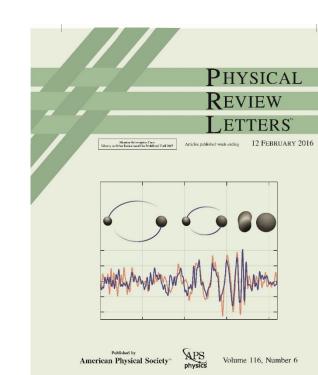


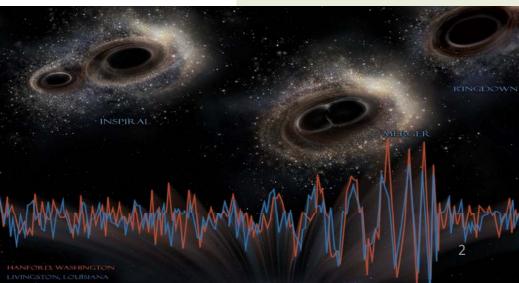
Observation of gravitational waves from a binary black hole merger GW150914

For the LIGO Scientific Collaboration and the Virgo collaboration

Séminaire à l'Ecole Polytechnique Fédérale de Lausanne, 28 avril 2016

Virgo web site: http://public.virgo-gw.eu/ LIGO web site: http://www.ligo.org/


Outline

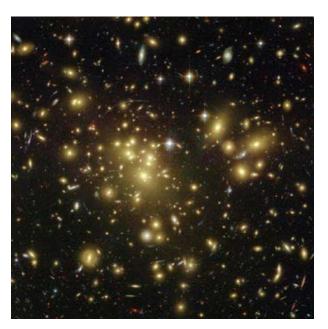

Gravitation

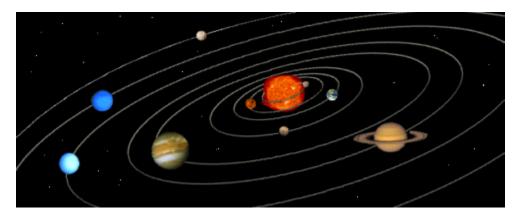
GW150914

Gravitational waves

An experimental challenge

Gravitation : one of the four fundamental interactions of nature
 The weakest


TYPE	RELATIVE STRENGTH	Example of fields of application	
STRONG	~ 1	Nucleus	
ELECTROMAGNETIC	~ 10 ⁻²	electrons, light, chemistry	
WEAK	~ 10 ⁻⁶	β decay solar energy	
GRAVITATION	~ 10 ⁻³⁸	Gravity planetary systems	


Gravitation

Strength ratio between electromagnetic & gravitational interactions between 2 electrons ~ 4 · 10⁴² !

- Planetary systems
- □ Large scale structure of the Universe

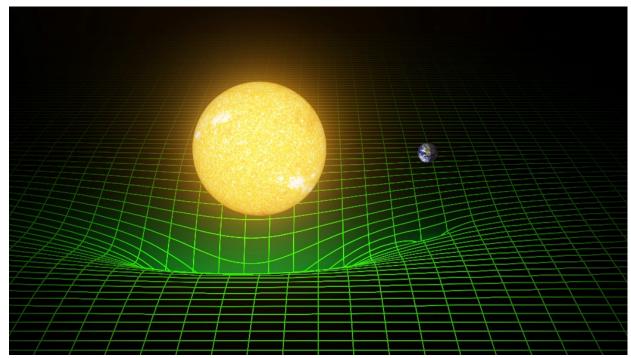
Newton vs Einstein

Classical theory of gravitation

- Flat space, absolute time
- > $F = G m_1 m_2 / r^2$
- Instantaneous interaction between distant masses

Modern theory of gravitation (General Relativity)

- Space and time are linked, dynamical space-time
- > Equivalence principle :


inertial mass = gravitational mass

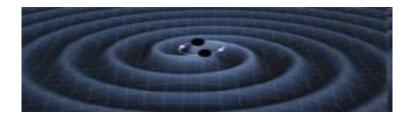
$$> G_{\mu\nu} = 8\pi G T_{\mu\nu} / c^4$$

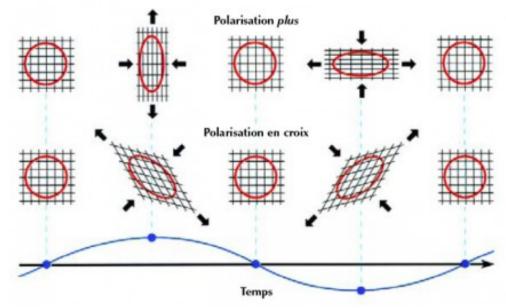
- $G_{\mu\nu}$ curvature tensor
- $T_{\mu\nu}$ energy momentum tensor
- J. A. Wheeler : "Space tells matter how to move and matter tells space how to curve"

Einstein's gravitation

- Gravitational interaction is the manifestation of space-time curvature
- □ Accelerated massive bodies emit a radiation
 - > Analogy with electro-magnetic waves:

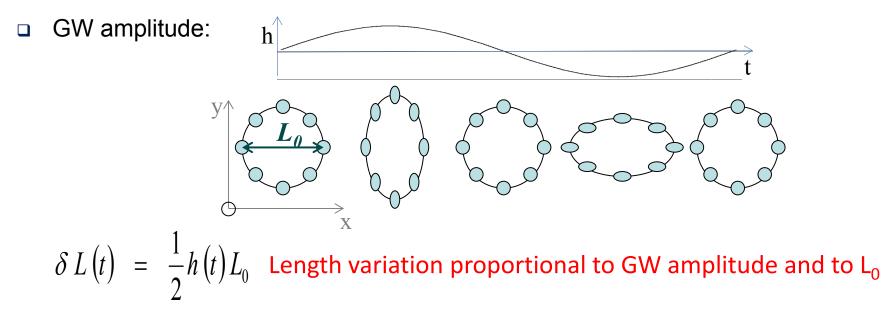
➡ Transversal waves propagating at speed of light


 \succ Gravitation only attractive \rightarrow quadrupolar radiation


Gravitational waves

Fluctuations of space-time curvature

- \rightarrow Fluctuations in the metric
- \rightarrow Distance separating free fall masses changes

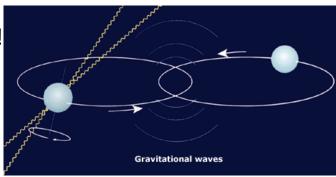

• Combination of two polarization states (+ and x)

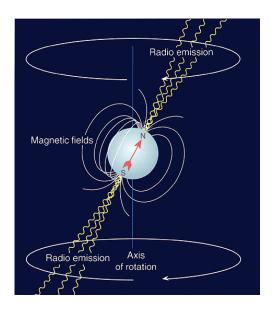
Gravitational waves

• For the observer:

$$h \propto rac{1}{d}$$
 The amplitude decreases with the distance separating the source from the observer

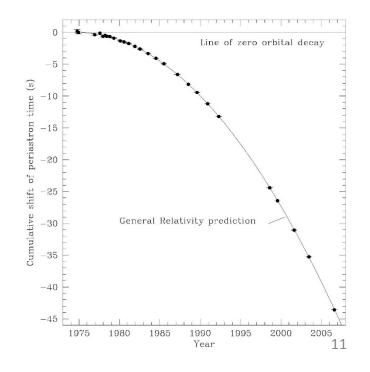
- Which sources?
 - > Generate GW in the lab? \rightarrow NO (too weak amplitude)
 - Astrophysical sources (huge masses and accelerations)
 - Despite the distance penalty




An interesting object: PSR 1913+16

Discovered by R.Hulse and J.Taylor in 1974

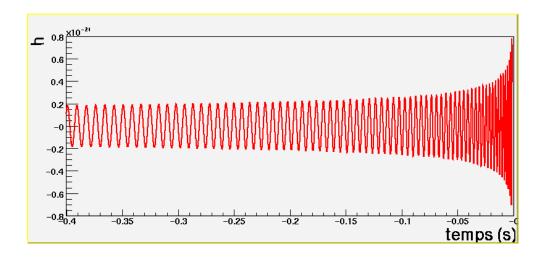
- > Two neutron stars orbiting around each others
 - Neutron star: ~1.4 solar mass within 30 km diameter!
 - Orbital period of binary system ~ 8 hours
- > One of the stars is a pulsar
 - Pulsar : neutron star rotating and emitting radio waves along its magnetic axis
 - →Like a lighthouse:
 - The observer receives radio pulses
 - Measurement of arrival time of the pulses:
 → gives all system parameters


□ Nobel prize in 1993

- Orbital period decreasing over time:
 - > Two stars getting closer to each others
- System losing energy by emission of GW
 - Good agreement with GR prediction (within 0.1%)
- □ An indirect evidence:
 - Remained to highlight physical effects of GW

Which detectable sources ?

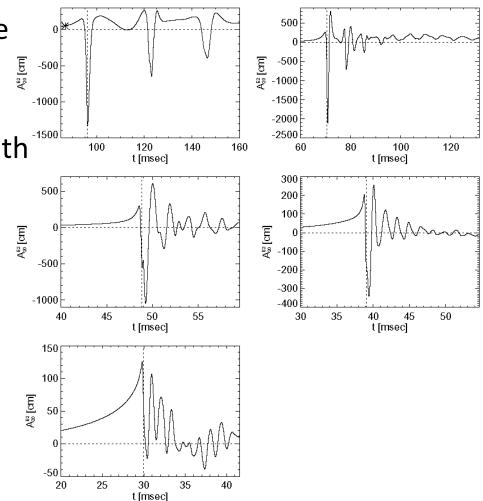
Frequency range of ground-based gravitational-wave interferometers:
 10 Hz – 10 kHz


- > This is also the frequency range where human ears are sensitive
 - Low frequency = deep sound
 - High frequency = high-pitched sound
- □ Frequency of GW emitted by PSR 1913+16: ~ 0.07 mHz
 - > Undetectable by ground-based detectors
- Need to find other sources
 - Within the accessible frequency range
 - Detectable with a realistic sensitivity
 - > Phenomena occuring at sufficienly high rate

Sources : coalescing binaries

Binary systems of compact stars at the end of their evolution

- Neutron stars and black holes
- Very rare phenomenum in our Galaxy
 - > A few tens per million years
- Typical amplitude (for neutron stars)
 - h ~ 10⁻²² à 20 Mpc
 - > 1 parsec = 3.26 light years
- □ Very distinctive <u>waveform</u>



Sources : supernovae

Examples of waveforms

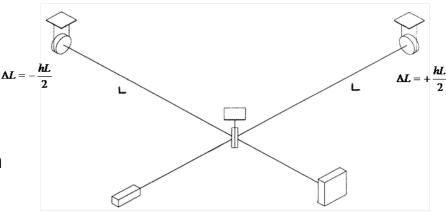
- Gravitational collapse of massive stars
- Can potentially be associated with GW radiation
 - > Uncertainty on the amplitude
 - h ~ 10⁻²¹ à 10 kpc
 - Difficult to predict waveform
 - Rare phenomenum in the Galaxy
 - 3 4 / century

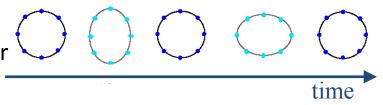
□ Why is it a challenge?

- > Measure a relative variation of length $\sim 10^{-23}$
- Measure the distance Earth Moon with an accuracy roughly equal to the size of a proton!

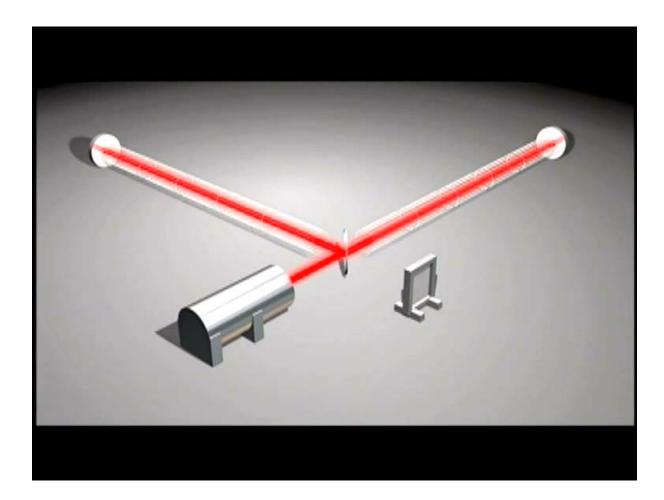
□ A 50 years quest:

- First with « resonant bars » detectors
- > For the last ~ 20 years, with gravitational-wave interferometers

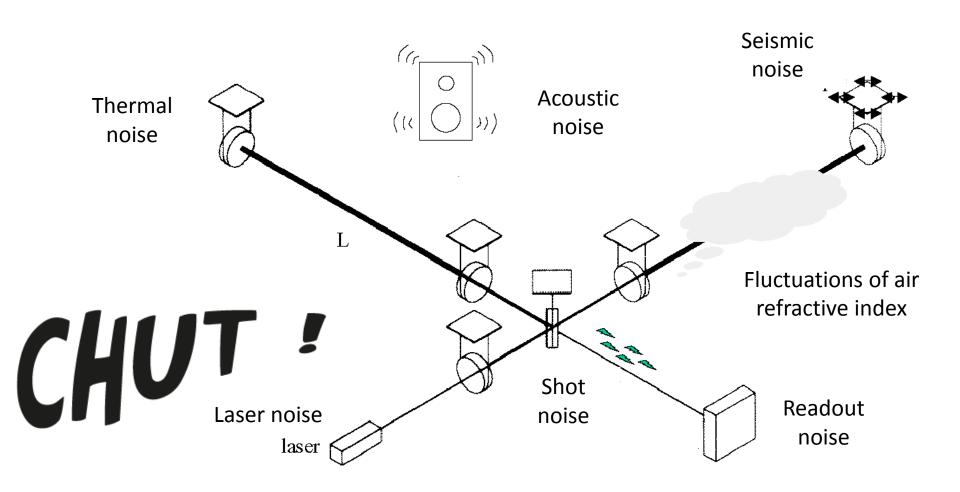

Collaboration Gravitational-wave interferometer


- □ Measure a variation of distance between masses
 - Measure the light travel time to propagate over this distance
 - Laser interferometry is an appropriate technique
 - Comparative measurement
 - Suspended mirrors = free fall test masses
- Michelson interferometer well suited:
 - Effect of a gravitational wave is in opposition between 2 perpendicular axes
 - Light intensity of interfering beams is related to the difference of optical path length in the 2 arms

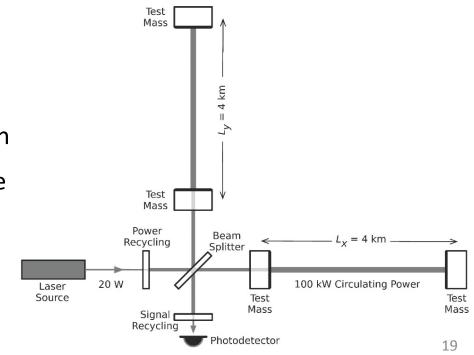
We need a big interferometer:


 ΔL proportional to L

➔ need several km arms!



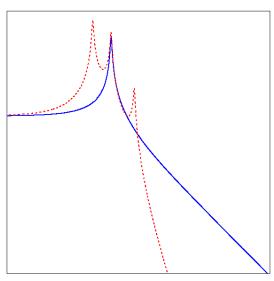
Noise sources



Shot noise

- Measuring light intensity = counting photons
 - > Photons are quantum particles: cannot be counted exactly: $N \pm \sqrt{N}$
 - > Shot noise $\propto \sqrt{P}$ with P: light power
 - > GW signal $\propto P$
 - > Signal to noise ratio $\propto \sqrt{P}$

- More complex optical configuration
 - Increase power circulating in the interferometer
 - Increase effective arm length

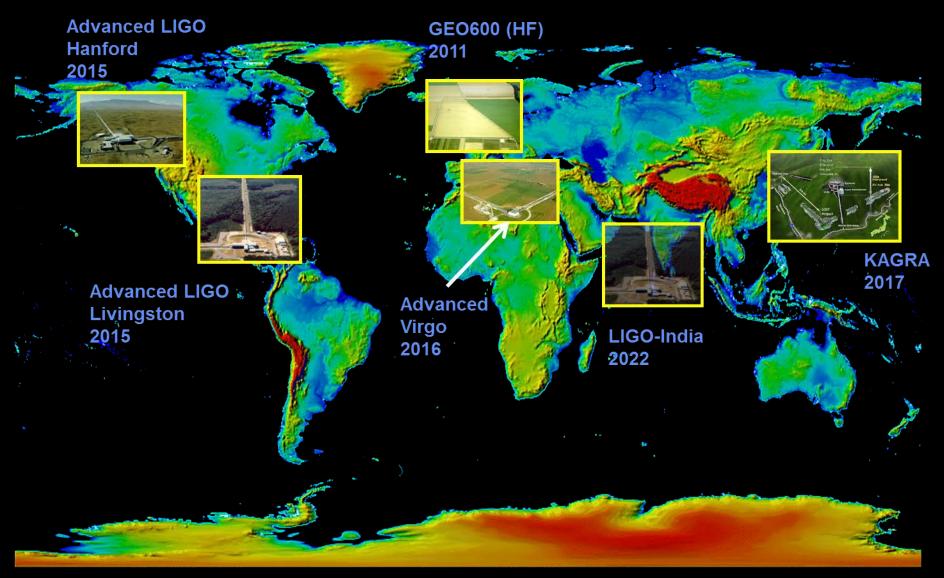


/////

Seismic noise

- A suspended mirror is isolated from vibrations
 - For f > pendulum resonance frequency
 - > Horizontal ground motion is filtered in1/f²
 - Several pendula in series
 - Need also to attenuate vertical motion

Frequency


- \Box Mirrors are moving at low frequency \rightarrow is it an issue?
 - > No
 - Noise at low frequency does not mask a signal at higher frequency
 - But actually, yes...
 - The interferometer must me maintained at its working point:
 - ightarrow conditions of interference must be controlled

The detector network

LSC

LIGO Scientific

Collaboration

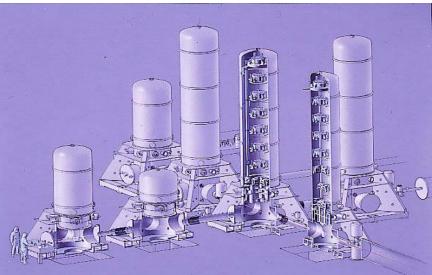
LIGO

2 interferometers - 4 km arms

- Louisiana
- > Washington State
- > A third one will be installed in India

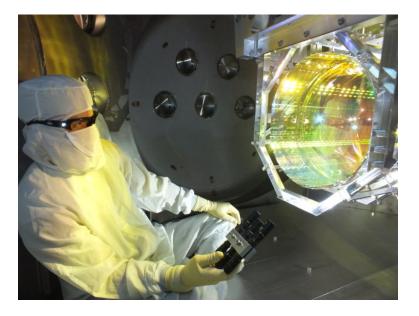
CNRS + INFN (+ Netherlands, Hungary, Poland) 3 km, near Pisa in Italy

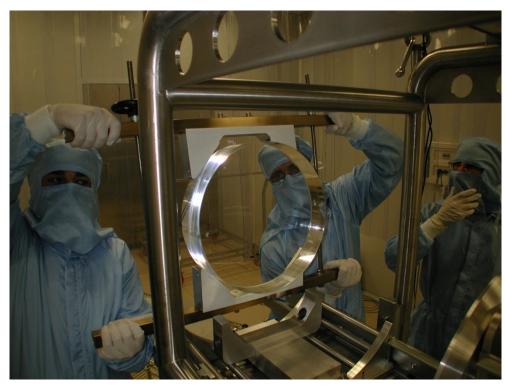
An interferometer works more like a ear than a telescope



- > A single detector cannot localize the source
- Need to compare the signals found in coincidence between several detectors (triangulation):
 - \rightarrow allow to point towards the source position in the sky
- Looking for rare and weak signals: can be hidden in detector noise
 - \rightarrow requires observation in coincidence between at least 2 detectors
- Since 2007, Virgo and LIGO share their data and analyze them jointly

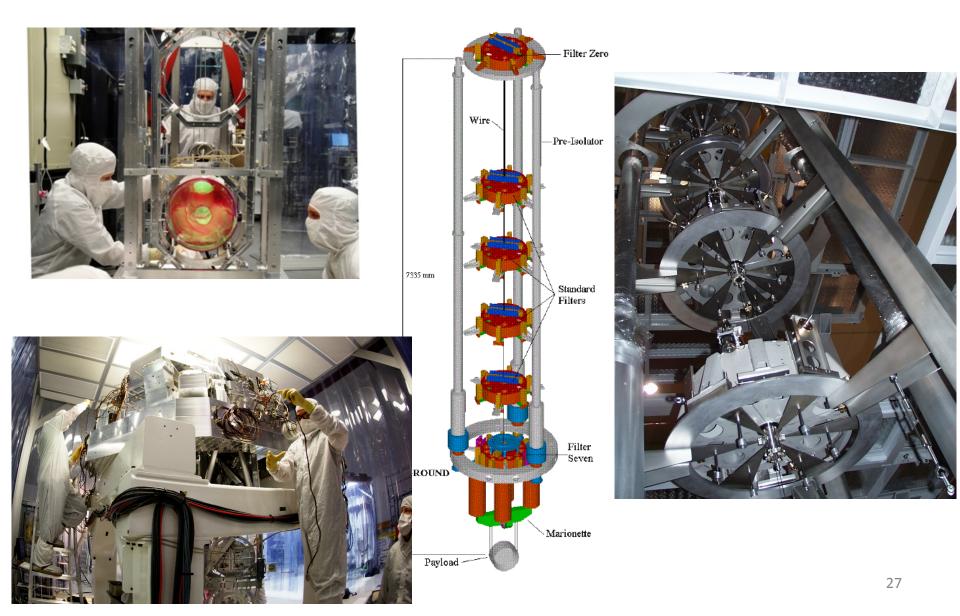
- □ Isolate mirrors from acoustic noise
- Avoid measurement noise due to fluctuations of refraction index in air
- Keep mirrors clean



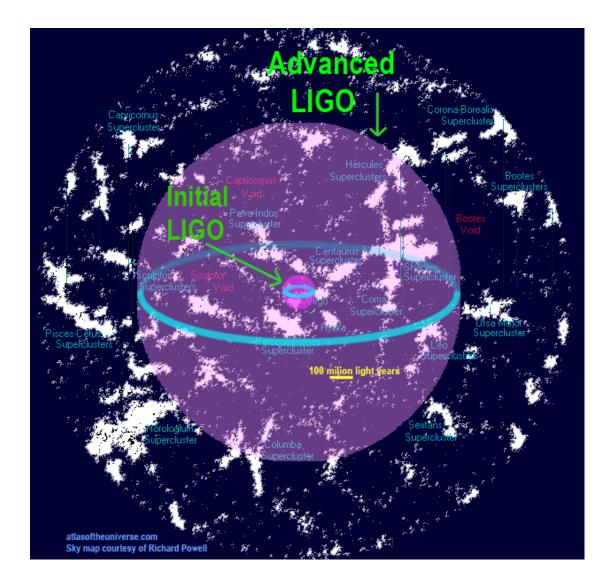


Mirrors

- □ Large mirrors
- Very high quality: almost no imperfections
- Handled in clean rooms



Coating of mirror surfaces performed at LMA (Laboratoire des Matériaux Avancés) in Lyon

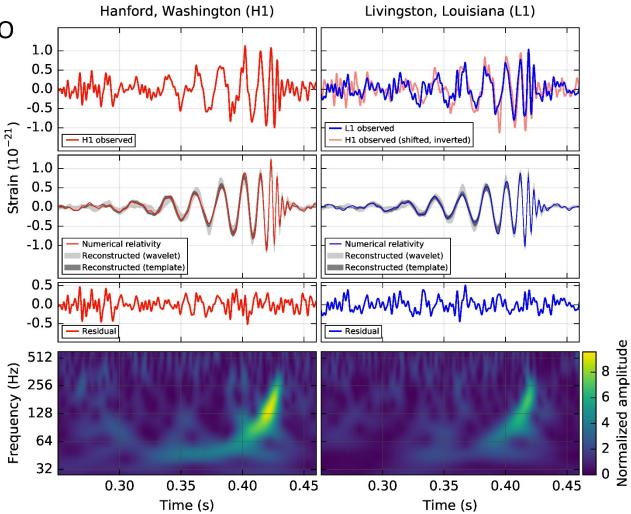


Seismic isolation

From the first to the second generation of detectors

On Feb 11, the LIGO and Virgo collaborations have announced the detection of $G \ W \ 1 \ 5 \ 0 \ 9 \ 1 \ 4$

Le 14 septembre 2015 à 09:50:45 UTC | 29 + 36 M_{\odot}



Same signal in the 2 LIGO detectors, with a time difference = 7 ms

LIGO

- Signal evolution = Typical signature of a coalescence
- Signal extracted from data matches the expected waveform for the coalescence of 2 black holes:

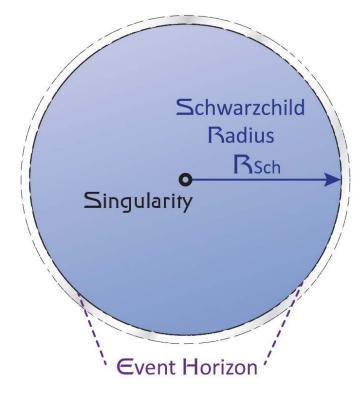
36 et 29 solar masses

Signal validation

Instrumental checks:

- > The 2 LIGO detectors operating normally at the time of the event
- Quiet « weather » around the detectors
 - As usually meant + seismic, acoustic, magnetic...
 - Monitoring with array of sensors: ~ 100000 channels per detectors
- From data analysis:
 - Observed signal compared to expected signal for a coalescing binary system: -> good matching
 - Estimate false alarm probability:
 - Probability that a random fluctuation, coincident in time in both detectors, produce a signal as intense as the one detected:

p << 1/5 millions

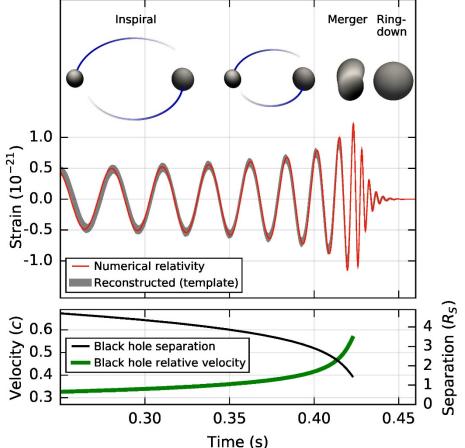

Black holes

The most compact stars

- Matter condensed into a singularity at the center of the black hole
- Matter and light confined inside the horizon:
 - Schwarzschild radius:
 - $R_{Sch} = 2GM/c^2 = 3 \text{ km for } 1 \text{ M}_{sun}$
 - Classical computation :

escape velocity = c at the horizon

- Entirely described by **3** parameters:
 - Mass, kinetic momentum, electric charge


Why 2 black holes?

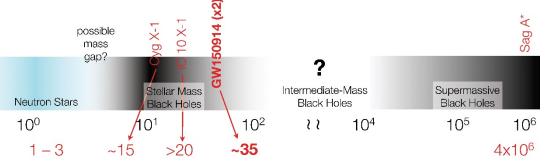
Quantitative argument

 Very good agreement between the observed signal and the theoretical waveform for the coalescence of 2 black holes

Qualitatively:

- Signal maximum at orbital frequency 75 Hz
 - Separation ~ 350 km
- Signal evolution gives the mass of the system
 - Total mass > 70 M_{\odot}
 - Size of the black hole (2R_s) ~ 210 km ₹
 - Black hole compacity is required to reach 75 Hz without contact

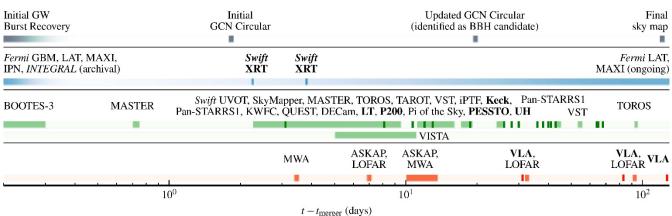
Let's go there!

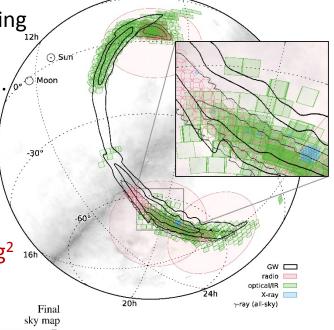


A few impressive numbers

- □ Maximum amplitude of the signal: $h \sim 10^{-21}$
 - > LIGO arm length has changed by $4 \cdot 10^{-18}$ m
 - > size of a proton / 250
- **Distance** to the source $D \sim 1.3$ billion light-years
 - Waves emitted by the coalescence have travelled through space for ~ 1.3 billion yrs before crossing the Earth on Sep 14 2015
- □ Amount of energy radiated as GW by the binary system: $E \sim 62 - (36 + 29) = 3 M_{\odot}$
 - > Most of it during the fraction of second preceding the merger
- □ Peak luminosity: $\mathcal{L} \sim 200 \text{ M}_{\odot} \text{/ s}$
 - > Briefly more powerful than all galaxies in the Universe

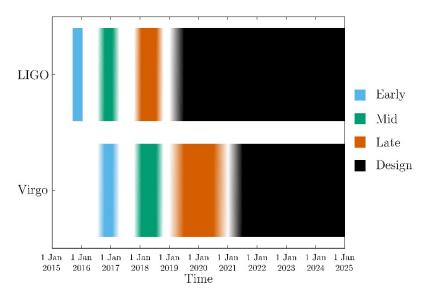
- □ First direct observation of black holes
- \square Relatively heavy stellar mass black holes exist in nature > 25 M $_{\odot}$
 - Implies low solar winds and low metallicity for the massive stars




- Binary black holes form in nature
 - GW150914 does not allow to identify formation path
 - From isolated binary of massive stars vs dynamical capture in dense star clusters?
- Binary black holes merge within age of Universe
- These mergers happen at a rather high rate

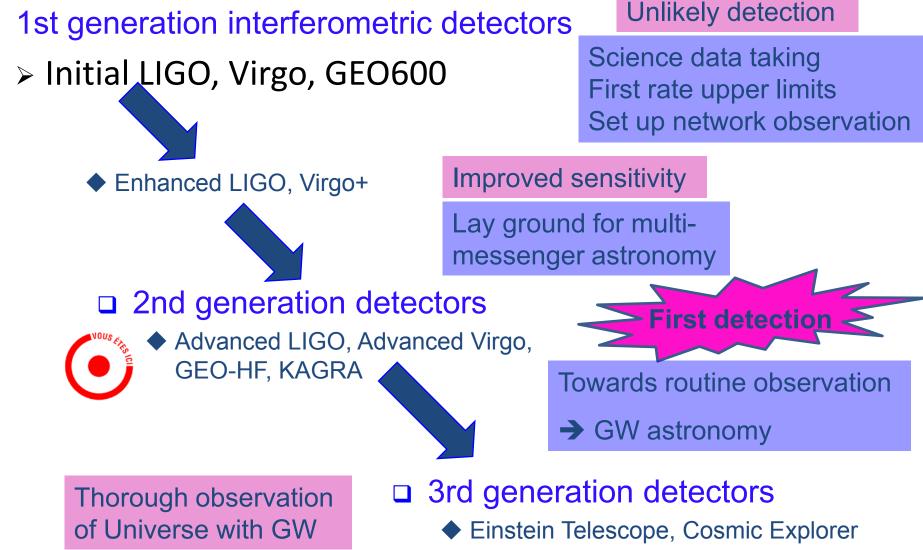
Multi-messenger astronomy

- Agreement between LIGO, Virgo and partners from traditional astronomy
 - LIGO and Virgo share rapidly information about interesting events
 - 70 agreements signed, 160 instruments covering all e.m. // spectrum from radio waves to high energy gamma rays /
- 25 teams performed followup observations of GW150914
 - Looking for an electromagnetic counterpart
 - Difficult: probable area containing GW150914 ~ 590 deg²



- Orbital velocity in solar system $\frac{\nu}{c} \sim 10^{-5}$
- □ Most relativistic binary pulsar known today
 > J0737-3039, orbital velocity ^v/_c ~ 2 × 10⁻³
- **GW150914**
 - > Strong gravitational field, non linear effects, high velocity regime: $\frac{v}{c} \sim 0.5$
- □ Loudness of GW150914 already allows some coarse tests:
 - Does the observed signal correspond to GR predictions?
 Yes! (within the accuracy allowed with GW150914)
 - Bound on graviton mass

- GW150914 found after analyzing the first part of LIGO data-taking run O1 (Sep 15- Jan 16)
 - > Full run analysis not yet completed
- □ Advanced Virgo will become operational in 2016
- Detector sensitivities will be improved, observation campaigns will become longer:
 - From the first detection to routine observations
 - > ... and the unexpected?


Conclusion

- GW150914 : first direct detection of gravitational waves, and first direct observation of a black hole binary
- An instrumental achievement
- A confirmation of General Relativity predictions, and a new tool for deeper tests of gravitation
- □ The beginning of a new scientific field:

 \rightarrow gravitational-wave astronomy

Brief history of interferometric detectors

GW150914:FACTSHEET

BACKGROUND IMAGES: TIME-FREQUENCY TRACE (TOP) AND TIME-SERIES (BOTTOM) IN THE TWO LIGO DETECTORS; SIMULATION OF BLACK HOLE HORIZONS (MIDDLE-TOP), BEST FIT WAVEFORM (MIDDLE-BOTTOM)

first direct detection of gravitational waves (GW) and first direct observation of a black hole binary

	observed by	LIGO L1, H1	duration from 30 Hz	~ 200 ms
	source type	black hole (BH) binary	# cycles from 30 Hz	~10
	date	14 Sept 2015	peak GW strain	1 x 10 ⁻²¹
	time	09:50:45 UTC	peak displacement of	±0.002 fm
	likely distance	0.75 to 1.9 Gly	interferometers arms	±0.002 m
	interg ensterree	230 to 570 Mpc	frequency/wavelength	150 Hz, 2000 km
	redshift	0.054 to 0.136	at peak GW strain	
-	signal-to-noise ratio	24	peak speed of BHs	~ 0.6 c
			peak GW luminosity	3.6 x 10 ⁵⁶ erg s ⁻¹
	false alarm prob.	< 1 in 5 million	radiated GW energy	2.5-3.5 M⊙
_	false alarm rate	< 1 in 200,000 yr	remnant ringdown freq. ~ 250 Hz	
	Source Masses Mo		remnant damping time ~ 4 ms	
	total mass	60 to 70	remnant size, area	180 km, 3.5 x 10 ⁵ km ²
	primary BH	32 to 41	consistent with	passes all tests
	secondary BH	25 to 33	general relativity?	performed
	remnant BH	58 to 67	graviton mass bound	< 1.2 x 10 ⁻²² eV
	mass ratio	0.6 to 1		
		< 0.7	coalescence rate of	2 to 400 Gpc ⁻³ yr ⁻¹
	primary BH spin		binary black holes	
	secondary BH spin	< 0.9	online trigger latency	~ 3 min
	remnant BH spin	0.57 to 0.72	# offline analysis pipeli	nes 5
	signal arrival time	arrived in L1 7 ms		F0 ::::: / 00 000
	delay	before H1	CPU hours consumed	~ 50 million (=20,000 PCs run for 100 days)
	likely sky position	Southern Hemisphere	papers on Feb 11, 2016	13
	likely orientation	face-on/off	LARGEN IN MAR AND AN AND	
	resolved to	~600 sq. deg.	# researchers	~1000, 80 institutions in 15 countries

Detector noise introduces errors in measurement. Parameter ranges correspond to 90% credible bounds. Acronyms: L1=LIGO Livingston, H1=LIGO Hanford; Gly=giga lightyear=9.46 x 10¹² km; Mpc=mega parsec=3.2 million lightyear, Gpc=10³ Mpc, fm=femtometer=10⁻¹⁵ m, M☉=1 solar mass=2 x 10³⁰ kg