
École Polytechnique Fédérale de Lausanne

Rotation estimation of detected satellites

by Noah Kaltenrieder (301368)

Bachelor Thesis

Mathieu Salzmann

Thesis Supervisor

June 2021

Acknowledgments

I really would like to thank my supervisor Prof. Mathieu Salzmann who helped me a lot

and all the people that participated in a way to this project, namely Dr. Cameron Lemon,

Prof. Jean-Paul Kneib, Prof. Frédéric Courbin, and the SSA Team. I also want to express

my gratitude to Yann Bouquet who helped me with pleasure when I had questions.

Finally, I also would like to especially thank Alexandre Di Piazza and Marcellin Feasson

with whom I have collaborated through all the semester in different ways.

Thanks a lot to Prof. Mathias Payer for the thesis template that I used to write this

report [1] and also Guillaume Vullioud who helped me a lot with LaTeX.

Lausanne, June 2021 Noah Kaltenrieder (301368)

2

Abstract

We present an approach to extract the intensity along the satellite streaks that can be

found in images that were obtained by OMEGACAM on the VLT Survey Telescope. In

this project, we only analyzed the long tracks that were created by high velocity objects,

to try to get an estimation about their rotation. We used Fourier transform to get the

periodicity of the intensity along the tracks. Due to the lack of real data about rotation, we

first had to create fake streaks with sinusoid intensity and different angles. We manually

got the tracks to run the code on them, so ideally this project should be integrated with

DetectSat [2] so that all the process can be done automatically. We found very great

result with them and run the pipeline on real tracks. By making assumptions about the

satellite, like their altitude, we get possible results on real streaks, but since we don’t

have access to the real values, we can’t say if it is close to reality or not.

3

Contents

Acknowledgments 2

Abstract 3

1 Introduction 5

2 Inputs 7

3 Line Generation 9

4 Find the Intensity Along the Track 11

5 Final Result 14

5.1 Result on Generated streak . 14

5.2 Result on Real streak . 17

6 Conclusion 22

Bibliography 24

4

Chapter 1

Introduction

This project is about estimating the rotation of spatial objects detected by the OMEGA-

CAM on the VLT Survey Telescope. In these times, we have a lot of flying objects, it can

be debris, useful satellites or dead satellites, around the Earth and it becomes more and

more necessary to have a clear view of all these objects. The project of Yann Bouquet

"DetectSat"[2] was focused on detection of the satellite tracks on fits files, but with both,

small (low velocity) and long (high velocity) streaks. For this project we had to focus on

the long tracks, so that the variation of intensity along the line could be better detected.

The rotation estimation can be used to determine which kind of object the streak is and,

if it is a satellite, it may be used to better find out which one it is. Ideally, this should be

run on the lines detected by DetectSat so all the process could be done with only the fits

file as input.

The main challenge is that we don’t have access to data about rotation of satel-

lites, so we had to first create our own streaks with sinusoid intensity. This lack

of resources is very restrictive, since even if we get a result, we cannot know the

precision of this method and we cannot be sure that it is right or completely wrong. This

is why we had to begin with creating lines that seem realistic and try with random angles.

The second part of this project was to retrieve the periodicity of the sinusoidal

function along the streaks that we have previously generated, and finally try this on real

tracks. Since this project does not recognize the lines, we had to find the coordinates of

the streaks by hand and give them as input to the pipeline. For this part, there are many

5

factors that can decrease the precision of the pipeline, e.g., if the line crosses a really

bright star, it gives a peak of intensity and can lead to wrong result, or if the brightness

of the streak is too small compared to the brightness of the background of the sky on the

image.

6

Chapter 2

Inputs

In this project, we used fits images that were generated by the OMEGACAM on the VLT

Survey Telescope, and we used a script to create a mosaic of 32 images, separated by

NaN values, that are 4′000×2′000 pixels. So the image with all the mosaic’s dimension is

16′000×16′000 pixels. A mosaic is approximately 1.5-2 GB of data.

We principally used the fits file "OMEGA.2020-02-22T02:11:36.295_fullfield.fits",

corresponding to the captured image February 22, 2020, at 02:11:36, and with the pixels

scaled using ZScale to be able to see the streaks as wanted.

Figure 2.1 – The main FITS image that we used

7

The pipeline [3] is being run on the entire file, with the coordinates that are relative to

the entire file : the origin is at the bottom left of the fits file. The first part of this project,

which is about line generation, is completely based on this file Figure 2.1. We chose this

file because we can clearly see a really interesting track that goes through the image :

Figure 2.2 – The interesting streak

This track on Figure 2.2, the one that goes through four blocks, was clearly visible and

the variation of intensity can also be notified, so it was a great way to test the pipeline

with a streak that is not too difficult. Thanks to Marcellin, he could identify this and

it turned out that this streak is actually a debris of the European carrier rocket Ariane

2 ! We know that it is at a geostationary altitude, so ∼ 36′000 [km] and has a speed of

∼ 3′065 [m
s
]. We will use this information later to analyze the coherence of the result

obtained by the pipeline.

8

Chapter 3

Line Generation

When we started this project, we had no data about rotation of satellites and their

corresponding tracks on a file, so we had to first generate streaks on the image myself,

to be able to test the pipeline. First, to generate a line we had to choose an existing star

in the file and cut it out to have a PSF to convolve my line with. The PSF : "Point Spread

Function" is like the quantity of blurring of a point object. Here, we had to use it so that

my generated line seems more realistic in the image.

Figure 3.1 – The line without using the PSF Figure 3.2 – The line using the PSF

We will now explain the method we have used to achieve this result. First, we have to

choose a star by hand and cut it out to use it as a PSF. The dimension of the star cut out

is 30px, so we initialized an array of height’s dimension of 30px and an arbitrary width,

9

with zeros everywhere, except at the center of the array, the center line of one pixel of

height at the center is set with sinusoid values. Once, we have these two pieces, we can

convolve the two arrays together to make the final line with an appropriate PSF.

Figure 3.3 – Intensity of each row of the line’s
array

Figure 3.4 – Intensity of each row of the line’s
array after the convolution

We finally rotated the final convolved line by a random angle and add it to the image by

summing up the values with the image’s array.

Figure 3.5 – The generated line on the image

The final result of the line in the image is pretty satisfying and coherent, as we can see in

Figure 3.5.

The inconvenience of this method is that we had to choose a star by hand and it will

work great for this specific file, if we want to make this code works with another image

we have to choose a star from the new file to have a coherent PSF to integrate the line

better on it.

10

Chapter 4

Find the Intensity Along the Track

Once the generation part was done, we started the main part of the project that was

finding back the periodicity of the previously generated sinusoid intensity streak and

finally apply the final pipeline on real tracks.

The method that we used was very simple : We just sum up all the values on

the y coordinate for all x coordinate, so it returns an array with a height of one and

with a width as long as the streak. Here, the width was found manually, since we had

to enter the start and the end coordinates of the track as input for the pipeline, it was

trivial to recover the width of the line, even when the line was not horizontal, by using

trigonometry.

width_of_the_line =
end_line_x− start_line_x
cos(angle_line_in_radian)

Once we have this array with the intensity of each x point, we can consider it as a signal

and use the fast Fourier transform (FFT) algorithm [4] on the array to calculate the

discrete Fourier transform (DFT) that can be used to find the frequency of the signal.

We also used the inverse FFT to try to remove a bit the noise that we get from the image;

indeed the line is not isolated from the background of other stars or other streaks that

can add more or less noise to the signal.

We also choose to use a threshold for the number of periods that can be in a track

to remove a lot of noise too. We have set it arbitrarily to 100 repetitions, because the

width of a streak is limited to the width of one image of the mosaic, which is 2′000px.

11

Figure 4.1 – The original signal Figure 4.2 – The signal after the inverse FFT

It would mean that we would see a repetition every 20px, so the frequency of the

signal would be 0.05 [px−1] and, assuming a geostationary object, this would imply

4.18 rotation per second and it is very unlikely that an object has such a high rotation rate.

Finally, we used the "curve_fit" function from the scipy library that use the least

square optimization [5] to find the frequency of the original sinusoid function. But to

use this function, we have to make a good first guess of the parameters, so that they will

converge fast into the right value by minimizing the difference between the guessed

parameters and the intensity data. Here, we optimized the different parameters of the

sinusoid function that we have defined :

• The amplitude

• Frequency

• Phase

• Offset

A good first guess for the frequency, which is the only parameter of the sinusoid function

that really interests us, is to divide the number of cycles that we found with the Fourier

analysis part, by the width of the streak.

Using this pipeline, we usually find good estimation of the wave but it can vary a lot

when there are a lot of noises.

We cannot use the result directly found with the pipeline explained just above,

12

because it expresses the frequency by pixel, to be able to compare it with a reference

value as we would like, we have to convert it to spatial scale e.g., for the frequency [s−1].

To do this we had to make some assumptions :

1. The flying object is geostationary

• So the altitude would be ∼ 36′000′000 [m]

• With a speed of 3′065 [m
s
]

2. The fits file has a scale of 0.21 [arcsec
pixel

]

With these elements, we can find the rotation rate easily :

one_cycle_in_pixel = 1
frequency_found [pixel]

arcsec_by_cycle = 0.21× one_cycle_in_pixel [arcsec]

distance_one_cycle = 36′000′000× (π
180

× arcsec_by_cycle
3′600

) [m]

rotation_rate = 3′065
distance_one_cycle [s

−1]

This rotation rate, which is the amount of rotation of the object in one second, can be

used to compare what we have found with the existing information about the objects

that we will detect.

13

Chapter 5

Final Result

Running the pipeline on a line that we created previously, takes less than 10 seconds, by

blocks of the mosaic, using a 1,8 GHz Intel Core i5 dual core on a MacBook Air 2017.

5.1 Result on Generated streak

When running it on the generated lines that we talked about above, the pipeline gives

pretty satisfying results. Here we can see the result of a basic case with a horizontal line

but that runs into a star or bright object.

Figure 5.1 – Total intensity by x coordinate on
the line

Figure 5.2 – The star that is crossed by the
line

As we can see in Figure 5.1, the fitted function seems really close to the data even if

14

there is a peak of intensity at some point, because of the star crossed. It is a good sign

that our pipeline can resist, even if it is a small amount of noise here.

The frequency found by the pipeline is 0.009997 which is really close to the real frequency

of the generated line, which is 0.01. In other words, we can say that the value found as

an error of 0.03%, it is a really satisfying result, but the generated line is truly bright in

comparison with other streaks that can be pretty discrete and even sometimes they can

be invisible to the naked eyes. Obviously, using the pipeline on these kinds of tracks will

give an imprecise result with a much bigger error percent.

Now let’s see the result with a more realistic rotated line that does not run into

any specially bright object that could introduce some more noises. The streak is also

very bright, so we can say that this is actually ideal conditions.

Figure 5.3 – Total intensity by x coordinate on
the line

Figure 5.4 – The star that is crossed by the
line

We can see that the frequency of the fitted function seems to approximate the data

reasonably well. The pipeline finds 0.009962 for the frequency, it is still close to the

expected value so we can say that this result is really satisfying. The error of the

computed outcome is of 0.38%. This result shows that, when the streak is bright enough,

the pipeline performs amazingly well on the generated lines that we have created

ourself. We have tested the pipeline with generated lines for every angle at this position

and reported the result on the following graph :

15

Figure 5.5 – The percentage of error by angle of the line

Thus we have computed the mean percentage of error of the pipeline in this situation,

that gives 10.14%, which is globally acceptable. We can explain this result with the fact

that depending on the angle of the line, it could cross more or less bright things, like

stars and galaxies; thus the signal will be noisier and the result less accurate. We have

observed that when the angle was 356 [degrees] the pipeline will not even find the

optimal parameters, because it crosses a very bright star that adds a big peak of intensity,

which leads to a more difficult optimization of the parameters.

Figure 5.6 – Total intensity by x coordinate on
the line with 356 degrees of rotation

Figure 5.7 – The star crossed by the line

We also add Gaussian noises to the original signal and put it on the image with a

rotation of 100 [degrees], because at this angle the line does not encounter many stars or

bright objects that could also introduce more noise. We have used these noised signals

16

as input for the pipeline and computed the results for each standard deviation from 0 to

500 with a step of 5.

Figure 5.8 – The percentage of error by the standard deviation of the noise

The Figure 5.8 shows that the pipeline is not really affected until a standard deviation

of ∼ 190, but is still pretty reasonable until ∼ 270. In fact, when the standard deviation

is more than ∼ 270, the results given by the system are randomly correct. We found a

mean percentage of error of 56.88% considering the entire graphic, but if we look only

the first 60 results, it corresponds to a maximum standard deviation of 300, we now have

a much better mean percentage of error of 15.93%.

5.2 Result on Real streak

In this part, we used the track that can be seen in Figure 2.2 to test the final pipeline.

Because when we were working on this project, it was the only streak that we have

successfully identified. This track is a debris from Ariane 2, we knew it thanks to

PredicSat that also compute information about it like the altitude of the object, for this

track the altitude is ∼ 35′300 [km]. That is good news, because it corresponds well with

our assumption about the geostationary altitude that we have made in Chapter 4.

17

Figure 5.9 – Total intensity by x coordinate on
the first part of the track

Figure 5.10 – The first part of the track

Figure 5.11 – Total intensity by x coordinate
on the second part of the track

Figure 5.12 – The second part of the track

We get the same result for the rotation rate for the first, third and fourth part of

the track (Figure 5.9, Figure 5.13, Figure 5.15) : ∼ 1.20 [s−1]. Only the third part outputs a

rotation rate of ∼ 0.6 [s−1]. We can observe that on the graphic in Figure 5.11 that the

data are a bit noisy, it is hard even with eyes to observe any kind of sinusoidal shaped

function. Now we can see the limit of this system, even if the fitted function seems pretty

correct, it would also look great using the same frequency found with the other parts of

the track. So there are multiple possible results and it can be hard to determine which

one is the most accurate. In fact, we cannot, with only one part of the track, tell if it is

right or wrong. We have to have some knowledge about what values are possible and

not, given that we do not have access to any kind of information about the rotation of

the objects that appeared in the images that we had, we cannot really say if the rotation

rate found by the pipeline is correct or not.

18

Figure 5.13 – Total intensity by x coordinate
on the third part of the track

Figure 5.14 – The third part of the track

Figure 5.15 – Total intensity by x coordinate
on the fourth part of the track

Figure 5.16 – The fourth part of the track

Since this track was made by a spatial debris, the result of ∼ 1.20 rotation per

second, which is already a very high rotation rate, is plausible for this type of object.

We tested our pipeline on another track that was nicely bright, but we did not

know what satellite or object it corresponds to. Therefore, we cannot verify the result of

the pipeline precisely. We can only observe by eye on the graph that the fitted function

sticks pretty well the data, so this is already a good sign.

19

Figure 5.17 – Total intensity by x coordinate
on the first part of the track

Figure 5.18 – The first part of the track

Figure 5.19 – Total intensity by x coordinate
on the second part of the track

Figure 5.20 – The second part of the track

20

Figure 5.21 – Total intensity by x coordinate
on the third part of the track

Figure 5.22 – The third part of the track

Figure 5.23 – Total intensity by x coordinate
on the fourth part of the track

Figure 5.24 – The fourth part of the track

The rotation rates found on this streak are the same for every part : ∼ 0.54 [s−1].

It would mean that the object performs a rotation every ∼ 1.85 [s], still assuming a

geostationary orbit, which is feasible. Unfortunately, we have no real information about

the object that has produced this track, so we cannot tell if it is correct and how accurate

this result is. But if we only look at the graphs, the output of the pipeline seems pretty

valid.

21

Chapter 6

Conclusion

This project aims to estimate the rotation speed of the different spatial objects that are

represented as streaks in images. Ideally, this could be used to determine if the object

is a satellite, or if the rotation is too fast so this would be a debris. We could use this

pipeline to classify the tracks.

In reality, we could not tell if this requires some modifications or if the current

state of the pipeline is precise enough, because of the lack of real information on the

subject. This was the main concern when doing this project. We were not able to find

any rotation speed of any object that we encountered when we were exploring images.

The only streak that we have successfully matched with a known object was the main

track (Figure 2.2), that was a debris of the European carrier rocket Ariane 2. The result

we obtained for this streak seems possible but we cannot say with confidence that this

is actually completely accurate, and how precise the outcome is. Also the real tracks

may not produce a perfectly sinusoidal intensity, so this could also lead to imprecision

when using this system. The pipeline seems to produce coherent result when launched

on the other track that we have tested. Unfortunately, we have not discovered the real

information about this object, so we could not verify our result. The real streaks can also

be really darker than the one that we studied, so the noise will have a more significant

weight, thus the result of the pipeline could be pretty uncertain. This pipeline can

produce only an estimation and not a very precise result, due to the difficulty of this

kind of detection [6].

22

This was the reason why we started by producing our own streaks, so that we

could modify the frequency as we wanted and have the real value to compare it with the

obtained one. This part works well and produces pretty realistic tracks, but it has the

disadvantage to be dependent on a custom PSF that we have to find for each image.

Otherwise, this could maybe be used to train a machine learning algorithm to detect

satellites as it can generate streaks where we want to.

The second part of the project, which we discussed in Chapter 4, could ideally

be used combined with DetectSat, so that the lines that are detected are automatically

given as input to the pipeline. It is indeed useful to directly have information about the

track that we have detected, as it can be used later to classify the kind of object that the

streak is.

23

Bibliography

[1] Mathias Payer. Template for EPFL (BSc, MSc, or doctoral) theses and semester projects.

2020. U R L: https://github.com/HexHive/thesis_template (visited on 2021).

[2] Yann Bouquet. Detectsat Repository. 2020. U R L: https://github.com/YBouquet/

detectsat (visited on 2021).

[3] Noah Kaltenrieder. IntesityStreak.ipynb. 2021. U R L: https://github.com/shoutiz

ix/bachelor-project/blob/main/Intensity_streak.ipynb (visited on 2021).

[4] W.T. Cochran, J.W. Cooley, D.L. Favin, H.D. Helms, R.A. Kaenel, W.W. Lang, G.C. Mal-

ing, D.E. Nelson, C.M. Rader, and P.D. Welch. “What is the fast Fourier transform?” In:

Proceedings of the IEEE 55.10 (1967), pp. 1664–1674. D O I: 10.1109/PROC.1967.5957.

[5] Eric W. Weisstein. Least Squares Fitting. U R L: https://mathworld.wolfram.com/

LeastSquaresFitting.html (visited on 2021).

[6] Christopher R. Binz, Mark A. Davis, Bernie E. Kelm, and Christopher I. Moore.

Optical Survey of the Tumble Rates of Retired GEO Satellites. 2014. U R L: https:

//apps.dtic.mil/sti/citations/ADA620242 (visited on 2021).

24

https://github.com/HexHive/thesis_template
https://github.com/YBouquet/detectsat
https://github.com/YBouquet/detectsat
https://github.com/shoutizix/bachelor-project/blob/main/Intensity_streak.ipynb
https://github.com/shoutizix/bachelor-project/blob/main/Intensity_streak.ipynb
https://doi.org/10.1109/PROC.1967.5957
https://mathworld.wolfram.com/LeastSquaresFitting.html
https://mathworld.wolfram.com/LeastSquaresFitting.html
https://apps.dtic.mil/sti/citations/ADA620242
https://apps.dtic.mil/sti/citations/ADA620242

	Acknowledgments
	Abstract
	Contents
	Introduction
	Inputs
	Line Generation
	Find the Intensity Along the Track
	Final Result
	Result on Generated streak
	Result on Real streak

	Conclusion
	Bibliography

