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Abstract

We present two approaches to detect and extract information about satellite streaks

in single epoch images produced by OMEGACAM on the VLT Survey Telescope. We

distinguish long tracks from high velocity objects, usually crossing an important part

of the image, and short tracks from low velocity objects. The first method is based

on image processing technique. By applying filters and morphological transforms

on the image we manage to detect the long satellite streaks with Hough transform

technique. Facing the limitations of this approach for short tracks, we propose a

neural network model inspired from the UNet model, for image segmentation, and

train it on synthetic data to identify pixels belonging to satellites streaks with a f1

score of 95%. We show the feasibility of our methods by using example images the

gravitationally lensed quasar fields SDSSJ0924+0219.

Yann BOUQUET (273827) ii



Table of Contents

1 Introduction 1

2 Inputs 3

3 High Velocity Objects 5
3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1.1 Method Summary . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1.2 Morphological Tools... . . . . . . . . . . . . . . . . . . . . . . 6

... For binary images . . . . . . . . . . . . . . . . . . . . . . . 7

...For gray-scale images . . . . . . . . . . . . . . . . . . . . . . 8
3.1.3 Transient Effects Removal . . . . . . . . . . . . . . . . . . . . 9

Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Strategies for transient effects detection . . . . . . . . . . . . . 11

3.1.4 Light Blobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.5 Hough Transform . . . . . . . . . . . . . . . . . . . . . . . . . 16

Canny filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Thresholding the number of aligned points . . . . . . . . . . . 17

3.1.6 Distinguish the satellites . . . . . . . . . . . . . . . . . . . . . 18
3.2 Final Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Predictsat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Further Corrections in the algorithm . . . . . . . . . . . . . . 23

4 Low Velocity Objects 25
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Synthetic Image Generation . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 UNet for Image Segmentation . . . . . . . . . . . . . . . . . . . . . . 28

4.3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Yann BOUQUET (273827) iii



Batch Normalization . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Final Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4.1 Patch-wise Performance . . . . . . . . . . . . . . . . . . . . . 32
4.4.2 Pixel-wise Performance . . . . . . . . . . . . . . . . . . . . . . 33
4.4.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Conclusion 37

Appendix A Summary of the UNet Model adapted for this project 41

Appendix B Other real satellite streak sample for testing the UNet
model 43

Yann BOUQUET (273827) TABLE OF CONTENTS iv



Chapter 1

Introduction

This report presents methods to detect object streaks in astronomical images. Due

to the colonization of near Earth space by satellites, we observe an increasing need to

know with high degree of accuracy the orbital parameters of satellites and debris. As

those parameters constantly evolve with time because of some orbital disturbances,

it is necessary to have tools to periodically observe these object and update their

parameters. As a consequence, detection of straight lines in astronomical images

is critical for detecting high velocity objects (relative to the exposure time), faint

satellites streaks and slow motion object (also relative to exposure time).

An earlier method has been proposed for detecting such objects in images and is based

on difference image analysis [1] which provides an optimal subtraction between an

image and a reference image. Using difference image analysis for this problematic

implies many exposures in order to observe the objects which we are looking for.

Also by working with a combination of many images, the time frame was traded

for decreasing the noise. Thus it prevents from gaining additional insight about the

objects that are detected such as their speed, brightness’s variations in their streaks,

etc. Consequently, in order to create a pipeline that takes as input a single exposure

of the telescope, the goal of this project is to propose new image processing methods

to detect straight lines in astronomical images without difference imaging.

We will distinguish for this project two kinds of objects : high velocity objects (which

creates long streaks across the image) and slow motion objects (which creates very
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short streaks in the image). This motivates to study two distinct approaches. The

first one implies image processing mainly using mathematical morphology tools and

the Hough transform to detect long lines in the images. The second one involves

deep neural networks for image segmentation on a synthetic set of images.
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Chapter 2

Inputs

The satellite streaks studied in this project lie in the fields of a high-cadence lensed

quasar monitoring project with OMEGA-CAM on the VLT Survey Telescope which

takes approximately 5 minutes of exposure to generate one image. This image, or the

input of our process, is a 16 000 x 16 000 pixels mosaic consisting of the concatenation

of 32 4000x2000 pixels contiguous blocks separated by bands of NaN values. As a

pixel is encoded as a 64-bit float, each mosaic represents approximately 2GB of data.

Figure 2.1: FITS Image : Mosaic of 32 blocks

The method proposed here is to analyze each block independently. This also allows

us to parallelize the process to reduce the computation time. So we will detail the

whole process by observing a single block of 4000 x 2000 pixels.

Yann BOUQUET (273827) 3



Min Max Mean Standard Deviation
−37.5477 111075 697.561 1051.48

Table 2.1: Pixel Intensity Distribution in a Mosaic

In this block, the intensity of pixels sweep a wide range of values as referred in Table

2.1. In a gray-scale the image thus appears black, as in Figure 2.2a because of the

huge intensity peaks. So in order to be able to process the image in the classical

gray-scale, we perform a rescaling of the pixels values using iraf’s zscale algorithm

which consists on displaying the values near the median image value without the

time consuming process of computing a full image histogram. A sample of pixels

of the image is taken and the intensity of these pixels are observed to define a new

intensity scale. This intensity scale is defined by two intensity values z1 and z2 such

that any pixel with an intensity lower than z1 (resp. higher than z2) takes the value

of z1 (resp. z2). As a consequence we obtain an image that shows us the streaks we

want to automatically detect through our process in Figure 2.2b.

(a) Unscaled Block (b) Scaled Block

Figure 2.2: Iraf’s ZScale algorithm applied on a block. (b) We can see two streaks
in the block.

Yann BOUQUET (273827) Inputs 4



Chapter 3

High Velocity Objects

3.1 Method

3.1.1 Method Summary

Our image processing method for retrieving streaks such as the ones that can be

observed in Figure 2.2b. This method presented in Figure 3.1 is based on the Hough

transform method which analyses the alignment of points in a 2D space. As a

consequence a primary process will be done to remove objects that we call bad

columns and that can be interpreted as vertical lines in Hough space. Also filtering

and morphological transforms on the image will be done in order to highlight linear

objects in the image and remove as much light blobs as possible. We will apply a

Canny filtering in order to remove the smaller light blobs before detecting the lines

with the Hough transform technique. At the end, many lines will be detected. The

assertion here is that every detected line is generated by a moving object’s streak

existing in the image. However the orientation of the line and its position can slightly

differ from the associated streak. Furthermore many lines can be detected for the

same streak. As a consequence, the last part of the method consists in regrouping the

detected lines that have similar orientations and positions in the image and analysing

the neighborhood of this groups to retrieve an accurate orientation and position of

the streak.

Yann BOUQUET (273827) 5



Figure 3.1: Flowchart representing the method for detecting streaks in an image.

3.1.2 Morphological Tools...

For the method, mathematical morphology [2] is rapidly used on the images in the

process. Referring to a branch of nonlinear image processing, mathematical morpho-

logy focuses on geometrical structures within an image by analysing quantitatively

how a structuring element fits or not in an image. Here is thus presented some

theoretical background about it.
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... For binary images

Figure 3.2: Erosion1

The erosion, or one the fundamental operations of

mathematical morphology, of a set A (geometrical

structure in the image) by a set B (structuring ele-

ment) is defined as the following:

A	B = {x : Bx ⊂ A}

where Bx = {b+ x : b ∈ B} defines a translation of the set B by a point x.

Figure 3.3: Dilation1

The dilation, or the other fundamental operations

of mathematical morphology, of a set A (geometrical

structure in the image) by a set B (structuring ele-

ment) is defined as the following:

A⊕B =
(
Ac	

^

B
)c

where
^

B= {−b : b ∈ B} the 180-deg rotation of B about the origin and Ac is the

set-theoretical complement of A.

To resume, considering both operations, it consists in bypassing a geometrical object

of the image by a structuring element by making the edge of the element of the image

correspond to the center of the structuring element. At this edge all the points of the

image object that are included in the structuring element in the case of erosion are

removed. In the case of dilation, all the points of the structuring element excluded

from the object are added to the object. The complete operations are obtained by

operating these processes at any point belonging to the edge of the image object.

1http://www.inf.u-szeged.hu/ssip/1996/morpho/morphology.html
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Figure 3.4: Opening1

The opening is a combination of the two funda-

mental operations. Considering two images A and

B, it is defined by:

A ◦B = (A	B)⊕B

which corresponds to the union of all translations of B that fit inside the input image.

The opening top-hat transform is an operation between two images A (image)

and B (structuring element) defined by :

A
∧◦ B = A− (A ◦B)

...For gray-scale images

Despite the fact that the main concern in this project is image processing, the theory

for signals will be developed here in order to keep the notations as simple as possible

and to present simple illustrations. It appears that the theory is independent of

the dimensionality of the application domain. Considering a signal f defined on a

domain, f(x) denotes the functional value at x.

The erosion of a signal f by a signal g (structuring element) is defined at a point x

by:

(f 	 g)(x) = max{y : gx + y ≤ f}

where gx is the translation of g defined by gx(z) = g(z − x) at z. In other word we

slide the structuring element g spatially so that its origin (which for signals is the

Euclidean-plane origin relative to the structuring element) is located at x, and then

we find the maximum offset y such that the element still lies beneath the signal f

at any point.

The dilation of a signal f by a signal g is defined at a point x by :

(f ⊕ g)(x) = min{y : − ^
gx +y ≥ f}

1http://www.inf.u-szeged.hu/ssip/1996/morpho/morphology.html
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where
^
g is the reflection of g defined as

^
g (x) = g(−x) at x.

The opening of a signal f by a signal g is defined by :

f ◦ g = (f 	 g)⊕ g

The top-hat transform of a signal f by a signal g is defined by :

f
∧◦ g = f − (f ◦ g)

It extracts elements of an image smaller than the considered structuring element and

brighter than their surroundings. To do so this operation considers the difference

between the input image and its opening by some structuring element in order to

mark narrow peaks while not marking wide white disks in the image.

This theory is used in order to isolate the satellite streaks as much as possible from

elements that can lead our method to give false positives in the detection of linear

object.

3.1.3 Transient Effects Removal

In the images it is observed that vertical lines can be detected during the Hough

transform, thus generating false positives in the detection of the streaks. This vertical

lines comes from different elements caused by transient effects in the image. Many

strategies are proposed to grasp all these elements that can be in the block and

create a mask to ignore the pixels belonging to these elements during the Hough

transform. This proposed method will also grasp some pixels that do not belong to

these elements thus creating noise in the mask. So an iterative process will remove

those pixels from the mask.
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Figure 3.5: Flowchart representing the method for removing bad columns in an image
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Elements

Figure 3.6: On the right: vertical white
(yellow) line. On the left: vertical black
line

These elements which generate those

vertical lines can be classified in different

categories.

These lines can come from dead pixels

which form black columns (pixels with

null intensity) in the image but also

from saturated pixels which form white

columns. The last cause of this vertical

line is a persistence effect on the CCD

(Charged-Couple-Device) sensors of the

telescope. Bright sources can be overex-

posed implying a strongly localized in-

crease in the dark rate, or after-image of the bright source during the next exposures.

Thus they appear as very dark sources in the image.

Figure 3.7: Persistence effects

Strategies for transient effects detection

Dark columns and persistence effects are easily detectable because they have very

low intensity on a gray-scale. So they can be found by applying a fixed threshold on

the image. By creating this mask we obtain these columns and some noise (Figure

3.9a).

Concerning the white columns which consists of saturated pixels, they can be caused

Yann BOUQUET (273827) High Velocity Objects 11



by very bright sources: the pixel intensity is abnormally high and thus these "outliers"

pixels can be recovered using a threshold on the unscaled block.

(a) "Outliers" pixels in unscaled block (b) Scaled block

Figure 3.8: Example of saturated "outliers" pixels forming bright columns

The other saturated pixels that also form white columns in the image can have

an intensity closed to the intensity values of the satellite tracks we are looking for.

After the zscale rescaling, they forms vertical tracks of maximum intensity, as can be

satellites streaks. Consequently, searching for these "inliers" pixels by thresholding

alone is hardly feasible. On the other hand, we notice that these lines of dead pixels

are very thin (1 to 3 pixels thick) and much thinner than the very high intensity

satellite tracks. We will therefore be able to use the top-hat transform with a 8-pixel

diameter disk as a structuring element to isolate the smaller elements. Among these

elements we find the columns of white pixels as presented in Figure 3.9.
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(a) Gray-Scale Image (b) Top-Hat Transform (c) Binary Mask

Figure 3.9: Top-Hat Transform for removing saturated "inliers" pixels

By coupling the different obtained masks we can make sure to recover all results of

these transient effects. We will isolate them from the noise as presented in Figure

3.11 using their vertical property. Taking the previously obtained mask as input,

we make a translation along the ordinate axis and recover the intersection between

the input mask and this translation. In this way we remove a maximum of pixels

that do not belong to the vertical line and recover a small part of the dead pixel

trace. Thanks to a morphological reconstruction where we can see an example in

Figure 3.10 taking as mask the result of the intersection and as reference image the

original mask, we can recover the part of the vertical line that we have lost by the

translation without reconstructing the totality of the pixels belonging to the noise.

So the result of the morphological reconstruction contains a less dense noise and

the same columns that we want to isolate. If this result becomes our new input

mask, we can iterate the previously described process enough times to make sure

to eliminate all noise from the mask. We notice that the translation must be done

with a number of pixels small enough not to lose small tracks of dead pixels during

the intersection operation and large enough to space the other pixels as much as

possible to avoid reconstructing them during the morphological reconstruction. It

Yann BOUQUET (273827) High Velocity Objects 13



was decided to translate 50 pixels at each iteration, for 10 iterations to ensure that

only traces are recovered each time.

(a) Reference Image (b) Mask (c) Reconstruction

Figure 3.10: Morphological Reconstruction for particles extraction1

(a) (b) (c)

Figure 3.11: Removing noise from the mask by an iterative method. (a) Original
mask containing the columns and the noise. (b) Intermediate results of the iterative
method : the noise is less dense. (c) Any noise seems to appear in the final result of
the process.

The result is a binary mask representing these dead pixels that we will use later in

the process.
1http://www.telecom.ulg.ac.be/teaching/notes/totali/elen016/node80mn.html
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3.1.4 Light Blobs

We will also use the top-hat transform to remove the light blobs. We know that

for a 10-pixel diameter disk as the structuring element, we notice that the top-hat

transform highlights a grid of points in the background of the image and this grid

disturbs the line detection by Hough transform. This grid is already present in the

background of the image and can be erased by a linear filter. It was decided to use

Gabor filters to erase this grid. The goal is to take advantage of the properties of

Gabor filters [3] and our knowledge of the precise structures of satellite tracks to

both erase the grid and preserve the contours of the satellite tracks.

The Gabor filter (assumed to be centered at zero) is the product of a sinusoid and a

Gaussian:

g(x′, y′, λ, θ, φ, γ) = exp
(
−

′x2 + γ2y′2

2σ2

)
cos

(
2πx

′

λ
+ φ

)

where

x′ = x cos θ + y sin θ, y′ = −x sin θ + y cos θ

• λ is a wavelength (the number of cycles per pixel). It controls the width of the

stripes in the filter;

• θ is an orientation (the angle of the normal to the sinusois). This corresponds

to the orientation of the stripes in the filter;

• φ is a phase (the offset of the sinoid);

• γ < 1 is an aspect ratio producing the ellipticity. It controls the number of

stripes in the filter.

By taking different θ we can highlight satellites that follow several possible directions.

The goal is to take an average intensity value of all these results and take it as the

input of a hough transform in order to remove the big luminous blobs without getting

back the grid we had before. Thanks to the use of Gabor filters, the faint satellite
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tracks are also highlighted by these filters and for the top-hat transform, the 10-pixel

diameter disk is sufficient as structuring element.

We will ignore the background of the image thanks by thresholding the image. The

threshold is a fixed value for any input that gave satisfying results so far.

3.1.5 Hough Transform

In a polar coordinate system with a defined origin, this technique defines any lines

in this space by a vector with the following parameters in this system:

θ : the angle ;

ρ: the norm of the vector (the distance between the line and the origin of the system).

By considering a fixed point in this system, we can calculate all vector of parameters

(ρ,θ) defining every line that goes through this point. We thus obtain one sinusoid

per point called "Hough space". If the line associated with three points intersect, the

place where they intersect in the Hough space corresponds to the parameters of a

straight line connecting these two points.

Canny filtering

Knowing that we have already averaged the image using the Gabor filters, we will

not perform a smoothing on the image as declared in the edge detection process.

Moreover we apply the Canny filter on a thresholded image. So an additional motiv-

ation is that we don’t want to spread out point sources which are sources of error for

line detection by Hough transforms. Thanks to edge detection the remaining light

spots will become circles with an insufficient number of aligned points to generate

false detections while the edges of the traces of interest will remain present in the

image generating lines easily detectable by a Hough transform.

Yann BOUQUET (273827) High Velocity Objects 16



Thresholding the number of aligned points

Because of the large image size and the important presence of point sources always

present in the resulting image, we must impose a minimum number of points inter-

sected by a line to consider that this this line belongs to a track.

Indeed the principal source of error can come from the diffraction spikes of very

bright stars. These spikes have very similar properties with satellite streaks are not

removed by the current method as we can see in the figure ??. Their brightness and

random orientation can be similar to some satellite streaks. Furthermore, a satellite

streak can go through a bright star on the image, so this property is not enough to

distinguish them from satellites. Although we could analyse the properties of many

spikes that come out from the same light source, however nothing can exclude a

satellite to pass by the center of a light source. However the spikes are still very

short compared to a satellite streak in general.

Figure 3.12: Pixels belonging to diffraction spikes that are given as input to the
Hough technique. Green lines shows aligned pixels that can generate straight lines
with Hough.

Thanks to the previous filters, we can set the limit to 200 pixels (empirical res-
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ult) which is a low enough limit for high velocity traces. On the other hand, it is

impossible to detect traces smaller than this threshold. However to overcome this

problem we can consider smaller blocks of the image.

This threshold makes it possible to neglect the spikes coming from large light sources.

3.1.6 Distinguish the satellites

After obtaining the lines of interest using the Hough transform, we must correlate

these lines with the existence of an object in the image. We must associate the lines

of interest to each object in the image by comparing their slopes and their original

ordinates.

Once this distinction is made, we can create one line per object by taking the median

values of the slope and the intercept of each group and analyze the neighborhood of

this line in the image to which a top-hat transform is applied to remove the largest

luminous blobs. To do so, we will rotate this line around its original orientation and

analyse the mean intensity of each group of pixels that has the same projection to

any hyper-plan perpendicular to the rotated line as presented below.

Figure 3.13: Neighborhood of three different orientations of the line detected by
Hough because of the streak that can be seen in each image. We will look at the
mean intensity of each row of the matrix represented by an image. We can see that
the satellite streak is horizontal in the middle image

The idea is that the satellite that leads us to the detection of our previous line forms

a peak of intensity in the neighborhood of this line for an orientation equivalent to

the orientation of the satellite streak. So determining the right rotation of our line

that leads to the greatest and thinnest peak of intensity will mean finding a satisfying
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approximation of the orientation of the associated satellite streak. Considering this

peak, we take the full width at half maximum in order to define the width of our

streak.

Figure 3.14: Mean intensity distribution along the rows of each image of the figure
3.13. We can observe the peak of intensity for the middle image.
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(a) (b) (c)

(d) (e) (f)

Figure 3.15: The entire process summary. (a) Input bloc. (b) Isolating pixels from
transient effects. (c) top-hat transform on results of gabor filters. (d) Binary image
after Canny filtering. (e) Lines detected in Hough transform. (f) Two satellites
detected in the image
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3.2 Final Result

Processing a full image takes approximately 9 minutes using 6 workers in a parallel-

ized algorithm using a multiprocessor Intel Core i7 with 6 cores and 12 threads.

The results show that the process is able to detect long satellite tracks in most cases

when these streaks are visible. The parameters allowing to ignore star spikes that

can be interpreted as streaks are, in some cases, too strict and sometimes generate

false negatives. On the other hand, no cases of false positives were observed among

the 12 images studied.

Moreover, the cases of false negatives are isolated in blocks. In other words, the

satellites that generated cases of false negatives in a block were detected in contiguous

blocks of the same image as presented in figure 3.16. Thus no satellite present in

these images and visible to the naked eye was forgotten by the process. On the other

hand, the cases of false negatives allow us to conclude that particular cases of tracks

passing in corners of the image or appearing only in one block in the whole image

can lead the process to forget a satellite in the image. The first work to be done

to reduce the number of false negatives without creating false positives is first to

determine a method to exclude diffraction spikes.

Figure 3.16: Example false negative inside the green box, next to the block in which
the satellite is detected
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3.2.1 Predictsat

The results of this process are compared with an algorithm, called Predictsat, pre-

dicting the trajectories of the satellites according to a predefined catalog. First the

tracks detected by the method of this project are consistent with an official catalog

referencing the known satellites. So it proves that we can recover satellite streaks

with this method.

Figure 3.17: On the right, result of image processing method; on the left, prediction
of Predictsat. The debris SL-12 R/B(2) is correctly detected.

However we can also conclude from some samples that non visible satellite won’t be

detected by this process.

Figure 3.18: OAO-2 satellite streak predicted by Predictsat but undetected with
image processing

It is also observed that a streak is detected by image processing but not predicted

by Predictsat.
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Figure 3.19: Example of unpredicted but detected streak

3.2.2 Further Corrections in the algorithm

The current algorithm has some shortcomings in determining the width of satellite

streaks when they are too faint. Transforms used on the image before analyzing the

intensity along axes may not be appropriate for these cases.

Figure 3.20: On the left, the computed width of the streak is consistent with the
observations while the algorithm wrongly draws three thick lines on the right.

We can see three parallel bands on the satellite detected on the right in figure 3.20.

It has to be precised that only one satellite is detected. However, by looking at the

mean intensities along this streak, no clear peak of intensity is retrieved from the

analysis. This by recovering the full width at half maximum (in figure 3.21) at the

orientation where we found the maximal intensity, the algorithm will return three

bands as the algorithm does not handle the case where many bands are retrieved.

Once these method is corrected, it could lead further works implying the analysis of

the pixels inside the pixels band then retrieved. Thus it can give information about

the satellite such as its speed, its angular velocity, etc.
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Figure 3.21: Mean intensity distribution where the peak of intensity is observed
for the faint streak. We can observe that four parts of the curve is above the half
maximum leading to the bands previously observed in the image
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Chapter 4

Low Velocity Objects

4.1 Motivation

We have seen that Hough method has its limits because of the spikes of bright

stars and the noise remaining in the image. Therefore, the low velocity satellite

tracks are much smaller than the tracks we detect with the previous method and

these streaks are undetectable with the previous method. The idea to overcome the

limitations of the Hough method is to analyze the performance of a neural network

to find these tracks. In previous works [1], the difference images and SExtractor have

been studied in order to recover cutouts of objects that have a possibility of being a

satellite. SExtractor is a tool that computes a catalogue of objects in astronomical

images. These cutouts were used to train a model for the classification of cutouts.

The goal was to detect if each cutout contained a satellite or not. This work showed

very good performance (96.7 % accuracy) for classifying these cutouts. This method

allowed the classification of long and short tracks. The study of a new method is

therefore proposed within the framework of single epochs. The classifiers having

already been studied, the idea is thus to propose a method of image segmentation.

The number of elements in the single epoch image is much more important than in a

difference image (starts, galaxies, and other static light sources). In order to isolate

the small satellite tracks, it would therefore be interesting to isolate them from the

rest of the image thanks to this segmentation method which will consist in classifying

each pixel of the image as belonging (class 1) or not belonging (class 0) to a satellite
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track. To do this, a dataset, which does not exist to the knowledge of this project,

must be created.

The particularity of this exercise is the absence of a real sample of low velocity

satellites presented in this project. Indeed the absence of a predefined dataset for

this task, the lack of expertise and time have slowed down the creation of such a

dataset for single epoch images. Moreover, this brought too little information about

the actual samples: the general intensity distribution of the pixels belonging to a

track, the dimensions and the size of such objects on the image. Therefore, the

objective of this part is to see if the prior knowledge of the geometry of a single

object allows to train a neural network on a synthetic dataset in order to be efficient

on real samples or not.

The dataset then created for the Difference Image Classifier using SExtractor [1]

was composed of about 50,000 32x32 cutouts where only 7.8 % contained satellites.

The complexity of creating a dataset manually on single epoch images is much more

complex since the streaks present on the image can be artificial as well as natural

objects. The elements of this project do not offer sufficient expertise to be able to

classify such objects in a reasonable amount of time. It was therefore decided to take

advantage of a prior knowledge of the geometrical structure of these streaks to create

a dataset of synthetic tracks, allowing both to propose a dataset of larger data and

to control the ratio of satellites in the images to optimize the learning which aims to

train a model that will be effective on non-synthetic samples.

4.2 Synthetic Image Generation

[H] The creation of the synthetic samples is based on the visual analysis of samples

presented in a report that presented samples found in different images. It was there-

fore decided to draw lines whose size, thickness, intensity and orientation vary on

real VST images.

This synthetic dataset is then based on an existing single epoch image taken by the
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Figure 4.1: Real streaks retrieved in the project with difference imaging [1]
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Figure 4.2: Samples of synthetic satellite streaks generated for training and testing
the neural network

VST telescope, which does not a priori have any long visible satellite track. By

taking such an image, it is necessary to cut it into several sub-blocks of 64x64 pixels.

Random vertical and horizontal flips are applied to the 64x64 pixels block so that

the same sections of the image can be reused without creating recognition patterns

that the neural network can use to overfit a training set. In order to opt for a ratio of

about 50 % of satellite images, a choice is made following a Bernouli’s law, according

to which a satellite is entered with a probability of p = 0.5 in the sub-block that has

just been created. The length of the synthetic tracks varies between 20 and 40 pixels.

The thickness is 1 to 6 pixels. The orientation varies between 0 and 179 degrees with

respect to the horizontal axis. A gaussian blur is applied on the generated track then

its transparency is defined between 0.4 and 1. before overlaying it on the original

block.

4.3 UNet for Image Segmentation

4.3.1 Model

The UNet architecture is presented as a model for image segmentation in the biomed-

ical field. It is also used for road segmentation in satellite images. This convolutional
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neural network model is design to localise elements in the image and label each pixel

of the images according to predefined classes. The model consists of a contracting

path and a symmetric expanding path, both separated by a bottleneck layer. The

contracting path consists of a sequence of convolutions and max-pooling to pro-

duce high-resolution feature maps. Then, the expanding path provides a series of

convolutions and transposed convolutions. The interesting results this architecture

offered for the road segmentation problem [4] inspired this project thanks to some

geometrical similarities one can observe between a road and a satellite streak.

Some modification has been made to the original model for the convenience of this

project. First the complexity of the architecture has been decreased by reducing the

number of channels at each convolutional layer. Also the original model propose 2

successive convolution layers before each max-pooling (or transposed convolution).

For this project we propose to remove one of this two convolution layers every time.

The model became then less time-consuming to be trained and also would prevent

from overfitting a training dataset. Then, the number of channels of the output of

the model is reduced to a single channel, as we only need one probability per pixel

in order to apply the classification.
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Figure 4.3: Original UNet Architecture [5]

4.3.2 Training

Time and memory limitations motivated the use of a dataset composed of 38397

samples including 19250 synthetic satellites (3.7 GB of data). 20 % of the samples

(7680) were used to validate the model, and thus 30717 samples were used to train

the model.

The aim of our model is to predict if a pixel belongs to a satellite streak (1) or not

(0). As a consequence the binary cross entropy loss has been chosen as the loss

function for the training of the UNet architecture. Considering x ∈ Rn as the input

of our model and y ∈ {0, 1}n the classes of the input, then the binary loss is defined

as :

l(x, y) = mean(L)

L = [l1, ..., lN ]T

where ln(x, y) = −[yn.log(xn)+(1−yn).log(1−xn)] As a consequence the model will
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apply a sigmoïd function to each element of the output before returning it. Therefore

each of these element can be considered as the probability that a pixel belongs to a

streak or not.

The optimizer is the adaptive moment estimation (Adam) [6] optimizer which is a

variation of the stochastic gradient descent that computes adaptive learning rates

for different parameters based on the estimations of first and second moments of the

gradient in order to accelerate the convergence.

The metric that has been used as a reference to the performance of the model on

training and validation sets is the Jaccard distance. This metric quantifies the dis-

similarities between two sample sets. If we define the Jaccard index of two sample

sets A and B as :

J(A,B) = |A ∩B|
|A ∪B|

then the Jaccard distance is defined as :

dJ(A,B) = 1− J(A,B)

Dropout

Many over-fitting phenomena were observed as the mean final loss on the train set

was significantly smaller than the mean final loss over the validation set. To reduce

such a behavior, dropout [7] was inserted into the different layers of the network.

We tried to add dropout layers with p = 0.1 the probability of keeping the weight.

Those dropout layers are append in this way for the contracting path :

Convolution Block −→Max Pooling −→ Dropout

and in this way for the expanding path :

Transposed Convolution −→ Concatenation −→ Dropout −→ Convolution Block
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Batch Normalization

In order to accelerate the convergence and increase the robustness of the model, it

was decided to analyze the performance of a model with batch normalization [8]

which consists in shifting and rescaling the inputs to internal layers according to the

mean and variance estimated on the batch.

4.4 Final Results

After 16 epochs, the training reached an asymptotic loss, leading to an early stop of

the training process. One epoch takes approximately 20 minutes on a CPU.

Figure 4.4: Training History

4.4.1 Patch-wise Performance

After training, the model detects a satellite on a 64x64 patch from the test set with

an accuracy of 98.8 % and a f1-score of 98.7 %.

true positive true negative false positive false negative
3757 3830 20 73

Table 4.1: Patch-wise classification : whether or not our segmentation method cor-
rectly detect if a satellite is in a 64x64 patch or not.
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4.4.2 Pixel-wise Performance

After training, the model correctly classifies each pixel of the test set with a f1 score

of 95.1 %.

Figure 4.5: Sampled results of the UNet over a synthetic test set

Considering a real satellite streak sample retrieved from an image taken by the VST,

the aim is to appreciate the potential of our model on real data with a training on

synthetic data.

First, we cut out a 64x64 patch centered on the satellite so that the model returns

a qualitatively satisfactory result as presented in Figure 4.6 which shows that our

model is sensitive to real streaks.

(a) (b)

Figure 4.6: (b) Prediction of the model on a (a) real sample.

If we apply the model on a full block we observe after 20 seconds of computation

that the returned segmented image does not contain any false positive. Also the
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prediction is less precise than on the centered patch since the satellite streak can be

shared by two patches.

(a) (b)

Figure 4.7: (b) Prediction of the model on a (a) real sample by sequential process
on a full block.

Furthermore it is interesting to observe the performance of the model on a block

containing a long track in Figure 4.8 which is satisfying enough to think that the

model can be applied on any kind of streaks.

However it has to be recalled that in order to propose this result over a long track,

the model has to be trained over the same portion of the sky during almost 6 hours

while the Hough method does not need to know a priori what portion of the sky the

telescope would observe.

4.4.3 Future Work

This helps to see that the UNet is capable of segmenting an image with real satellite

streaks after a training on a synthetic dataset. Thus knowing only the approximate

geometry of the object that we want to detect in the image leads to encouraging

results. This motivates to further work on this model such as:

• Increasing the synthetic dataset;
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• Deporting the model and its training on a GPU. This would give the possibility

to complexify the model if requested in the future;

• Improving the creation method of a synthetic dataset. Creating a primary

dataset with real samples would lead to study of a Generative Adversarial

Networks which could potentially generate all kind of satellite streaks and

backgrounds. Thus a model trained over a sufficient generated training set

would be robust enough to perform over any portion of the sky.

Going in this direction will therefore make it possible to create datasets that are

sufficiently structured to also allow the performance of new models to be quantified.
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(a) (b)

Figure 4.8: (b) Prediction of the model on a (a) real long track by predicting se-
quentially each 64x64 patch of a 4000x2000 block.
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Chapter 5

Conclusion

In response to previous work using the difference imaging technique to detect satel-

lites in astronomical images, this project aims to prove that satellite streaks can

be detected in single epoch images in a systematic way. For this purpose we have

distinguished two types of moving objects leaving streaks in the astronomical im-

age. The high velocity objects leave long tracks of variable intensity on the image

and the low velocity objects leave streaks of a few tens of pixels long on the image.

Our first method focuses on the detection of high velocity objects. To do so, the

method proposes different processes. A first process removes the transient effects of

the image that does not concern the objects of interest by applying morphological

transforms. Then it is a question of highlighting linear objects thanks to filters and

morphological transforms to then detect straight lines in Hough space. This allows

to detect satellite tracks independently of their intensity as long as they are visible

to the naked eye. The results were compared with software that predicts the tra-

jectories of debris and satellites in an official catalog to prove the consistency of our

results with our initial problem. Despite some additional corrections to be made in

the current algorithm, the results allow to consider new research perspectives such as

the development of an algorithmic method to compare the detections of our method

with the predictions of Predictsat to provide information on the detected streaks

(name of the debris or satellite) and statistics on the performance of detections and

predictions. It will also be a question of developing algorithms for the analysis of

the detected tracks to recover additional insights about the satellites such as their
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speed and angular velocity. Finally, a comparison with other existing methods [9,

10, 11] to detect satellite tracks would be interesting to quantify the performances

of our method compared to those already existing.

The observation of the limitations of this image processing method regarding the

detection of tracks coming from low velocity objects leads us to propose a machine

learning method to overcome these limitations. The training of a simplified version

of the UNet for image segmentation has shown that prior knowledge of the geometry

of the object to be detected in the image can be sufficient to detect with a certain

accuracy real satellite tracks. This encourages the further study of this model by

building a dataset of real samples of satellite tracks as well as the development of

a GAN whose aim will be to diversify the backgrounds and the potential sources of

false positives (high intensity light sources, diffraction egrets) in order to produce a

more robust model that can be adapted to several fields of the sky. Also deporting

the model and its training in a GPU will accelerate the learning process and also

provide a more complex model closer to the original UNet if needed.
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Appendix A

Summary of the UNet Model adap-

ted for this project

Layer (type) Channels # Kernel size Number of Weights
Conv 2D 32 3x3 320

Batch Norm 2D 128
ReLu

MaxPooling 2D 2x2
Dropout
Conv 2D 64 3x3 18496

Batch Norm 2D 256
ReLu

MaxPooling 2D 2x2
Dropout
Conv 2D 128 3x3 73856

Batch Norm 2D 512
ReLu

MaxPooling 2D 2x2
Dropout
Conv 2D 256 3x3 295168

Batch Norm 2D 1024
ReLu

MaxPooling 2D 2x2
Dropout
Conv 2D 512 3x3 1180160

Batch Norm 2D 2048
ReLu

Figure A.1: Modified version of the UNet Architecture for the project with a total
of 4,705,377 trainable parameters (Contracting Path and Bottleneck
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Layer (type) Channels # Kernel size Number of Weights
TransConv 2D 256 3x3 1179904

Dropout
Conv 2D 256 3x3 1179904

Batch Norm 2D 1024
ReLu

TransConv 2D 128 3x3 295040
Dropout
Conv 2D 128 3x3 295040

Batch Norm 2D 512
ReLu

TransConv 2D 64 3x3 73792
Dropout
Conv 2D 64 3x3 73792

Batch Norm 2D 256
ReLu

TransConv 2D 32 3x3 18464
Dropout
Conv 2D 32 3x3 18464

Batch Norm 2D 128
ReLu

Conv 2D 1 3x3 33

Figure A.2: Modified version of the UNet Architecture for the project with a total
of 4,705,377 trainable parameters (Expanding Path and Output
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Appendix B

Other real satellite streak sample

for testing the UNet model

(a) 64x64 input patch (b) Model prediction

Figure B.1: (b) Prediction of the model on a (a) real sample.
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(a)

(b)

Figure B.2: (b) Prediction of the model on a (a) real sample by sequential process
on a full block.
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