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Black Hole Simulation
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Earth Sized

Angular Resolution
Wavelength

Telescope Size

How Big Must Our Telescope Be?

20 µas
1.3 mm

13 million meters

Simulation of M87 Ideal Image with 
Earth-Sized Telescope



The Event Horizon Telescope (EHT)





Black Hole Image Frequency Measurements
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Frequency Measurements
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Atmospheric Error: Amplitude Attenuation

Atmospheric Noise g1 g2

g2g1 V12V12 =
Ideal 

Measurement
Corrupted

Measurement

Frequency Measurement:



Phase & Amplitude Error

Amplitude Errors Phase Error
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Phase & Amplitude Error
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Two Classes of Imaging Algorithms

Forward Modeling 
(Regularized Maximum Likelihood)

Inverse Modeling
(CLEAN +  Self-Calibration)



Two Classes of Imaging Algorithms

Forward Modeling 
(Regularized Maximum Likelihood)
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(CLEAN +  Self-Calibration)



Two Classes of Imaging Algorithms

Forward Modeling 
(Regularized Maximum Likelihood)
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How do we verify what we are 
reconstructing is real?



The 4-Step Process to Making a Picture of a Black Hole 

1. Synthetic Data Tests

2. Blind Imaging of M87 Data

3. Objectively Choosing Imaging Parameters

4. Validation of Images



Step 1: Synthetic Data Tests



Measurements

Imaging Challenge

“Hmm…What Do I See?”

1) Generate Measurements 2) Make Images

Panel of 
Experts

3) Evaluate Quality

True Image

Method
1

Method
2

Method
3

Event Horizon Telescope 
Imaging Challenges



True Image

Method 1 Method 2 Method 3 Method 4 Method 5

Blurred by 1/2 beam



True Image

Method 1 Method 2 Method 3 Method 4 Method 5

Blurred by 1/2 beam



Step 2: Blind Imaging of M87 Data



Step 2: Blind Imaging
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1 month later…

7 weeks later…



Step 2: Blind Imaging
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Step 3: Objectively Choosing Parameters



Step 3: Imaging Pipelines

DIFMAP 
(CLEAN + Self Calibration)

eht-imaging
(Regularized Max Likelihood)

SMILI
(Regularized Max Likelihood)
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SYNTHETIC DATA
GENERATION
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Step 3: Different Days and Imaging Pipelines
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Step 3: Blurred to Equivalent Resolution



Publically Available Code and Datasets
https://eventhorizontelescope.org/for-astronomers/data



Step 4: Validation



Step 4: Finding “Top Set” Parameters
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Step 4: eht-imaging Parameter Slice

0.
01

A
L
M

A

50 µas Mask 60 µas Mask 70 µas Mask 80 µas Mask 100 µas Mask

0.
1

A
L
M

A
0.

3
A

L
M

A
0.

5
A

L
M

A
1.

0
A

L
M

A

0 4 8
Brightness Temperature (109 K)

0.
01

A
L
M

A

50 µas Mask 60 µas Mask 70 µas Mask 80 µas Mask 100 µas Mask

0.
1

A
L
M

A
0.

3
A

L
M

A
0.

5
A

L
M

A
1.

0
A

L
M

A

0 4 8
Brightness Temperature (109 K)

T
V

0

MEM 0 MEM 1 MEM 10 MEM 100 MEM 1000

T
V

1
T

V
10

T
V

10
0

T
V

10
00

0 15 30
Brightness Temperature (109 K)

T
V

0

MEM 0 MEM 1 MEM 10 MEM 100 MEM 1000

T
V

1
T

V
10

T
V

10
0

T
V

10
00

0 8 16
Brightness Temperature (109 K)

Synthetic Data M87 Data

Top Set 
Parameters



Step 4: Variance Over the Top Set

Mean Image Standard Deviation Fractional Standard Deviation



Did We Prove Einstein Was Right?

Short answer: No, but we didn’t prove he was wrong



Non-spinning Black Hole’s Event Horizon
Diameter = 2rs

rs =
2GM

c2

Photon Orbit
Diameter = 3rs

Schwarzschild Radius:



Non-spinning Black Hole (Schwarzschild)
Diameter = 5.2 rs

adapted from Michael Johnson

rs =
2GM

c2



Non-spinning Black Hole (Schwarzschild)
Diameter = 5.2 rs

Maximally-spinning Black Hole (Kerr)
Diameter = 4.8 rs

adapted from Michael Johnson

rs =
2GM

c2



Spinning Black Hole (Kerr)
Diameter = ( 4.8 – 5.2 ) rs

adapted from Michael Johnson

rs =
2GM

c2



M87 Mass from Stellar Dynamics
MBH = 6.6×109M⊙

M87 Mass from Gas Dynamics
MBH = 3.5×109M⊙

Spinning Black Hole (Kerr)
Diameter = ( 4.8 – 5.2 ) rs

adapted from Michael Johnson

Spinning Black Hole (Kerr)
Diameter = ( 4.8 – 5.2 ) rs

rs =
2GM

c2

[Walsh et al 2013]                                        [Gebhardt et all 2011]



M87 Mass from Stellar Dynamics
MBH = 6.6×109M⊙

M87 Mass from Gas Dynamics
MBH = 3.5×109M⊙

Wormhole
Diameter = 2.7 rs

adapted from Michael Johnson

Spinning Black Hole (Kerr)
Diameter = ( 4.8 – 5.2 ) rs

Spinning Black Hole (Kerr)
Diameter = ( 4.8 – 5.2 ) rs

rs =
2GM

c2



M87 Mass from Stellar Dynamics
MBH = 6.6×109M⊙

M87 Mass from Gas Dynamics
MBH = 3.5×109M⊙

Wormhole
Diameter = 2.7 rs

Naked Singularity (Super-spinning)
Diameter = rs

adapted from Michael Johnson

Spinning Black Hole (Kerr)
Diameter = ( 4.8 – 5.2 ) rs
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M87 Mass from Stellar Dynamics
MBH = 6.6×109M⊙

M87 Mass from Gas Dynamics
MBH = 3.5×109M⊙
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Black Hole Simulation



The Event Horizon Telescope Collaboration



Publically Available Code and Datasets
https://eventhorizontelescope.org/for-astronomers/data



Publically Available Code and Datasets
https://eventhorizontelescope.org/for-astronomers/data



Over 100 different open source python packages

Analysis Courtesy of GitHub 

scipy

numpy

matplotlib

pandas

astropy ipython

jupyter



Over 100 different open source python packages

Analysis Courtesy of GitHub 

22,953
Community Contributors



Over 100 different open source python packages





Publically Available Code and Datasets
https://eventhorizontelescope.org/for-astronomers/data


