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1 Introduction

Currently, the number of satellites orbiting in space is around 6500. When considering space
debris, the total number of objects rises to 300’000’000. Among these debris, 30’000 are larger
than 10 cm. The number of satellites is expected to increase eight times by 2030 [1]. Indeed,
the space occupation is a worsening problem. The first step to tackle this challenge is to
detect the objects, mainly using an optical observations. This report summarises the work
done to provide a basis for the utilisation of the telescope and the processing of images taken
by the Space Situational Awareness (SSA) École Polytechnique Fédérale de Lausanne (EPFL)
association. Among these efforts, the Point Spread Function (PSF) was measured after taking
into account the different optical aberrations. Satellite tracks have been modelled. Then, the
influence of the environment has been quantified. Several perturbations have been studied such
as light pollution between two locations and the clarity of the sky. Finally, the trajectory of
satellites has been computed numerically. The convergence study of two different algorithms,
Runge-Kutta 4 and Störmer-Verlet, has been made. The influence of several forces on the
satellite has been studied.

2 Telescope

The detection of satellites and space debris can be done using two frequency bands: radio
frequencies and visible light. In the SSA EPFL association, visible light has been selected
as the first design. The prototype, called LOST (Low Orbit Satellite Tracker), consists of
a telescope, a camera and a motorised mount. These elements have been selected based on
specific requirements, notably limiting magnitude and angular resolution. This telescope’s
performances are to be measured in this project. The characteristics of the telescope, the
camera and the mount are given in the Appendix A.

2.1 Experimental method

The measurements were taken during several nights at two different locations. The first one
is on the EPFL campus and the second one is located at Astroval in the Vallée de Joux. The
experimental setup, which is composed of the telescope, the camera, and the mount, is shown on
Figure 16 in the Appendix A. The mount must be calibrated so that it can locate itself in space,
point to the stars chosen by the operator and counter the rotation of the earth. The first step
consists to target Polaris with a polar finder (optical scope) in order to angle the mount. Then
a multitude of stars are aimed at and focused in the centre of the camera. Once 4-7 stars have
been centred, the telescope is precisely calibrated. Then, the focus is finely tuned. The camera
is cooled to −10 °C. Pictures of stars at different altitudes have been taken. Pictures of the
same star were also taken with different exposure times. Theses photographs have been taken
to find the limiting magnitude and the mean Full Width Half Maximum (FWHM). Pictures of
satellites track were also taken to verify the accuracy of the track model.
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3 Calibration

There are multiple sources of imprecision in the images taken with a telescope and a CMOS
camera. Some are related to the sensor while others are related to the optical imperfections. For
each effect, the source is presented, the effect measured and a solution to remove (or dampen)
the effect is presented. While thermal noise would be considerable in normal astronomy images,
the short exposure time (less than 1 s) implies there is no significant thermal noise. This
exposure time is necessary to capture the satellite track with the end and beginning inside the
image. Indeed, orbital determination need precise angles, which can not be provided if the track
crosses the whole frame. Therefore, this source of noise will not be discussed in this chapter.

The quality of the optics can change across the sensor of the camera, with usually small
angular resolution on the borders. This has been measured and is presented in the Appendix
B.3.

3.1 Readout noise

Figure 1: Readout noise histogram
with Gaussian fit at sensor tempera-
ture T = −10 °C. The camera is set
to low gain and an exposure time of 1
ms.

In a CMOS camera sensor, a small charge is generated
when a photon hits a pixel. This small charge is con-
verted into a voltage using an amplifier. The voltage of
all the pixels in the column are then transferred to the
sides of the sensor. At this point, the analogue signal
is converted into a digital signal, which is recorded on
the computer [2].

The amplifier and analogue-digital converter are the
noise sources. Since each pixel has its amplifier, there
can be a different noise value for each pixel. This gives
rise to a noise distribution that is independent of the ex-
posure time, unlike the thermal noise. Because of this,
it can easily be measured by taking a picture with the
shortest exposure time possible; the short time mea-
surement does not allow the other effects to impact the
image. For the camera used, the minimal exposure time
on the camera is 1 ms.

Because this noise is statistical in nature, averaging
it over multiple images will give more representative
results. The average image, called master bias frame,
can then be used to calibrate the image. This image’s
histogram is shown on Figure 1. Visibly, the distribution is a narrow Gaussian; this is confirmed
by the Gaussian fit’s good agreement with the data and its small standard deviation of σ = 1.
This explains why this effect is called a bias, as it effectively a uniform shift of 500 in luminosity
across the whole image.

To dampen this effect, the master bias frame is subtracted from all the images. The master
bias frame is also subtracted from the other calibration frames. An example for the difference
this calibration produces is shown in the Appendix B.1 on Figure 17a on Figure 17b.

3.2 Uneven luminosity and parasite reflections

The whole sensor map would, in the case of a perfect telescope, receive the same light flux. In
reality, this is not the case, as the flux is at its maximum at the centre and decreases further
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out. A round symmetry of the telescope is expected in this effect, even though the camera
sensor is rectangular.

The internal reflections can lead to parasite lights. This effect is especially present in highly
complex telescopes with large secondary mirrors suspended by multiple movable arms. An
example from the VST is shown in the Appendix B.2.

In order to remove the variation in luminosity and the parasite lights, the telescope operator
can take multiple pictures of a uniformly luminous area. Usually, this is done by taking an
image of the sky during the time between the sunset and the apparition of the first stars. Any
change in light flux across the camera sensor will be present and thus measurable. Such images
are called flat frames ; usually, the flat frame used for calibration is the average of multiple flat
frames [3].

In order to dampen this effect, the image is normalised such that the average value across
the whole image is 1. This is necessary to preserve the luminosity of the objects. Furthermore,
the correction is not in absolute luminosity, but in relative luminosity between different areas
of the camera sensor. The raw image (normalised) is shown on Figure 2a and the obtained
image is shown on Figure 2b. The second image is obtained by dividing each pixel of the raw
image by the value of the corresponding pixel in the flat frame.

(a) (b)

Figure 2: Variation in background brightness for the raw image (a) and the calibrated image
(b). For easier comparison, both images have been normalised so that the mean value is 1.

4 Track extraction

Figure 3: Example of a satellite track. In this
image, the satellite in question is a Starlink
satellite from the company SpaceX. The expo-
sure time is 0.5 s.

The purpose of the LOST prototype is to de-
tect satellites and measure their characteris-
tics. One example of a track is shown in Fig-
ure 3. To compute its orbit, three sets of pre-
cise angles are needed. Those angles are com-
puted from the location of the beginning and
end of the track relative to the centre of the
image. The direction the telescope is point-
ing (i.e. the angular coordinates of the centre
of the image) is known from the indications
of the mount and the plate solving. Precise
angles are needed to have precise orbit de-
termination, and therefore the precise coor-
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dinates of the beginning and end of the track
are needed. This precision is hampered by the
prototype’s angular resolution.

Applying forward modelling techniques on
the track, one can find the model best describing the recorded track. This allows for angle
determinations smaller than the angular resolution. This model also gives more information,
such as the brightness of the track and its width.

The algorithm used to find the best model is a version of the Monte-Carlo algorithm. Its
aim is to maximise the log probability of a given set of parameter. The log probability depends
on the model goodness, which is measured with the reduced chi-square test. The algorithm
determines the best parameters as well as the confidence interval. Further details are presented
in Chapter C in the Appendices.

4.1 Point Spread Function

The limit in angular resolution is measured by the PSF. This is the light emitted by a point
source captured by the camera sensor after it has gone through the atmosphere and the optics.
In practice, any star can be considered a point source, and thus the PSF can be computed
based on any star in the image1. An example of a star is shown in Figure 4a. Since the PSF
can vary across the camera sensor, a star close to the track is used.

The imprecision caused by the atmosphere and the optics are generally expected to follow a
Gaussian distribution. Since the PSF can be stretched along a direction (for example because
of poor accuracy in the sky tracking), the Gaussian is of elliptical form defined by an angle θ.
Its equation is given by

f(x, y) = A exp
(
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with σx and σy the standard deviation along the x and y axis. A Gaussian fit on the PSF
is done to extract the FWHM. This value is generally considered to be the maximal angular
resolution. Such a fit is shown in Figure 4b.

The camera sensor can be describe by a discretized plane with coordinates (x, y). A light
flux can then be mathematically described as a field f(x, y) defined on the plane of the camera
sensor (where x and y are the horizontal and vertical coordinates in in the image). Similarly,
the PSF can be described as a field h(x, y). In this case, the capture image will be given by
the field defined by

g(x, y) = (f ∗ h)(x, y) =
∑

(x′,y′)∈ sensor

f(x, y)h(x− x′, y − y′). (2)

1One has to take care not to use a saturated star. Such a star appears as a large blob in the image, even
though its angular diameter is much smaller than the angular resolution of the optical instrument. In this case,
the PSF will be very large.
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(a) (b)

Figure 4: Point spread function obtained from a star (a) and its associated 2D Gaussian best
fit (b).

Typically, the PSF is defined on a smaller part of the image, only enough to fully contain the
star. In this report, the image outcut has been consistently 10 × 10 pixels. In this case, the
sum is done on this outcut instead of the whole sensor. This vastly increases performances for
a small precision cost [4].

4.2 Track model

The track model developed during this project has been relatively simple. The light flux
reflected by the satellite or space debris is considered to be constant in time and uniform across
the whole object. This model is therefore defined by 6 parameters: the coordinates of the
beginning and end of the tracks (i0, j0) and (iend, jend), the width w and the amplitude A. An
example is shown on Figure 5a. In this case, the parameters are described by θ = (i0, iend, w,A).

This track model is then convolved using the measured PSF to simulate what the prototype
would have captured. The result obtained using the track model shown in Figure 5a and the
PSF shown on Figure 4a is presented on Figure 5b.

To decrease computation time, a simplified model has been used. This model assumes the
track begins and ends beyond the outcut of the image. This effectively sets the parameters
j0 = 0 and jend = length of outcut.

4.3 Real track

Since the forward modelling is capable of finding the correct parameters based on a fake track,
the next step was to apply this algorithm to a real track. Multiple tracks were studied, but only
one case is shown here. The outcut of the image containing the track is shown on Figure 6a. The
difference between the data and the best model is shown on Figure 6b. The best parameters
were θ = (i0 = 500, j0 = 68, iend = 41, jend = 672, w = 8, A = 650). The reduced chi-square
test for the best model gives χ2

red = 17. The optimal parameters given by the Monte-Carlo
simulation are identical to the initial parameters.

The trajectories of the 400 walkers2 are shown on Figure 7a and the corner plot3 is shown
on Figure 7b. The number of iteration is 105.

2The term walkers is defined in the Appendix C.
3The term corner plot is defined in the Appendix C.
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(a) (b)

Figure 5: An example of a track model (a) and the result after convolution with the PSF (b).
The track model’s parameters were i0 = 60, j0 = 0, iend = 30, jend = 1000, w = 1 and A = 1000.

(a) (b)

Figure 6: Outcut of an image showing a real track (a) and the difference bewteen the real track
and the best model (b). The SNR is 288. The reduced chi-square test gives χ2

red = 17. The
parameters were θ = (i0 = 500, j0 = 68, iend = 41, jend = 672, w = 8, A = 650).

4.4 Low SNR

In order to quantify how bright the track is compared to the background, the signal to noise
ratio (SNR) is computed. The background noise follows a Poisson distribution, whose mean
value is µ. The SNR is then given by the equation

SNR = A/µ. (3)

The background noise distribution with its Poisson fit and the solution found by the Monte-
Carlo simulation (with its associated confidence interval) is shown in Figure 8a. The lower
limit for proper convergent results has been found to be an amplitude of 1000 for a background
noise with mean value 62; this represents a SNR of 16. An example of the corner plot obtained
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(a)

(b)

Figure 7: Walkers (a) and corner plot (b) for a Monte-Carlo simulation for a real track. The
SNR is 288. The figures are a qualitative representation of the behaviour of the simulation.

after running the Monte-Carlo simulation for a low SNR is shown on Figure 8b. The associated
background distribution and the solution for the amplitude is shown in Figure 8a.

(a)

(b)

Figure 8: The background distribution with the solution found using Monte-Carlo simulation
(a) and the corner plot of the parameters (b). The real amplitude is A = 500, which gives a
SNR of 8.

4.5 Over-sampling

Since the track width is usually very small (usually less than 10 pixels) and the width is treated
as an integer, issues arise by the fact that real values between integers give the exact same
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track. In order to avoid this, one solution is to increase the number of pixels in the image; this
is over-sampling. In practice, this means replacing every pixel by f pixels in each direction,
where f is the oversampling factor. For instance, a 4 × 4 image becomes a 8 × 8 image. This
helps the algorithm to converge.

The drawback is the increase in computation time. Indeed, the biggest computational cost is
the convolution of the track model with the PSF. The time complexity of a convolution between
a track model with dimensions N ×M and a PSF with dimensions n×m is O(NMnm), which
thus scales as f 4 when over-sampled by a factor of f .

This technique has been tested on a fake track, in order to compare the solutions from the
Monte-Carlo simulation to the true parameters. The track data, the track obtained from the
parameters θ, and the PSF are over-sampled at each iteration. The behaviour of the walkers
during the maximisation for a scaling factor f = 2 is shown in Figure 9a. The resulting
parameter distributions are shown in Figure 9b. No higher scaling factors have been tested due
to computational time constraints4.

(a)

(b)

Figure 9: The trajectory of all walkers during the Monte-Carlo simulation (a) and the corner
plot of the parameters (b). The blue lines represent the actual values. The outcut of the
track and the PSF have been over-sampled with a factor of 2. The figures are a qualitative
representation of the behaviour of the simulation.

5 Influence of the environment

5.1 Methods

The limiting magnitude is the magnitude of the faintest star in a picture. The analysis of theses
images is made with the program Astrometric Stacking program (ASTAP). The detection limit
is a signal-to-noise ratio bigger or equal to 7 [5]. The limiting magnitude is calculated over
plenty of images and the mean value is taken. The error is the standard deviation. In order to

4The computation for the same track takes about 20 minutes without over-sampling, but 4 hours with
an over-sampling by a factor of f = 2. Furthermore, more iterations are needed to achieve proper ensemble
sampling, which increases the computational time to 10 hours. This comparison was done on a high-performance
computer lent by the eSpace centre at EPFL.
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Time 0.02 s 0.5 s 1 s 5 s 30 s 60 s 180s
Astroval 10.7± 0.2 - 13.3± 0.1 14.3± 0.1 15.0± 0.2 - -
Campus not detect. 13.3± 0.1 13.6± 0.1 14.4± 0.1 15± 0.1 15.5± 0.2 16.4± 0.5

Table 1: Magnitude of the faintest star observable at Astroval and on the campus as a function
of exposure time.

calculate the FWHM, stars were fitted with a 2D-Gaussian. These stars are those that have
not saturated the sensor. The mean is taken over all these stars. The error is the standard
deviation.

5.2 Results

First, it was observed that too few stars were detected when measurements were taken at 7
degrees altitude during an exposure time of 0.02 s on the EPFL campus. This is not the case
when this measurement is taken at Astroval. Table 1 shows the magnitude of the faintest
star observable with the telescope as a function of the exposure time. It can be observed that
the longer the time exposure, the bigger the limiting magnitude. Figure 10a and Figure 10b
show the full width at half maximum of the 2D-Gaussian point spread function. Theses sets
of measurements were taken during two different nights at Astroval for time exposure of 0.5 s
and 10 s. The results obtained on the EPFL campus is shown in Appendix F. Using another
technique proposed by Prof. Kneib, others results have been obtained. They are shown in
Appendix F. The technique takes into account only stars that have a SNR sufficiently small
SNR < 100.

(a) (b)

Figure 10: FWHM at astroval the first night (a) and second night (b) as a function of the
altitude.

5.2.1 Light pollution

Figure 11a and Figure 11b show the magnitude of the faintest star that can be seen in a picture
as a function of the telescope’s target altitude. One set of measurements was taken on the
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campus where the light pollution of cities like Lausanne or Evian is significant. The other set
was taken at Astroval, on the top of a plateau in the Jura mountain chain, where there is
almost no light pollution. The measurement taken at 72 degree in Figure 11b should not be
taken into account. Indeed, this data has been corrupted by wind. The wind tends to make the
telescope’s tube vibrate. Therefore, the picture taken are slightly blurry. A tendency emerges,
the larger the viewing angle, the higher the limiting magnitude. The magnitude of the faintest
star observable on the EPFL campus tends to be smaller than the one at Astroval no matter
how long the exposure time is.

(a) (b)

Figure 11: Maximum magnitude of stars observed from Astroval and from the EPFL campus.
The exposure time is 0.5 s for Figure (a) and 10 s for (b).

5.2.2 Sky clarity

Figure 12a and Figure 12b show the magnitude of the faintest star detectable by the telescope.
The measurements were taken at Astroval with time exposure of 0.5 s and 10 s. One set of
data was taken during a night when the sky wasn’t clear with some scattered clouds.

(a) (b)

Figure 12: Maximum magnitude of stars observed from Astroval. The exposure time is 0.5 s
for Figure (a) and 10 s for (b). One set of data were taken with a clear sky. The other one
were taken with some clouds.
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5.2.3 Temperature and wind

Figure 13a and Figure 13b show the limiting magnitude of stars observed during two different
nights on the EPFL campus. During both nights, the atmospheric pressure was (996± 5) hPa
and the humidity rate was (54± 2)%. The main difference was the temperature and the wind.
As already mentioned in the section 5.2.1, the data taken at 72 degree should be discarded
because of the significant influence of wind.

(a) (b)

Figure 13: Maximum magnitude of stars observed from the EPFL campus. The exposure time
is 0.5 s for Figure (a) and 10 s for (b). The atmospheric pressure and the humidity rate were
approximately the same at (996± 5) hPa and 54% for both measurements [6].

6 Simulations

A C++ code has been implemented to predict the trajectory of satellites that have been detected
by LOST. After the detection, an approximate orbit can be calculated. It doesn’t take into
account some external forces. Consequently, this simulation is required to predict long-term
orbit. In order to compute the evolution of the satellite’s position and velocity, the algorithms
of Runge-Kutta 4 and Störmer-Verlet are used to integrate numerically the movement equation.
The details of the implementation are given in Appendix E.4.

6.1 Convergence study

Figure 14a and Figure 14b show the convergence study of both algorithms. The only force used
during the convergence study is the gravitational force with the point like Earth. The error
between the initial and last position is represented as a function of the number of steps. The
time simulated is 5579.995 s. There exists a minimum around 240 steps in the Figure 14a. This
minimum corresponds to a ∆t of 4 minutes.

6.2 Forces considered

In Table 2 are listed the forces considered and their typical accelerations applied on a satellite.
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(a) (b)

Figure 14: Convergence study of Runge-Kutta 4 (a) and of Störmer-Verlet (b) with a linear fit
that did not take into account the values from the plateau. The convergence is made over the
number of steps during 5579.995 s.

Type of Force Acceleration at 400 km Acceleration at 1000 km
Point like Earth Gravitation 8.7 7.3
Correction Due To 3D Earth 1.3 · 10−2 8.9 · 10−3

Atmospheric Drag Max 2.3 · 10−6 6.0 · 10−9

Moon’s Gravitation 1.2 · 10−6

Sun’s Gravitation 5.4 · 10−7

Atmospheric Drag Min 5.3 · 10−7 2.9 · 10−10

Solar Radiation Pressure 4.5 · 10−9

Table 2: Typical values of the accelerations provoked by the different forces for altitudes of 400
km and 1000 km. For the Moon’s gravitation, the Sun’s gravitation and the solar radiation
pressure the effects are considered equal for both altitudes since this variation is small compare
to the Earth-Sun and Earth-Moon distances. The effects are listed by descending order for an
altitude of 400 km. The computations are detailed in Appendix E.3.

6.3 Comparison with the ISS

In order to be able to evaluate the accuracy of the simulation, it is needed to have a reference
object which can be used as a point of comparison. The ISS has been chosen since it is possible
to find a lot of data on that satellite. Based on the positions and velocities of this object that
are given online [7], it is possible to compare the altitudes as shown on Figures 15a and 15b.
For the point-like Earth model, the simulated satellite tends to drop in altitude reaching a
difference of altitude ∆r = 35 km. For the 3D Earth model, the amplitude of the oscillation
grows rapidly but the average seems to match the one of the ISS. However, the altitude at the
end of the simulation is r = 6200 km, which is smaller than the Earth radius.

7 Discussion

Calibration While applying the master bias frame does not completely remove the granu-
larity of the image, the standard deviation of the background noise has decreased from σ = 44
(raw image) to σ = 29 (calibrated image). Furthermore, it gives an image with more accurate
luminosity values. In particular, areas without light sources (i.e. the sky between stars) are
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(a) (b)

Figure 15: Comparison between the altitudes of the ISS and the simulated satellite. Two
different orders of the geopotential, presented in Appendix E.2.2, are considered: k = 0 which
corresponds to a point like mass Earth and k = 2 which corresponds to a 3D Earth model. The
two altitudes are represented over a day.

almost completely black. The remaining luminosity is caused by the sky brightness. Indeed, the
night sky has some intrinsic brightness, especially so when there is light pollution. Even after
calibrating with the master flat frame, some relative changes in luminosity remain, although
with smaller variations. Nonetheless, the variations in the calibrated image remain only in two
corners and the largest part of the image is flat. It is worth pointing out that the bright spot
around the coordinates (4000, 2000) in Figure 2b is caused by the presence of a very bright star
that completely saturated the camera sensor in this area. The methods used to extract the
background values from images are sensible to such expanded bright spots.

Track extraction The Gaussian fit on the PSF shows great agreement, which confirms the
assumption that the PSF can be approximated by Gaussian distribution. One can see that
the introduction of an axis rotation is necessary to obtain proper results. The track model
convolved with the PSF gives a result strongly reassembling real tracks, which confirms that
the model is somewhat realistic.

The results obtained using the Monte-Carlo simulations are very promising when considering
4 parameters. Based on the behaviour of the walkers, the parameter space is properly explored
in the vicinity of the solution. Few walkers wander further from the solution, which indicates
a steep probability gradient around the solution. Furthermore, the difference between the
reference (fake) track and the track obtained from the solution parameters is without the
standard deviation of the background noise. The confidence interval on the coordinates of the
beginning and end of the track are very small, which is needed for precise angle measurements.

The confidence interval is less than 1 pixel, which means that the simulations spends vastly
more time on the correct value than next to it. For the width of the track, the confidence
interval is 1 pixel, which means that tracks with wrong widths (w± 1) are also relatively often
explored by the walkers. This indicates that the effect of the width on the log likelihood is
less than the effect of the coordinates. Because of this, precise width measurements are more
complicated. As a reminder, 1 pixel represents an angle of 0.7", or 1.4 meter at 400 km. Finally,
the confidence interval on the amplitude is also relatively small. This means there are hopes
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to precisely measure the luminosity of the track.
When it comes to a real track, the Monte-Carlo simulations are not capable of finding any

solution in a reasonable computational time. This is clearly visible in the image showing the
difference between the real track and the best model. The behaviour of the walkers indicates
there is very little chi-square gradient in the parameter space. This means that the walkers
don’t converge to the best solution. The small exploration is confirmed by the corner plot,
which shows only a localised subspace of the parameter space. Multiple reasons could have
been the cause of this.

The first is the impact of the relatively high noise on the real tracks. In order to test if
this impacted the convergence of the walkers, tests based on a fake track (with known true
parameters) have been conducted in order to find the limiting magnitude. While the results
do suggest that problems arise when the SNR is low, the limit SNR found during the tests is
significantly lower than that of the track. Therefore, the high noise will be a source of problems,
but not in the particular cases studied in this project.

The second hypothesis is based on the poor handling of small track widths by the model.
Over-sampling was implemented to dampen the effect of small widths. While better convergence
has been found, it has been a the cost of exploding computational time. Since the track
modelling should be done on every track detected during the night, the solution is not adapted.
This technique remains usable for rare events. Furthermore, the tracks studied did not have
tracks that were extremely small. For larger tracks, similar results were obtained with or
without over-sampling. Therefore, this method is not expected to improve the results on real
tracks.

Finally, the last hypothesis is on the impact of varying amplitude along the track. Indeed,
small periodic variations (of about 10 % of the amplitude) has been observed on the tracks. This
is much larger than the standard deviation of the background noise, which means this variation
is significant. Since the model has a uniform amplitude, there is no possible amplitude that
suits the measurements. At best, some parts of the track will be lighter than the model and
other parts will be darker. Therefore, the chi-square test will always be relatively large. This
means the log likelihood differences between two parameters will be small, and thus there is
only a weak impetus for the walkers to explore the parameter space. Such a sinusoidal variation
in amplitude, defined by a change in amplitude ∆A, a frequency ω and a phase ϕ, could be an
interesting addition for an improved model.

Influence of environment It can be observed in Figure 10a and Figure 10b that the values
for 10 s are higher than the values for 5 s. This is due to the fact that many stars saturate
the sensor for a sufficiently long exposure time. A trend seems to be emerging among these
points: the average does not seem to depend on altitude. But many points do not respect this
trend. The improved calculation, shown in Appendix F, gives smaller mean values that are
more realistic because they are closer to the value found using ASTAP. ASTAP is not usable
for the mean calculation because the cursor would need to be manually moved over all the
stars, report the values and then average them. This would take a phenomenal amount of time.
For small angles, the FWHM remains too high, due to the fact that the stars do not emerge
sufficiently from the noise. In fact, the automatic calculation doesn’t detect enough stars to
find a coherent result. The problem is certainly the code used, which should be improved.
Table 1 shows that the exposure time is not a parameter that reduces the ability to detect a
satellite. Indeed, the magnitude of a Starlink’s darksat is 6.6 which is brighter than the limiting
magnitude for 0.5 s [8]. However, it is important to mention that the magnitude of a satellite is
clearly reduced on an image. Indeed, light rays from a star strike the same pixels over time. As
the telescope mount is calibrated to follow the rotation of the earth, the satellites leave a trace.
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As a result, the light reflected by the satellite and captured by the satellite is spread out along
the track. As a result, the satellite appears much less bright. Nevertheless, if the tracking was
made to follow the satellite, the satellite’s magnitude would be twice as large as the limiting
magnitude. As expected, the limiting magnitude increases with time exposure. A quantitative
study with other telescopes has been carried out and can be found in Appendix D.

Light pollution caused by cities such as Lausanne and Evian is clearly visible in the Figures
11a and 11b. Indeed, the magnitude of the faintest stars in pictures taken on the EPFL campus
is smaller than the one taken at Astroval. The difference is almost 15 %. This phenomenum
is also observable in table 1 for time exposure of 0.02 s. The measurement taken on the EPFL
campus wasn’t usable while the one at Astroval was.

Figures 12a and 12b show the influence of sky clarity. These results confirm that satellite
detection can be done in the sporadic presence of clouds. Although significantly reducing the
performance of the telescope, the satellites remain detectable. The reduction is about 15%.
The presence of clouds means that altitude does not play an important role. Indeed, a limit of
18.7 mag for 10 s seems uncrossable.

Figures 13a and 13b show the influence of temperature and wind. The only differences
between the two nights of observation were the temperature and the presence of wind. As
already mentioned, the wind has certainly corrupted at least one of the measurements. The
rest of the measure seems to be corrupted by the wind as well. Indeed, because the temperature
is higher, the limiting magnitude is expected to be reduced. However, the opposite can be
observed. Nevertheless, it can be concluded that even in the presence of wind, satellites are
detectable with the telescope. To really observe the influence of temperature, more experiments
should be done, although it is difficult to calculate the influence of the earth’s temperature at
ground level because the temperature of the upper layers of the atmosphere also is expected to
play a major role.

Simulation As expected, the error using the Runge-Kutta 4 algorithm have a slope of ap-
proximately 4 and the convergence of Störmer-Verlet has a slope of 2. Fewer steps are needed
to achieve satisfactory accuracy with Runge-Kutta. This justifies its use and the subsequent
abandonment of Störmer-Verlet. In Figure 14a, there exists a minimum for ∆t = 4 minutes
followed by a plateau. The plateau appears because of the accumulation of errors on each steps.
The minimum corresponds to the time interval that NASA uses to calculate the trajectory of
the International Space Station (ISS) [7]. Moreover, the revolution time of the simulated satel-
lite is 5579.995 s. This result is 4.155 s longer compared to the ISS revolution value which
is 5575.84 s [9]. Without any perturbations implemented, the relative error is 0.072% on the
revolution time.

The orders of magnitude of the point like Earth gravitation (∼ 101 m/s2), the correction due
to 3D Earth model (∼ 10−2 m/s2), the Moon gravitation (∼ 10−6 m/s2), the Sun gravitation
(∼ 10−6 m/s2) match the values presented in the literature for altitudes of 400 km and 1000 km
[10]. The solar radiation pressure order of magnitude (∼ 10−9 m/s2) doesn’t match the value
given in the literature(∼ 10−7 m/s2). This can be partially due to the fact that the area facing
the sun might be hard to determine since the orientation of the satellite changes over time.
The drag force at 400 km is ∼ 103 times bigger than at 1000 km which is expected since the air
density ρ depends exponentially on the altitude. Figure 15a illustrates the need for additional
forces or implementation correction since the simulated satellite ends up 35 km lower than the
ISS in a day. By considering the order k = 2, the satellite reaches r = 6200 km which is below
the Earth surface. Such phenomenon is clearly not realistic and can come from different parts
of the implementation process. Further investigation should be done to fix the correction of
the 3D earth gravitational potential.
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8 Conclusion

The results obtained during the semester project has been useful in the development of the
SSA EPFL association. Firstly, the aberrations have been removed using the bias frame, dark
frame and flat field frame have been studied. All these artefacts were analysed to calibrate the
images. Without this, it is impossible to clearly define the presence or absence of stars. This
leads to the use of the Point Spread Function. The PSF is a crucial tool to analyse satellite
tracks. Then, the influence of the environment has been studied. It has be shown that the
light pollution between Lausanne and Jura’s mountain has an impact of 15% on the limiting
magnitude. This is equivalent to the presence of a cloud veil in the line of sight. The limits
of the telescope have been studied. It was observed that the noise was too high for 0.02 s
time exposures on campus. Therefore, it is impossible to analyse this kind of image. The next
step would be to add complexity to the track model, such as taking into account the intrinsic
rotation of the satellite. This effect causes a variation in track width as well as a variation in
brightness. Another idea would be to study the performances of the telescope depending on
the temperature of several atmospheric layers.

Thanking Many thanks to all the people who have helped us in the measurement process and
modelling : Prof. Jean-Paul Kneib, Research fellows Cameron Lemon, Research fellows Stephan
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A Telescope characteristics

Figure 16: Picture of the tele-
scope on the EPFL campus.

The telescope is a Celestron Rowe-Ackermann Schmidt As-
trograph 36 cm [11]. The telescope consists of a main mirror
35.5 cm in diameter, reflecting the light to a set of lenses in
front. This set of lenses is responsible for focusing the light
onto the camera sensor, which is also situated in front of the
camera. The central obstruction diameter is 158 mm. The
focal length is 795 mm. The aperture is therefore f/2.2,
which is considered extremely luminous. According to the
constructor, the angular resolution is 0.39".

The mount is a Celestron CGX-L with go-to and sky
tracking capabilities. This means having the possibility to
indicate a given point in space for the mount to point to and
the mount automatically compensating the earth’s rotation.

The camera is a ZWO ASI 2600 MM Pro monochrome.
The 23.5×15.7 mm2 sensor has a resolution of (6248×4176)
pixels. The full well capacity is 50′000 electrons whereas the
read-out noise is between 1 and 3 electrons. The quantum
efficiency is 91%. The pixel values are recorded in 16 bits,
i.e. between 0 and 65535. In order to avoid increased ther-
mal noise during long exposures, the camera can be cooled
using the Peltier effect. Combined with the telescope, this camera gives a field of view of
1.14°×1.71°, which is approximately twice the angular size of the full moon. The angular
resolution is therefore 0.72".

B Calibration

B.1 Readout noise

A part of the raw image is shown on Figure 17a and the same part of the calibrated image is
shown on Figure 17b. The background is, after calibration, properly black.

(a) (b)

Figure 17: 100 by 100 pixels outcut of a raw image (a) and after removing the bias frame (b).

B.2 Internal reflection: the need for flatfielding in the VST
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Figure 18: Part of the
image showing an inter-
nal reflection of the sec-
ondary mirror for the
VST.

As Figure 18 shows, there is a reflection of the secondary mirror
(bright spot on the left). This reflection is visible in all images, in-
cluding in images taken during the time between the sunset and the
apparition of the first stars. Such images will be perfectly uniform in
luminosity (hence the name flat frames) except for those kind of im-
perfections. Therefore, one can remove the imperfections by dividing
the image of interest by the (normalised) flat frame. The raw images
from VST were very kindly provided by LASTRO laboratory PhD
student E. Rachith.

B.3 Uneven angular resolution

In order to estimate the size of the smallest object measurable, one
has to know the FWHM of a point source (i.e. a star) on the part
of the sensor. This is obtained by detecting every star on the image,
fitting a 2D Gaussian distribution on every star and measuring the
FWHM of each fit. For further discussion, see Chapter 4.1

By using multiple images, where the stars are not in the same area
of the camera sensor, one can fill out the map of the FWHM across the
whole sensor. This is represented in Figure 19. Since the measurement
is focused on the smallest detail possible, the largest stars present in
each image were not considered. The result was obtained using 39

images and around 200 stars per image. To fill out the empty areas between the different
measurements, the nearest value interpolation was performed on the image.

Figure 19: FWHM across the whole sensor using 39 images, with around 200 point like sources
per image. The interpolation between measurement was done using the nearest value.
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C Forward modelling

In order to find the model parameters that give the correct track once convolved with the PSF,
a likelihood maximisation algorithm has been used. In order to measure the goodness of the
model, a reduced chi-square test has been used on the pixels containing the track5. The reduced
chi-square formula is given by

χ2
red =

1

N

N∑
n

(yn −M(xn, θ))
2

σ2
n

, (4)

where N is the number of pixels, yn are the measured luminosity of each pixel, M(xn, θ) is
the function describing the model, xn the index of each pixel and σn the uncertainty on each
pixel [12]. The uncertainty used in the following computations are the standard deviation of
the background noise denoted σ. The matrix representing the outcut has been mapped to a
long one-dimensional vector. The log-likelihood ℓl(θ) of the model given a parameter θ is then
given by ℓl(θ) = −0.5 ∗ χ2

red(θ).
The log probability of this model is then ℓ(θ) = ℓl(θ) + ℓp(θ), where ℓp(θ) is the prior log-

likelihood. This function can be used to weight the probabilities of different parameters based
on prior knowledge of the reality modelled. In this report, the prior log-likelihood is used to
limit the scope of the parameters to coherent values, such as i0 and iend coordinates inside
the outcut, a width w < 20 pixels and an amplitude A < 105 6. The prior log probability is
uniformly distributed for the coherent values.

The algorithm selected to find the optimal parameters is an affine invariant Markov chain
Monte Carlo ensemble sampler. This algorithm allows to optimise θ and find the confidence
interval for each parameter. To verify that the algorithm is working well, it has been tested on
a fake track created manually on which random noise has been added. The noise followed a
normal distribution with the same mean value and standard deviation as the background noise
in the real images. The explorations of the parameter space are done by so-called walkers, which
trajectory is randomly generated step by step with probabilities given by the log probability.
Their trajectories are shown in Figure 20a. By counting the number of occurrences of each
parameter, one can find the distribution of each parameter. This is shown on Figure 20b. Such
as Figure is called a corner plot. The distribution of each parameter is the histogram, whereas
the 2D plots represent the inter-effects of two different parameters.

The number of walkers can be manually varied to give more or less data points (at the cost
of more or less computation time). The number of iterations can be manually varied, but must
be higher than 50 times the auto-correlation time ξ in order to be assured that the parameter
space has been properly sampled [13]. More iterations than 50ξ do not lead to better results.

A fit on the distribution of each parameter is computed in order to find the value of the
highest likelihood and the confidence interval. In practice, the average value and the standard
deviation have been computed. This method is coherent with the distributions for the starting
coordinates and the amplitude i0, iend and A, but not for the width w. The difference between
the track obtained from the real parameters and the track obtained from the mean values is
shown in Figure 21a. The colour indices are represented as a function of the standard deviation
of the background noise σ.

5This means neglecting the background pixels around the track.
6The maximal width has been selected as it would represent an object of 40 m in diameter, which is the case

for the very few largest objects in orbit. The amplitude has been limited to 105 because no brighter track has
been detected during the measurements.
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(a)

(b)

Figure 20: The trajectory of all walkers during the Monte-Carlo simulation (a) and
the corner plot of the parameters (b). The blue lines represent the actual val-
ues. The real parameters where θ = (30, 30, 5, 7500) and the solutions were θ =
(3(0.5± 0.3), (30.5± 0.3), (5.0± 1), (7500± 100)). The solution has reduced a chi-squared
value of χ2

red = 1.3. It represents a signal to noise ratio of SNR = 122.

(a)

(b)

Figure 21: The difference between the real track model and the solution found using Monte-
Carlo simulation (a) and the background distribution with the amplitude found using Monte-
Carlo simulation (b). The real parameters where θ = (30, 30, 5, 7500) and the solutions were
θ = (3(0.5± 0.3), (30.5± 0.3), (5.0± 1), (7500± 100)). The solution has reduced a chi-squared
value of χ2

red = 1.3. It represents a signal to noise ratio of SNR = 122.
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D Comparison with other telescopes

D.1 TELESTO

The official telescope of the LASTRO laboratory at EPFL is called TELESTO in the AS-
TRODOM observatory in Sauvergny, Switzerland7. Its primary mirror is 60 cm in diameter
and its focal range is 2280 mm. The attached CCD camera is a monochrome water cooled
ProLine PL16803 with a resolution of 4096 × 4096 pixels. The full well capacity is 100′000
electrons. This setup gives a field of view of 0.9 °×0.9 ° [14][15].

Using images captured by two PhD students in the LASTRO laboratory8, the limiting
magnitude has been measured using the same process as outlined in Chapter 5. The images
received consisted of 15 s exposures as well as 30 s exposures. Calibration frames were also
provided (namely one dark frame per exposure time and seven bias frames). The images
were taken 35° above the horizon. The measured limiting magnitude for 15 s exposures is
ml = (15±1) mag and the measured limiting magnitude for 30 s exposures is ml = (16.8±0.3)
mag. The angular resolution is found to be about 4". Comparing by taking images with the
same altitude for 30 s using LOST, the limiting magnitude is (18.6± 0.1) mag.

Based on this measurement, the LOST prototype is capable of detecting fainter stars, be-
cause of its larger aperture. While the field of view is slightly smaller for TELESTO compared
to LOST, the angular resolution is comparable. This means that the wider field of view ob-
tained using LOST increases the likelihood to observe a satellite or debris without any loss in
precision.

D.2 VST

The ATLAS survey perform its activity on the VLT Survey Telescope (VST). The telescope is
located in Chile. The diameter of the main mirror is 2.61 meters. There are 32 CCD camera
with 4000x2000 pixels. Each pixel has a size of 0.21". Therefore, the field of view is 1◦×1◦ [16].
The limiting magnitude found for an airmass of 1.3 is 22.67. This measurement is taken with a
red filter. The limit is calculated for a SNR bigger or equal to 5. The exposure time is 2× 45 s.
This value is 18% better than that obtained with LOST by taking a 3× 30 s image. The value
taken with the LOST prototype is (18.7± 0.5) mag. Nevertheless, this value is calculated with
limit value of SNR bigger or equal to 7.

E Simulations

E.1 The referential

In order to compute the trajectory, the J2000 reference frame has been chosen. This system
is geocentric and the axes are static with respect to the earth intrinsic rotation. The z-axis
is taken along the Earth north pole, the x-axis in the direction of the vernal equinox and the
y-axis is then defined by the right-hand rule. The intersection of the ecliptic and the equatorial
plane defines a line. The vernal equinox is defined by the side of the line which is given by
the ascending node. Because of the movement of precession and nutation of the earth, the
equatorial plane varies, implying that the vernal equinox is not fixed, hence the necessity to
choose its position at a specific time. In the J2000 frame, the chosen epoch is the first of
January 2000. A scheme in Figure 22 allows to visualise the reference frame.

7The observatory is a joint facility between the University of Geneva and EPFL
8Belén Yu Irureta-Goyena and Elisabeth Rachith
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Figure 22: Scheme of the J2000 referential frame and coordinate system [17].

E.2 Forces

Different forces have been implemented by descending order of magnitude. The importance of
the forces varies with the altitude of the object considered. The altitudes considered to classify
the order of magnitude will be 400 km, which corresponds roughly to the ISS orbit, and 1000
km. This ranking is given in Satellite Orbit by O. Montenbruck and E. Gille [10].

E.2.1 Gravitation of Earth as a point like mass

As a first approximation, the Earth is considered as a point like mass. The acceleration provoked
is then simply given by

r̈ = −GME

r3
r, (5)

where G is the gravitational constant, ME is the mass of the Earth and r is the position vector
of the object.

E.2.2 Geopotential of the earth

By considering the earth as a 3D object with non-homogeneous mass density, this should gives
rise to an additional acceleration of 10−5 km/s2 in norm [10]. The potential U is defined by

U = G

∫
ρ(s)d3s

|r− s|
, (6)

where ρ(r) is the mass density distribution of the Earth. The potential U is linked to the
acceleration by the relation

r̈ = ∇U. (7)
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After expanding in spherical harmonics the right hand side of the equation (6) and a few
operations, the calculation leads to the formula

U =
GME

r

∞∑
n=0

n∑
m=0

RE
n

rn
Pnm(sinϕ)(Cnm cos(mλ) + Snm sin(mλ)), (8)

where RE is the Earth radius, r is the norm of r, Pnm are the associated Legendre polynomials,
ϕ is the declination and λ the right ascension in the equatorial system of coordinates and the
Cnm and Snm are empirical coefficients linked to the mass density distribution of the Earth
ρ(r). In the equation (8), there’s a sum over an infinite amount of term. In practice, only k+1
terms will be considered. Note that for k = 0, the equation gives back the results found for the
point like mass Earth computed in equation (5) since P00(x) = 1, C00 = 1 and S00 = 0.

E.2.3 Atmospheric Drag

The acceleration due the atmospheric drag can be written by

r̈ = −1

2
Cd

A

m
ρ(r)v2rev, (9)

where Cd is the dimensionless drag coefficient, A is the cross-sectional area of the satellite, m is
the mass of the satellite, ρ(r) is the density of the atmosphere, vr is the velocity of the object
relatively to the atmosphere and ev is the unit vector giving the direction of the satellite. The
equation to compute vr is given by

vr = v − ωE × r, (10)

where v is the velocity of the satellite and ωE is the angular velocity of the Earth, which
we will consider here as equivalent to the angular velocity of the atmosphere. To describe
the atmospheric density ρ(r), many different empirical models are possible. The drag force
depends highly on the altitude of the satellite. The Harris-Priester model gives values of ρ(r)
for altitudes from 100 km to 1000 km. This model seems well suited since below 100 km the
objects would drop because of the high atmosphere density. Above 1000 km, the atmosphere
density is sufficiently small that the drag force becomes negligible. In addition, this model takes
in consideration the fact that the sun’s radiations tends to increase the atmosphere’s density.

E.2.4 Gravitation of the Moon and the Sun

Since the Sun and the Moon are far away from the satellite, they will be considered as point
like masses. By Newton’s law of gravity, the acceleration is given by

r̈ = GM
s− r

|s− r|3
, (11)

where M is the mass of the Sun or the Moon and s is the position of the Sun or the Moon. But
since the referential frame chosen is non-inertial, the acceleration of the Earth provoked by the
Sun or the Moon has to be subtracted which leads to the equation

r̈ = GM

(
s− r

|s− r|3
− s

|s|3

)
. (12)
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E.2.5 Solar radiation pressure

The acceleration caused by the solar radiation pressure close to the earth can be computed
according to the following relation

r̈ =
σT 4

πc

(
R2

L2

)
A

m
, (13)

where σ is the Stefan-Boltzmann constant, T is the temperature of the Sun at its surface, c is
the speed of light, R is the radius of the Sun, L is the Earth-Sun distance, A is the surface of
the satellite exposed to the Sun radiation and m is the mass of the satellite.

E.3 Detailed Computations of Table 2

To compute the values presented in Table 2, some considerations needed to be done except for
the point like Earth gravitation and the solar radiation pressure. The parameters used for the
simulation are presented in Table 3.

Sun’s Mass 1.989× 1030 kg
Moon’s Mass 7.35× 1022 kg
Earth’s Mass 5.97× 1024 kg

Distance Earth-Moon 3.84× 108 m
Distance Earth-Sun 1.49× 1011 m

Earth’s Radius 6.37× 106 m
Sun’s Radius 6.957× 108 m

Air Density Min (400 km) 2.249× 10−12 kg/m3

Air Density Max (400 km) 7.492× 10−12 kg/m3

Air Density Min (1000 km) 1.15× 10−15 kg/m3

Air Density Max (1000 km) 1.81× 10−14 kg/m3

Earth’s Intrinsic Angular Velocity 7.292× 10−5 m−1

Sun’s Temperature 5778 K
Gravitational constant 6.67× 10−11 Nm2kg−2

Speed Of Light 299′792′458 ms−1

Stefan-Boltzmann Constant 5.670374× 10−8 Wm−2K−4

Satellite’s Velocity 8× 103 m/s
Satellite’s Drag Coefficient 3
Satellite’s Area Mass Ratio 3× 10−3 kg/m2

Table 3: Values used to compute the results of Table 2. The air densities are given in the
literature [10]

E.3.1 3D Earth Gravitation

For the Earth gravitation, the equation (5) has been used for the point like model and equations
(7) and (8) with k = 2 for the 3D Earth gravitation.

E.3.2 Sun’s and Moon’s Gravitation

For the gravitation of the Sun (respectively the Moon), the situation where the Earth, the
satellite and the Sun (Moon) are aligned is considered. With such consideration and using
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equation (12), the norm of the acceleration becomes

r̈ = GM
2sr + r2

s2(s+ r)2
, (14)

where M is either the mass of the Sun or the Moon.

E.3.3 Atmospheric Drag

The maximum atmospheric drag for a given velocity is reached in the case where the satellite
goes in the opposite direction of the Earth rotation and when the solar radiations are at their
strongest. The minimum is reached when the satellite goes in the same direction as the Earth
rotation and without solar radiation. The satellite position is considered with latitude 0. The
results are computed with those considerations applied to equation (9).

E.4 The numerical integration

E.4.1 Runge-Kutta 4

In this section, the equation for the numerical integration of Runge-Kutta 4 are [18]
k1 = ∆tf(yi, ti),
k2 = ∆tf(yi +

1
2
k1, ti+1/2),

k3 = ∆tf(yi +
1
2
k2, ti+1/2),

k4 = ∆tf(yi + k3, ti+1),
yi+1 = yi +

1
6
[k1 + 2k2 + 2k3 + k4],

yi+1 is the position (respectively the velocity) at the step i + 1 and f(yi) is the velocity (re-
spectively the acceleration) as a function of yi.

E.4.2 Stormer-Verlet

In this section, the equations for the numerical integration of Störmer-Verlet are [18]{
q(t+∆t) = q(t) + (∆t/m)p(t) + ((∆t)2/2m)F(q(t)),
p(t+∆t) = p(t) + (∆t/2)[F(q(t+∆t)) + F(q(t))],

q(t) is the position of the satellite at time t, p(t) is the momentum of the satellite at time t
and F(q(t)) is the acceleration of the satellite as a function of the position at time t.

F Influence of environment: additional Figure

Figure 23a and Figure 23b show the FWHM of the 2D-Gaussian PSF. Theses sets of measure-
ments were taken during two different night on the EPFL campus for time exposure of 0.5 s
and 10 s. Figure 24 show the FWHM of the 2D-Gaussian PSF. Theses sets of measurements
were taken at Astroval for time exposure of 0.5 s and 10 s. This value are found using the other
technique.
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(a) (b)

Figure 23: FWHM on campus the first night (a) and second night (b) as a function of the
altitude.

Figure 24: FWHM on campus as a function of the altitude. The FWHM is calculated using
the technique proposed by Prof. Kneib.
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