emissions only. It does not take other climate effects such as condensation trails into account.
- There are only two seat classes: economy and premium.
- The ICAO calculator assumes a full-economy seat configuration of all aircrafts.

VFU: The German Verein für Umweltmanagement und Nachhaltigkeit in Finanzinstituten e.V. (VFU) has developed a systemof performance indicators to evaluate 'environmental performance'. Transportation is a sub-item and includestrain journeys, air travel as well as road trafic. Just like the GHG Protocol and DEFRA methods the VFU tool simplifies the CO₂ calculation with their own emission factors.

 $Disclaimer: For \ maximum \ accuracy \ in \ calculating \ CO_2 \ emissions \ we \ update \ the \ databases \ of \ each \ reporting \ standard \ every \ year.$

GLOSSARY

GENERAL TERMS

MILES	American miles; 1 american mile = 1.609 kilometres
PKM	$Passenger\ kilometre; product\ of\ number\ of\ passengers\ and\ kilometres\ travelled$
SEGMENT	one person, one way, from origin to destination

FLIGHT TERMS

AVERAGE SEGMENT DISTANCE	. Total distance of all flights divided by number of flights
CO ₂ VDR	. CO ₂ emissions according to VDR methodology
CO ₂ GRI / GHG	. CO ₂ emissions according to GRI / GHG methodology
CO ₂ DEFRA	. CO ₂ emissions according to DEFRA methodology
CO ₂ ICAO	
CO ₂ VFU	. CO ₂ emissions according to VFU methodology
CO ₂ EMISSIONS IN ALTITUDES > 9 KM	. CO ₂ emissions from fuel burned above 9 kilometres altitude (RFI applied, see RFI)
	. Sum of CO_2 and NON CO_2 emissions converted into CO_2 emissions following the RFI logic (see RFI)
CRUISE ALTITUDE	. Cruise altitude of an airplane. Above 9,000 metres the atmosphere is far more sensitive for exhaust emissions (see RFI)
RFI	. Radiative forcing index, metrics established by the Intergovernmental Panel on Climate Change (IPCC) to measure the impact of effects such as condensation trails or ozone formation. The RFI was established by the IPCC in 1999. It measures the total climate impact, including contrails, ozone formation, etc. compared to the pure CO_2 emissions. An RFI of 2 means that the warming impact of the part of a flight that is conducted above 9 km altitude is twice as big as its CO_2 effect alone. The range of the RFI is between 2-4 with 2.7 being the best estimate of the IPCC.

