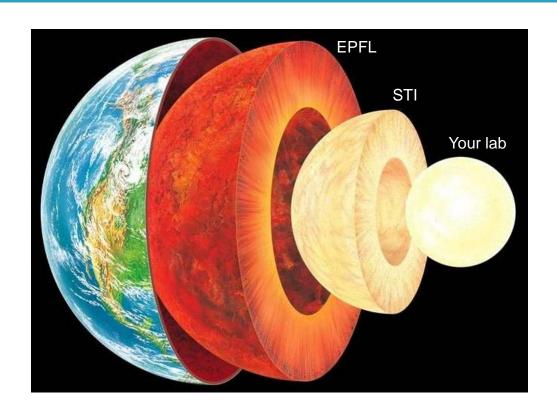


Ali H.Sayed

STI

	IBI Bio	IEL EE	IGM ME	IMT Micro	IMX MAT	TOTAL
UG (3+2)		157	692	666	141	1656
MS (3+2)		167	271	231	118	787
PhD	165	256	109	195	146	871
Post-docs	91	49	39	73	84	336


150 PATT, PA, PO, PT, MER; 1700 UG students; 2000 graduate students and postdocs; plus 100+ staff; plus satellites (Neuchatel, Geneva, Sion, ...).

STI

→ Create a larger sense of belonging, ownership, participation, sharing of information, open discussions, strategic brainstorming, ...

STI

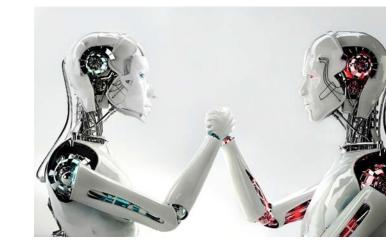
Broad Goal for STI

Strengthen the standing of EPFL as a powerhouse in engineering education, research, and innovation.

STRATEGY:

- Establish a clear organizational structure.
- Instill a culture of institution building.
- Implement a vision for the School.
- Have clear standards and expectations.
- Promote teamwork and participation.

School Structure



SCHOOL BOARD

	De	sociat an fo searcl	r	De	sociat ean fo ucatio	or	De Indi	ociat an fo ustry ovatio	r &	Con on A	hair, nmitt cader ffairs	nic	stitut recto	
Human Resources														
Budget & Finance														
Space & Infrastructure		-												
Information & Educational Technology														
Media & External Affairs														

Engineering in the 21st Century

- Nontrivial transformations in the engineering field: large complex problems involving multiple disciplines.
- •Successful engineering schools will be ones that not only encourage, but also expect, their faculty and students to step across boundaries.

Consequential Transformations

We can create a lasting impact for EPFL by contributing to disruptive trends in engineering:

- (1) Convergence of life sciences & engineering;
- (2) Blending of the virtual/physical worlds; autonomous systems;
- (3) Smart & renewable resources/materials/energy;
- (4) Data & network sciences, computing, security, and privacy.

Consequential Transformations

These trends:

- Create possibilities for interactions with other schools;
- Drive the creation of new jobs for our students.

As such,

(5) The curricular activities of our programs need to evolve in step with these developments.

An Opportunity...

Leadership in Engineering Education: including revamping the educational experience by exploiting the power of the online medium and data analytics, virtual experimentation, animation, virtual immersion, online tools, new assessment models, management and design opportunities, teamwork.

Training of engineering students needs to be enriched: exposure to nano, bio, complex systems, cybersecurity, robotics, data & network sciences, energy, design and the arts, teamwork, entrepreneurship.

Strengthen ties to:

2017

Computer Science: Computing paradigms, foundational data science, autonomous systems, personalized health, etc.

Life Sciences: Bioengineering, Neuroengineering, etc.

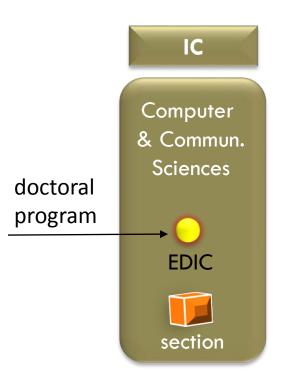
The arts, <u>sports</u>, and design: Engineering in the Arts & Sports.

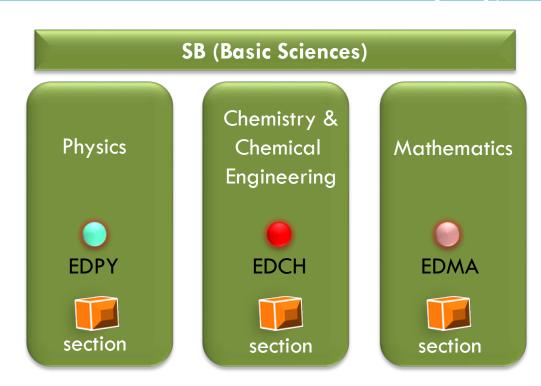
Where do we Stand?

- Ranked in top 5 in Engineering in Europe (TIMES Higher Education, QS University Ranking).
- Ranked #16 worldwide (2017 US News)

Brand recognition and by academics:

#71 in the World by academics (QS; ETHZ #19) #60 by employers (QS; ETHZ #28) #41 in brand recognition (by TIMES)

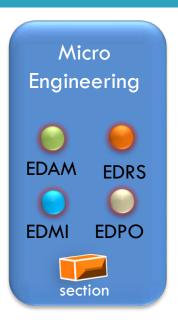

EPFL Engineering Anytime Anywhere

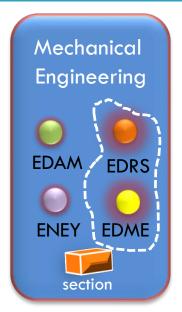

Ranking	University	Score
8	Stanford	85.9
12	Imperial	84.4
16	EPFL	82.8
17	ETH Zurich	82.2
22	Delft	80.3
31	KTH	77.8
42	Cambridge	74.6

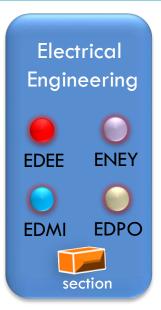
2017 <u>US News Ranking</u> of Best Engineering Universities Worldwide

Other Schools at EPFL

EPFL School of Engineering (A. H. Sayed)






Existing STI Structure

Bio Engineering **EDBB** section

EDAM: advanced manufacturing

EDEE: electrical engineering

EDRS: robotics, control, & intelligent systems

EDME: mechanics

EDBB: biotechnology and bioengineering **EDMI:** microsystems and microelectronics **EDMX:** materials sciences & engineering **EDEY:** energy **EDPO:** photonics

Admissions: Current Situation

- 6 different dates.
- Multiple admission cycles.

Doctoral program	Deadline(s)				
EDAM: advanced manufacturing	Jan 15, Apr 30, Sep 15				
EDBB: biotechnology and bioengineering	Apr 15, Nov 1				
EDEE: electrical engineering	Jan 15, Apr 30, Sep 15				
EDMI: microsystems and microelectronics	Jan 15, Apr 30, Sep 15				
EDRS: robotics, control, intelligent systems	Jan 15, Apr 30, Sep 15				
EDMX: materials science & engineering	Jan 15, Jul 31				
EDME: mechanics	Jan 15, Apr 30, Sep 15				
EDEY: energy	Jan 15, Apr 30, Sep 15				
EDPO: Photonics	Jan 15, Apr 30, Sep 15				