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Fundamental interactions 

� Gravitation : one of the four fundamental interactions of nature 
� The weakest 
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TYPE RELATIVE 
STRENGTH 

Example of fields of 
application 

STRONG ~ 1 Nucleus 

ELECTROMAGNETIC ~ 10-2 electrons, light, 
chemistry 

WEAK ~ 10-6 β decay 
solar energy 

GRAVITATION ~ 10-38 Gravity 
   planetary systems 



Gravitation 
� Strength ratio between 

electromagnetic & gravitational 
interactions between 2 
electrons ~ 4 · 1042 ! 
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� Planetary systems 
� Large scale structure of the Universe 

 
 

� Gravity 



Newton vs Einstein 

� Classical theory of 
gravitation 
¾ Flat space,    

absolute time 
¾ F = G m1 m2 / r2 

¾ Instantaneous 
interaction between 
distant masses 
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� Modern theory of gravitation 
(General Relativity) 
¾ Space and time are linked, 

dynamical space-time 
¾ Equivalence principle :  
 inertial mass = gravitational mass 
¾ Gµν = 8π G Tµν / c4 

� Gµν curvature tensor 
� Tµν energy momentum tensor  
� J. A. Wheeler : “Space tells matter 

how to move and matter tells space 
how to curve” 



Einstein’s gravitation 

� Gravitational interaction is the manifestation of space-time curvature 
 

� Accelerated massive bodies emit a radiation 
¾ Analogy with electro-magnetic waves: 
  Ä Transversal waves propagating at speed of light 
¾ Gravitation only attractive Ä quadrupolar radiation 
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Gravitational waves 

� Fluctuations of space-time curvature 
→ Fluctuations in the metric 
→ Distance separating free fall masses changes 
 
 
� Combination of two polarization states (+ and x) 
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Gravitational waves 



Gravitational waves amplitude 
� GW amplitude: 

 
 
 
 
 
 
 
 

� For the observer: 
 
 
 

� Which sources? 
¾ Generate GW in the lab? → NO (too weak amplitude) 
¾ Astrophysical sources (huge masses and accelerations) 

� Despite the distance penalty 
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An interesting object: PSR 1913+16 

� Discovered by R.Hulse and J.Taylor in 1974 
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¾ Two neutron stars orbiting around each others 
� Neutron star: ~1.4 solar mass within 30 km diameter! 

� Orbital period of binary system ~ 8 hours 
 

¾ One of the stars is a pulsar 
� Pulsar : neutron star rotating and emitting radio 

waves along its magnetic axis  
ÎLike a lighthouse: 
     The observer receives radio pulses 

� Measurement of arrival time of the pulses:  
 → gives all system parameters 

 
� Nobel prize in 1993 



First evidence for gravitational waves 

� Orbital period decreasing over time: 
¾ Two stars getting closer to each others 
 

� System losing energy by emission of GW 
¾ Good agreement with GR prediction (within 0.1%) 
 

� An indirect evidence: 
¾ Remained to highlight physical effects of GW 
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Which detectable sources ? 

� Frequency range of ground-based gravitational-wave interferometers: 
 10 Hz – 10 kHz 

¾ This is also the frequency range where human ears are sensitive 
� Low frequency = deep sound 
� High frequency = high-pitched sound 

 
� Frequency of GW emitted by PSR 1913+16: ~ 0.07 mHz 

¾ Undetectable by ground-based detectors 
 

� Need to find other sources 
¾ Within the accessible frequency range 
¾ Detectable with a realistic sensitivity 
¾ Phenomena occuring at sufficienly high rate  
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Sources : coalescing binaries 
� Binary systems of compact stars at the end of their evolution 
¾ Neutron stars and black holes 
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� Very rare phenomenum in our Galaxy 
¾  A few tens per million years  

� Typical amplitude (for neutron stars) 
¾  h ~ 10-22  à 20 Mpc  
¾ 1 parsec = 3.26 light years 

� Very distinctive waveform  
 
 

 

file:///Users/fingalpersoud/Dropbox/Irrotationnels/Confe%CC%81rence%20ondes%20gravitationnelles/coalescence.au


Sources : supernovae 

14 

Examples of waveforms 

� Gravitational collapse of massive 
stars 

 
� Can potentially be associated with 

GW radiation 
¾ Uncertainty on the amplitude 

�  h ∼ 10-21 à 10 kpc 
¾ Difficult to predict waveform 
¾ Rare phenomenum in the Galaxy 

� 3 - 4 / century 

file:///Users/fingalpersoud/Dropbox/Irrotationnels/Confe%CC%81rence%20ondes%20gravitationnelles/3burst.au


An experimental challenge 

� Why is it a challenge? 
¾ Measure a relative variation of length ∼ 10-23 

≡  Measure the distance Earth – Moon with an accuracy roughly equal 
to the size of a proton! 

� A 50 years quest: 
¾ First with « resonant bars » detectors 
¾ For the last ∼ 20 years, with gravitational-wave interferometers 
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Gravitational-wave interferometer 
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time 

We need a big interferometer: 

 ΔL proportional to L                    
Î need several km arms! 

� Measure a variation of distance between masses 
¾ Measure the light travel time to propagate over 

this distance 
¾ Laser interferometry is an appropriate technique 

� Comparative measurement 
� Suspended mirrors = free fall test masses 
 

 
� Michelson interferometer well suited: 

¾ Effect of a gravitational wave is in opposition 
between 2 perpendicular axes 

¾ Light intensity of interfering beams is related to the 
difference of optical path length in the 2 arms 

 

file:///Users/fingalpersoud/Dropbox/Irrotationnels/Confe%CC%81rence%20ondes%20gravitationnelles/../../../../videos/Interferometre_OG_1.mp4
file:///Users/fingalpersoud/Dropbox/Irrotationnels/Confe%CC%81rence%20ondes%20gravitationnelles/../../../../videos/Interferometre_OG_1.mp4
file:///Users/fingalpersoud/Dropbox/Irrotationnels/Confe%CC%81rence%20ondes%20gravitationnelles/../../../../videos/Interferometre_OG_1.mp4
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Gravitational-wave interferometer 



Noise sources 
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Thermal 
noise 

Acoustic 
noise 

Seismic 
noise 

Laser noise 
Shot 
noise Readout 

noise 

Fluctuations of air 
refractive index 



Shot noise 

� Measuring light intensity = counting photons 
¾ Photons are quantum particles: cannot be counted exactly: 𝑁𝑁 ± 𝑁𝑁 
¾ Shot noise  ∝ 𝑃𝑃   with P: light power 
¾ GW signal  ∝ 𝑃𝑃 
¾ Signal to noise ratio  ∝ 𝑃𝑃 
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� More complex optical configuration 

 
 
 

¾ Increase power circulating in the 
interferometer 

¾ Increase effective arm length 



Seismic noise 
� A suspended mirror is isolated from vibrations 

¾ For f > pendulum resonance frequency 
¾ Horizontal ground motion is filtered in1/f² 
¾ Several pendula in series 
¾ Need also to attenuate vertical motion 
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� Mirrors are moving at low frequency Ä is it an issue? 
¾ No 

� Noise at low frequency does not mask a signal at higher frequency 
¾ But actually, yes… 

� The interferometer must me maintained at its working point: 
→ conditions of interference must be controlled 

 
 

 

Frequency 



The detector network 
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LIGO 
 2 interferometers - 4 km arms 

¾ Louisiana 
¾ Washington State 
¾ A third one will be installed in India 

 



Virgo 

¾ CNRS + INFN (+ Netherlands, Hungary, Poland) 
¾ 3 km, near Pisa in Italy 
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The benefits of the network 
� An interferometer works more like a ear than a telescope 

 
 
  
 
 
 

¾ A single detector cannot localize the source 
¾ Need to compare the signals found in coincidence between several 

detectors (triangulation):  
 → allow to point towards the source position in the sky 

� Looking for rare and weak signals: can be hidden in detector noise 
 → requires observation in coincidence between at least 2 detectors 
� Since 2007, Virgo and LIGO share their data and analyze them jointly 

24 



25 

Under (ultra high) vacuum  

� Isolate mirrors from acoustic noise 
� Avoid measurement noise due to 

fluctuations of refraction index in air 
� Keep mirrors clean 



Mirrors 
� Large mirrors 
� Very high quality: almost no imperfections 
� Handled in clean rooms 
  

 Coating of mirror surfaces performed at LMA 
(Laboratoire des Matériaux Avancés) in Lyon 26 



Seismic isolation 
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From the first to the second 
generation of detectors 
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On Feb 11, the LIGO and Virgo collaborations have 

announced the detection of  

G W 1 5 0 9 1 4 
Le 14 septembre 2015 à 09:50:45 UTC | 29 + 36 M� 



The observed signal 

� Same signal in the 2 LIGO 
detectors, with a time 
difference = 7 ms 

 
� Signal evolution =  

Typical signature of a 
coalescence 
 

� Signal extracted from 
data matches the 
expected waveform for 
the coalescence of 2 
black holes: 

      36 et 29 solar masses 
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Signal validation 

� Instrumental checks: 
¾ The 2 LIGO detectors operating normally at the time of the event 
¾ Quiet « weather » around the detectors 

� As usually meant + seismic, acoustic, magnetic… 
� Monitoring with array of sensors: ∼ 100000 channels per detectors 
 

� From data analysis: 
¾ Observed signal compared to expected signal for a coalescing 

binary system: → good matching 
¾ Estimate false alarm probability: 

� Probability that a random fluctuation, coincident in time in both 
detectors, produce a signal as intense as the one detected:  

 p  <<  1 / 5 millions 
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Black holes 

� The most compact stars 
¾ Matter condensed into a singularity at the 

center of the black hole 

� Matter and light confined inside the 
horizon: 
¾ Schwarzschild radius:    
RSch = 2GM/c2 = 3 km for 1 Msun 

¾ Classical computation :  
escape velocity = c at the horizon 

� Entirely described by 3 parameters: 
¾ Mass, kinetic momentum, electric charge 
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Why 2 black holes? 

� Quantitative argument 
¾ Very good agreement between 

the observed signal and the 
theoretical waveform for the 
coalescence of 2 black holes 
 

� Qualitatively: 
¾ Signal maximum at orbital 

frequency 75 Hz 
� Separation ∼ 350 km 

¾ Signal evolution gives the mass of 
the system 
� Total mass > 70 M� 
� Size of the black hole (2RS) ∼ 210 km 
� Black hole compacity is required to 

reach 75 Hz without contact 
33 



Coalescence of the 2 black holes 
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Let’s go there! 
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A few impressive numbers 

� Maximum amplitude of the signal: h ∼ 10-21 

¾ LIGO arm length has changed by 4 . 10-18 m 
¾ size of a proton / 250 

� Distance to the source D ∼ 1.3 billion light-years 
¾ Waves emitted by the coalescence have travelled through space for 
∼ 1.3 billion yrs before crossing the Earth on Sep 14 2015 

� Amount of energy radiated as GW by the binary system:
   E ∼ 62 - (36 + 29) = 3 M� 
¾ Most of it during the fraction of second preceding the merger 

� Peak luminosity: L ∼ 200 M� / s 
¾ Briefly more powerful than all galaxies in the Universe 
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Astrophysical implications 
� First direct observation of black holes 
� Relatively heavy stellar mass black holes  exist in nature > 25 M�  
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� Binary black holes form in nature 
¾ GW150914 does not allow to identify formation path 
¾ From isolated binary of massive stars vs dynamical capture in dense 

star clusters? 

� Binary black holes merge within age of Universe 
� These mergers happen at a rather high rate 

¾ Implies low solar winds 
and low metallicity for the 
massive stars 



Multi-messenger astronomy 
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� Agreement between LIGO, Virgo and partners from 
traditional astronomy 
¾ LIGO and Virgo share rapidly information about interesting 

events 
¾ 70 agreements signed, 160 instruments covering all e.m. 

spectrum from radio waves to high energy gamma rays 
� 25 teams performed followup observations of 

GW150914 
¾ Looking for an electromagnetic counterpart 
¾ Difficult: probable area containing GW150914 ∼ 590 deg2 



Probe gravitation under new conditions 

� Orbital velocity in solar system 𝑣𝑣 𝑐𝑐⁄ ∼ 10−5 
 

� Most relativistic binary pulsar known today  
¾ J0737-3039, orbital velocity 𝑣𝑣 𝑐𝑐⁄ ∼ 2 × 10−3 
 

� GW150914 
¾ Strong gravitational field, non linear effects, high velocity regime:  

𝑣𝑣 𝑐𝑐⁄ ∼ 0.5 
 

� Loudness of  GW150914 already allows some coarse tests: 
¾ Does the observed signal correspond to GR predictions? 
 Yes! (within the accuracy allowed with GW150914) 
¾ Bound on graviton mass 
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This is only the beginning 
� GW150914 found after analyzing the first part of LIGO data-taking 

run O1 (Sep 15- Jan 16) 
¾ Full run analysis not yet completed 

� Advanced Virgo will become operational in 2016 
� Detector sensitivities will be improved, observation campaigns will 

become longer: 
¾ From the first detection to routine observations 
¾ … and the unexpected? 

40 



Conclusion 
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� GW150914 : first direct detection of gravitational waves, and 
first direct observation of a black hole binary 

� An instrumental achievement 
� A confirmation of General Relativity predictions, and a new tool 

for deeper tests of gravitation 
� The beginning of a new scientific field: 
    → gravitational-wave astronomy  
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Brief history of interferometric 
detectors 

� 1st generation interferometric detectors 
¾ Initial LIGO, Virgo, GEO600 

 
� Enhanced LIGO, Virgo+ 

� 2nd generation detectors 
� Advanced LIGO, Advanced Virgo, 

GEO-HF, KAGRA 

� 3rd generation detectors 
� Einstein Telescope, Cosmic Explorer 

Unlikely detection 

Science data taking       
First rate upper limits         
Set up network observation 

Improved sensitivity 

First detection 

Towards routine observation 

Î GW astronomy 

Lay ground for multi-
messenger astronomy 

Thorough observation 
of Universe with GW 
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