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Abstract

The increasing number of satellites orbiting the earth strengthen the need of a
catalog containing relevant information about each object. In order to create such
a catalogue, satellite streaks have to be detected in astronomical images.
The goal of this project is to develop a reliable method that allows to detect the
streaks on the images taken by the SSA’s telescope. This has to be done under the
constraint of a low data regime.
Two approaches will be tested. The first one is based on the previous work from [1]
and [2] and uses a U-Net based network to detect the streaks. Synthetic data and
an iterative training will be used in order to train the network in an unsupervised
way. The second approach is based on the work of [5] and [4] and uses a novel
architecture that is called HT-LCNN. Transfer learning will be used here since we
will start from the model pretrained on the ShanghaiTech dataset [3].
Even if some good results (0.7 mean IoU) are achieved with the first method, a
pixel-wise data annotation is needed to assess the model performance. Furthermore
the robustness of the network to unseen data cannot be assured since only a dozen
real streaks were available at this time. The second method yields very good results
even with the model trained on the ShanghaiTech dataset (0.844 sAP). Fine-tuning
on our dataset allowed to improve the performance (0.988 sAP). This method is
prefered since the annotation is easier to do and the training is easily extendable to
new data.
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Chapter 1

Introduction

The rapid growth of the number of satellites orbiting the earth make it useful to
have a catalog of objects orbiting the Earth in order to prevent collisions with
existing satellites and ease space development. This is precisely the goal of the
Space Situational Awareness (SSA) association. To do so, it is necessary to detect,
classify and identify orbiting objects. This report focus on the detection part. To
this end, two different methods are used to detect the satellite streaks. The first
method is based on the work of Yann Bouquet and Alexandre Di Piazza and uses
the network U-Net, a well-known network in image-segmentation. The lack of data
will make us try a second method, based on the network HT-LCNN [4], which uses
prior knowledge to improve data efficiency.



Chapter 2

Input data

Unlike the previous semester projects done for the SSA association, the data used
is not taken from the OMEGA-CAM on the VLT Survey Telescope. The SSA
association now owns its own telescope and the data collected by their observations
will be used.
The telescope provides 6248×4176 grey-scale images and the exposure time varies
between 0.5s and 30s. An example is shown on Figure 2.1.

Figure 2.1: Example image containing a streak taken by SSA’s telescope

The iraf’s ZScale algorithm is used to rescale the pixel intensities and is described
in [1].
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Method 1 - U-Net approach

3.1 Generation of synthetic data

At the moment this approach was tested, only a dozen of streaks were available. As
it is way too few to train a neural network, some synthetic data had to be created.
The creation of the synthetic samples is based on the visual analysis of the available
streaks. Lines whose size, thickness, intensity and orientation vary are drawn on
real images taken by the telescope that did not contain any streak.
The length varies between 1000 and 2000 pixels, the thickness between 10 and 50
pixels and the intensity is set to 255.
An erosion is then performed on some random parts of the line in order to make
it less uniform. The intensity is also decreased on some part of the line with the
same goal. A gaussian blur is applied on the generated track and the line is then
overlayed on the original image. An example is shown in Figure 3.1.

Figure 3.1: Example of a synthetic streak.
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As the GPU memory cannot handle images as large as 6248×4176, each image
is then split into several patches of size 768×688.

3.2 U-Net model

The U-Net is widely used in many image segmentation domains (road segmentation,
biomedical field, ...). The original architecture is shown in Figure 3.2.
This convolutional neural network model is designed to localise elements in the
image and label each pixel of the images according to predefined classes. Some
modifications have been made to the original model for the convenience of this
project. The model became then less time-consuming to be trained and also would
prevent from overfitting the training dataset. The modification are as explained in
[1].

Figure 3.2: Original U-Net architecture.

As in [1], the binary cross entropy loss and the Adam optimizer are used. The
metric used to measure the performance of the model is the Jaccard distance.

3.3 Training

Using all available images available at this time, the dataset is composed of 613
training patches and 327 validation patches (each patches being 768×688).
The model is trained for 65 epochs with a batchsize of 20 on the EPFL cluster.
After 16 epochs, the training reached an asymptotic loss, leading to an early stop
of the training process.
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(a) Loss (b) Jaccard distance

Figure 3.3: Training history.

3.4 Results

In order to evaluate the performance of our model, the mean IoU (intersection of
union) is computed for two datasets. The IoU is computed for each patch and then
averaged across all the patches.
First, using the validation set of the dataset containing the synthetic streaks (the
one used to train the model), the mean IoU is 0.71.
Second, using the set of the real streaks, the mean IoU is 0.31. As can be seen on
Figure 3.4, the real streaks are often not detected by the model at all.
Then, the model does not generalize well to real data. We decided to try to fine-tune
the model using some real streaks.

Figure 3.4: Sample results of the trained U-Net on some real streaks. The original
patches are on top, the ground truths are on the bottom, and the predictions are in
between.
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3.5 Fine-tuning

In order to fine-tune the model on some real examples, the available streaks were
annotated. As some streaks were present on multiple images (same streak but
not at the same place on the image), it was decided to use only one image per
streak, to avoid any overfitting that would invalidate the results. The streaks are
then separated into a training and a validation set. The network is then trained
with this new dataset, starting from the weights obtained with the training on the
synthetic examples. The mean IoU on the validation set is 0.64. This shows that
the model is now more accurate on real data. However the extremely low number of
available streaks (22 patches in the validation set and 30 in the training set) make
the results uncertain, and probably not robust to new data. Furthermore, the pixel-
wise annotation is long and tedious to do, so it does not seem like a good solution,
even with if more examples of real streaks are available in the future. We decided
to try an unsupervised approach.

Figure 3.5: Sample results of the fine tuned U-Net on some real streaks. The original
patches are on top, the ground truths are on the bottom, and the predictions are in
between.

3.6 Unsupervised training

3.6.1 Iterative training

As can be seen on Figure 3.4, the model makes no (or very few) false-positive (this
was confirmed by looking at all the examples extensively). This gave the idea of an
iterative training as fine tuning.
The idea is to use the prediction as the ground truth and to retrain the model for
a few epochs with this ground truth. Then, the new prediction is taken as the
new ground truth and the model is trained again for a few epochs. This is done
iteratively. To do such a training, no annotations are needed, but a custom loss has
to be defined. The idea is to use the binary cross entropy loss with a slight change:
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around a streak, we define a zone of uncertainty, where the loss is set to 0.
The definition is the following:

• If the ground truth pixel (obtained from last prediction) is in a streak, we
expect a streak at this place.

• If the ground truth pixel is not in a streak, but is close to be in a streak, we
set the loss to 0.

• If the ground truth pixel is not in a streak and is far from being in a streak, we
expect no streak at this place.

We defined the loss this way since the model make very few false positives, which
means that when a streak is detected, it is likely to really be a streak. We added a
zone of uncertainty since sometimes just parts of the streak were detected, then the
zone close to the streak might be part of the streak.
In order to define the uncertainty zone, a dilation was performed on the streak, then
the dilated part is taken as uncertain.
Between each iteration, an opening is performed on the prediction in order to remove
small artifacts that could have been detected as streaks (likely stars). An opening
with a disc kernel would remove those artifacts without removing the lines. The
result of the opening is taken as the new ground truth after thresholding. Several
new hyper-parameters come into play: the kernel size of the dilation, the disc size
for the opening, the threshold chosen to discretize the prediction, and the number
of epochs of training at each iteration.

3.6.2 Grid search

In order to choose the different hyper-parameters, a grid search using 4-fold cross
validation is used.
The optimal parameters are the following: 5 epochs of training at each iteration, a
disc of 5 pixels for the opening, a disc of 41 pixels for the dilation, and a threshold
varying between 0.1 and 0.8 for 17 iterations and then fixed at 0.8.

As can be seen on Figure 3.6, most of the real streaks are correctly detected. The
mean IoU of 0.70 confirm this visual feeling. This method shows good results but
those are still uncertain due to the lack of real examples.
We were advised to try the network HT-LCNN to work on this problem so we discuss
this method in the next Chapter.
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Figure 3.6: Sample results of the iteratively trained U-Net on some real streaks. The
original patches are on top, the ground truths are on the bottom, and the predictions
are in between.
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Method 2 - Deep Hough
Transform Line Priors

4.1 Introduction

Classical work on line segment detection is knowledge-based; it uses carefully de-
signed geometric priors using either image gradients, pixel groupings, or Hough
transform variants. Instead, current deep learning methods do away with all prior
knowledge and replace priors by training deep networks on large manually anno-
tated datasets. Here, the dependency on labeled data is reduced by building on
the classic knowledge-based priors while using deep networks to learn features. Line
priors are added through a trainable Hough transform block into a deep network.
Hough transform provides the prior knowledge about global line parameterizations,
while the convolutional layers can learn the local gradient-like line features [4].

The Hough transform is widely known in image processing to extract features such
as lines or other arbitrary shapes. It parameterizes lines in terms of two geometric
terms: an offset and an angle, describing the line equation in polar coordinates.

The network HT-LCNN [4] is largely based on the previously developed L-CNN
[5]. We will explain first explain how L-CNN works.

4.2 L-CNN

Existing researches address the wireframe parsing problem with two stages (wire-
frame parsing is detecting lines and their junctions). First, an input image is passed
through a deep convolutional neural network to generate pixel-wise junction and line
heat maps. After that, a heuristic algorithm is used to search through the generated
heat map to find junction positions, vectorized line segments, and their connectivity.
The heuristic algorithms can be sub-optimal, so they decided to build an end-to-
end trainable network with the goal of pushing the state-of-the-art performance for
wireframe parsing.
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In order to train their network, the ShanghaiTech dataset is used. An sample
image is shown in Figure 4.1.

Figure 4.1: Sample image from the ShanghaiTech dataset. Wireframe and AFM are
previous algorithm developed to parse wireframe.

4.2.1 L-CNN architecture

Taken an RGB image as the input, the neural network directly generates a vectorized
representation without using heuristics. The L-CNN architecture is illustrated in
Figure 4.2. It contains four modules:

• a feature extraction backbone that takes a single image as the input and pro-
vides shared intermediate feature maps for the successive modules;

• a junction proposal module which outputs the candidate junctions;

• a line sampling module that outputs line proposals based on the output junc-
tions from the junction proposal module;

• a line verification module which classifies the proposed lines.

The output of L-CNN are the positions of junctions and the connectivity matrix
among those junctions. The mathematical details of each module are explained in
[5].
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Figure 4.2: L-CNN architecture illustration

4.2.2 Evaluation metrics

Previously, researchers use two metrics to evaluate the quality of detected wire-
frames: the heat map-based average precision (APH) to evaluate lines and junction
average precision (AP) to evaluate junctions. These metrics are problematic in
wireframe detection since they are based on the heatmap: they do not penalize for
overlapped lines (Figure 4.3a), and they do not properly evaluate the connectivity
of the wireframe (Figure 4.3b).

Figure 4.3: Illustration of the issues the old metrics have.

A new evaluation metric defined on vectorized wireframes rather than on heat
maps is proposed [5]. The metric is called structural average precision (sAP). Struc-
tural AP is defined to be the area under the precision recall curve computed from a
scored list of the detected line segments on all test images.
The junction mean AP (mAPJ) they use evaluates the quality of vectorized junctions
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of a wireframe detection algorithm without relying on heat maps.
They show that their network have state-of-the-art performance on the Shang-

haiTech dataset [5].

4.3 HT-LCNN

4.3.1 The HT-IHT block

In order to add line priors to the network L-CNN, [4] has developed a trainable
Hough transform block called HT-IHT. This block is put in the network backbone
and replace the stack hourglass blocks. An illustration of the added line priors is
shown in Figure 4.4. The goal is to reduce the dependency on labeled data by
building on the classic knowledge-based priors while using deep networks to learn
features.

Figure 4.4: Line priors illustration

The HT-IHT block is end-to-end trainable and is composed of a Hough transform,
several convolutions in the Hough domain, and the inverse Hough transform. This
is shown in Figure 4.5.

Several experiments are done in [4] to show that their network provides state-of-
the-art performances, especially when working with less data.

Figure 4.5: HT-IHT block illustration
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4.3.2 Pretrained model performance

As [4] gives the weights of their network trained on the ShanghaiTech dataset, we
decided to give a shot to their pretrained model without any further training. Some
predictions results are shown in Figure 4.6 and 4.7. As can be seen, the results are
very impressive: all the streaks shown here are perfectly predicted.
At this time of the semester, some new real streaks were available (93 real streaks
in total). This allowed us to test this network on more data. Moreover, a visual
inspection of the newly available streaks led us to change a bit the way the synthetic
streaks are created to make them more realistic.
With the pretrained weights, the sAP was evaluated to 0.812. The sAP is evaluated
here on all the 93 real streaks. To make a comparison with L-CNN, the sAP of
L-CNN with their pretrained weights is evaluated to 0.800. A slight improvement
is observed with HT-LCNN.

Figure 4.6: Sample images and the line predictions using the pretrained model

Figure 4.7: Sample images and the line predictions using the pretrained model
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4.3.3 Sensitivity analysis

In order to evaluate the robustness of the model with respect to noise and to the
intensity of the streak, 2 sensitivity analyses are performed.

Sensitivity to salt and pepper noise

Salt and pepper random noise is added to sample images with different probabilities.
As can be seen on Figure 4.8 and 4.9, the algorithm is capable to find the streaks
even with some noise. Here until a probability of 0.4 but it varies with the different
streaks. The other streaks not shown here have comparable results.

Figure 4.8: Sample image with more and more salt and pepper noise added

Figure 4.9: Sample image with more and more salt and pepper noise added

Sensitivity to streak intensity

Streaks with varying intensities are generated. As can be seen on Figure 4.10 and
4.11, the algorithm is capable to find the streaks even when the streak has a low
intensity. Here until an intensity of 120 and 160 but it varies with the different
streaks. The other streaks not shown here have comparable results.
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Figure 4.10: Sample image with a streak with less and less intensity

Figure 4.11: Sample image with a streak with less and less intensity

This shows that even with weights pretrained on another dataset, this network
is quite robust at detecting the lines in our dataset.

4.3.4 Fine tuning

In order to increase the performance of the model, we fine-tuned the model on the
real streaks that were available. This required us to annotate the 93 streaks but this
network take as input the two endpoints of the line, thus the annotation is much
easier to do. As the network needed to have at least two streaks on an image for
the training to work 1, we added one synthetic streak on each image. Each image is
then composed of a real and a synthetic streak.

1More precisely, it needed to have at least 2 junctions that were not connected by a
line. Adding a second streak solves this issue.
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The sAP is then evaluated only on the validation set of the real streaks (not
containing the added synthetic streak). As a reference, the pretrained HT-LCNN
has a sAP of 0.844 on this validation set.

The fine-tuning is ended when the validation loss start to increase again, and the
epoch with the best validation loss is kept. The sAP obtained after fine-tuning is
0.988. This shows that the training was improved the model for our dataset. In
order to have reliable results, all images of the same streak (the streak appearing at
different places on the image) have been put in the same set (training or validation).

The annotation being quite easy to do and not so time consuming, the SSA
association will be able to retrain the network in the future when they will have
more real streaks available. This would make the network more robust to unseen
data.

This method directly outputs the two endpoints of the streaks and is easily
re-trainable with more data. Moreover, this method is less dependant on hyper-
parameters that may need to be adjusted if the dataset changes. This method is
then more reliable and easier to work with.

4.4 Further work

In order to compare the two methods described in this report, both should be tested
in the same conditions. However, to have reliable results, it would require annotating
all the 93 streaks pixel-wise to evaluate the performance of the first method. As is
it quite time-consuming, it was not possible to do it before the end of the semester.
This being said, the second method looks more promising since it is easily scalable
to a larger dataset in the future. It also has excellent results on the dataset we were
provided.
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Conclusion

Two methods have been tested to detect the satellite streaks in astronomical images.
We have seen that with the U-Net based approach, we were able to reach good results
using synthetic streaks for the training, then an iterative training allowed us to fine-
tune the model in an unsupervised way. However the lack of real samples at this
time and the difficulty to create annotations to check the model performance make
this method less attractive. Despite the results being good on our dataset, we can’t
say for sure that the model is robust to unseen data. On the other hand, the second
approach based on the network HT-LCNN showed very promising results with low
effort. Even the pretrained model on the ShanghaiTech dataset performs well. The
fine-tuning of the model on our dataset is straighforward to do and yields even better
results.
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