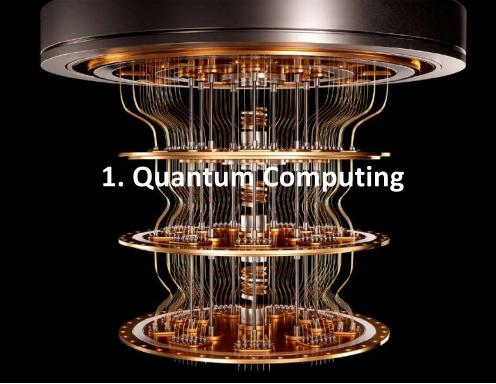
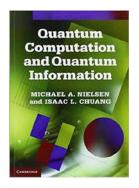
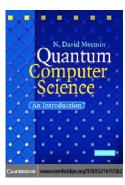
Quantum perspectives in computing, sensing, communication, and metrology **Edoardo Charbon** EPFL, Lausanne, Switzerland

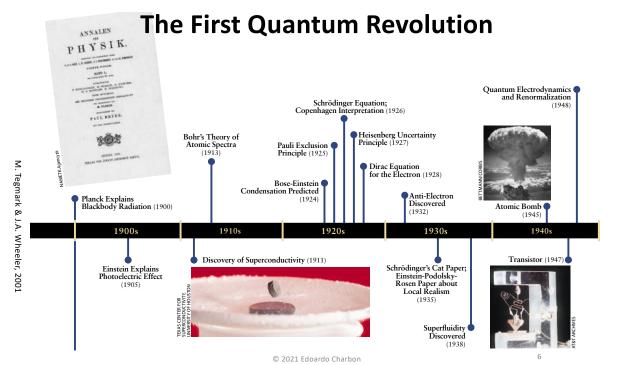
Aknowledgements

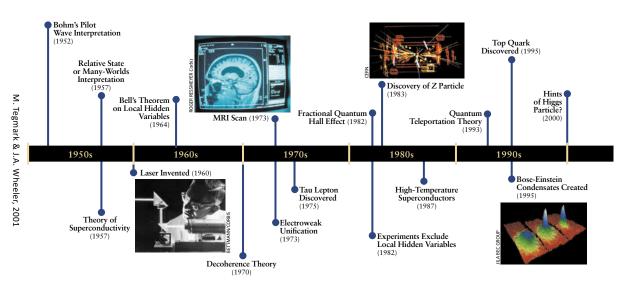

Simone Frasca Pascal 't Hart Jiang Gong Harald Homulle Andrea Ruffino Yatao Peng M. Fernando Gonzalez-Zalba Fabio Sebastiano Masoud Babaie Daniele Faccio Andrew Dzurak

Outline

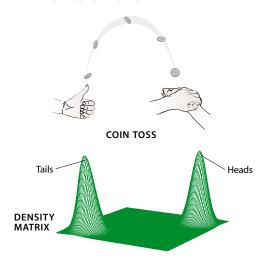

- Quantum computing (2 periods)
- 2. Cryogenic electronics (2 periods)


Available in a future class:


- 3. Quantum algorithms (2 periods)
- Quantum imaging and communications (1 period)
- 5. Quantum metrology (2 periods)


Suggested Reading

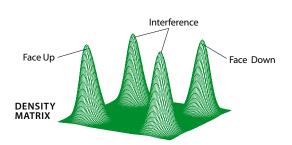
The First Quantum Revolution



Weird Quantum Properties:

Superposition & Entanglement

Superposition


CLASSICAL UNCERTAINTY

QUANTUM UNCERTAINTY

COHERENT SUPERPOSITION

Coherence / Decoherence

Entanglement

<u>Definition:</u> two particles are entangled if the quantum state of one particle cannot be described independently from the quantum state of the other particle.

<u>Intuition:</u> measuring the quantum state of one particle implies knowledge of the quantum state (e.g. momentum, spin, polarization, etc.) of the other entangled particle using the same projection.

The Second Quantum Revolution

• Spearheaded by many, in primis Richard Feynman

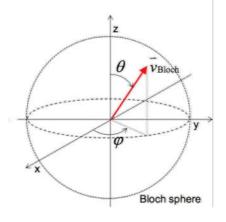
Proposal to use of entanglement and superposition for computation

• Fundamentals and theory developed in the 1980-2000s

There is plenty of space at the bottom

- Richard Feynman

The Promise of Quantum Computing

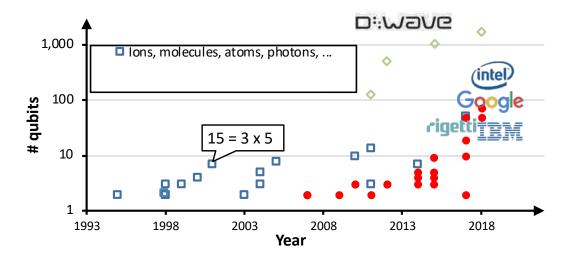

Energy
Room-temperature superconductivity

Source: L. Vandersypen, ISSCC 2017

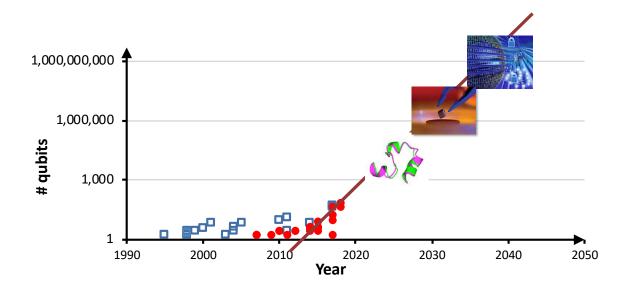
Quantum Bit (Qubit)

$$|\psi\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$$

- Superposition
- Entanglement


The Power of Superposition

1 qubit	2 states
2 qubits	4 states
·	
N qubits	2 ^N states


40 qubits: 10¹² parallel operations

300 qubits: more than the atoms in the universe

State-of-the-Art

How Far Are We from Something Useful?

Quantum Supremacy or Quantum Advantage

Quantum supremacy is the potential ability of quantum computing devices to solve problems that classical computers practically cannot.

[Wikipedia]

Google claims to have reached quantum supremacy (Financial Times)

Report on a an accepted paper to a peer-reviewed publication

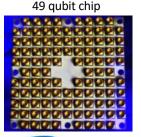
Solid-state Qubit Implementations Today

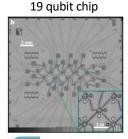
- Based on superconducting qubits
- First multi-qubit chips announced
- Freely available qubits on line

72-qubit chip announced

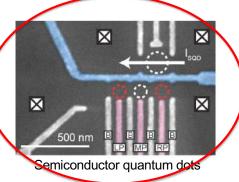
Total 22 qui foote

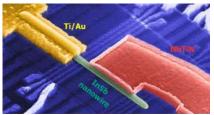
Total 22 qui foote

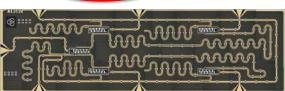

Total 32 qui foote

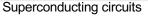

T

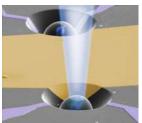
Source: Tristan Meunier


16 Qubits online version

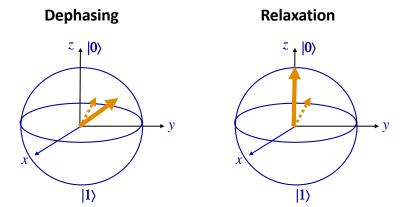

50 qubit chip announced


Solid-state Qubit Implementations Today

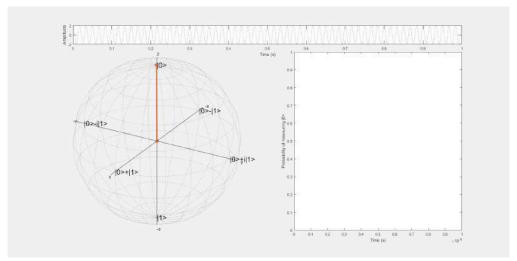




Semiconductor-superconductor hybrids

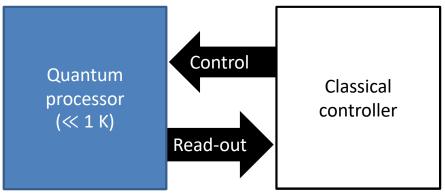


Impurities in diamond or silicon


ource: L. Vandersypen, 2017

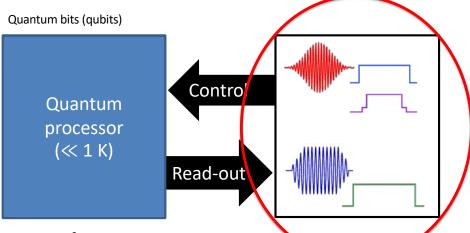
Qubits are Fragile

- Environment can cause decoherence due to dephasing and relaxation
- Fidelity

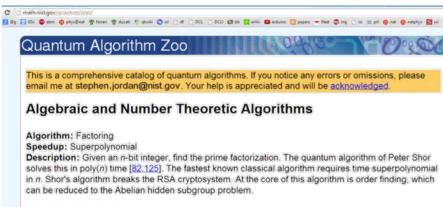

Qubit Transition from |0> to |1>

© Jeroen van Dijk

Interfacing Qubits with Classical World


Quantum bits (qubits)

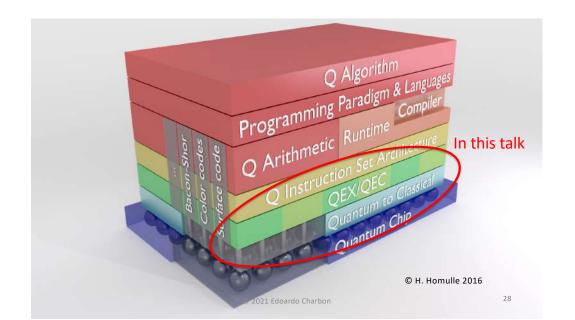
• Carrier frequency: 100 MHz – 15 GHz, 70 GHz


Pulses: 10 – 100 ns

Interfacing Qubits with Classical World

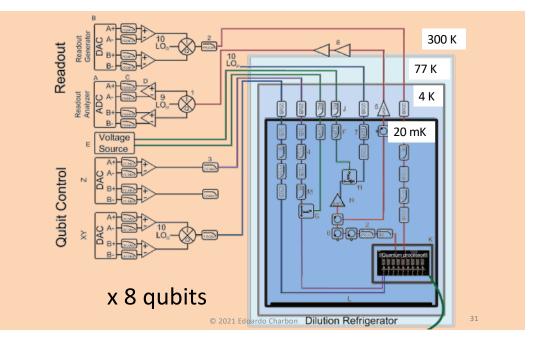
- Carrier frequency: 100 MHz 15 GNz, 70 GHz
- Pulses: 10 100 ns
- Readout techniques for spin qubits: ESR, EDSR

Status of Quantum Algorithms



Algorithm: Discrete-log Speedup: Superpolynomial

Description: We are given three n-bit numbers a, b, and N, with the promise that $b = a^s \mod N$ for some s. The task is to find s. As shown by Shor [82], this can be achieved on a quantum computer in poly(n) time. The fastest known classical algorithm requires time superpolynomial in n. By similar


~50 algorithms with quantum speedup, but most people know 2.

Quantum Computing Stack

Quantum Computer Architecture

A Real-life Quantum Computer

Today's Solution

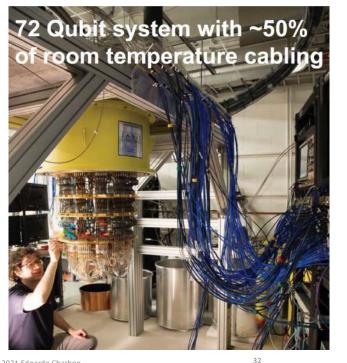
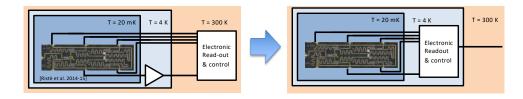
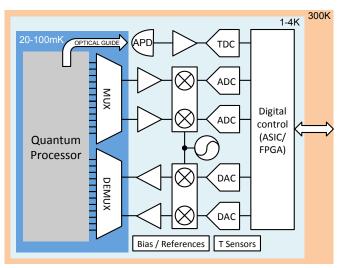



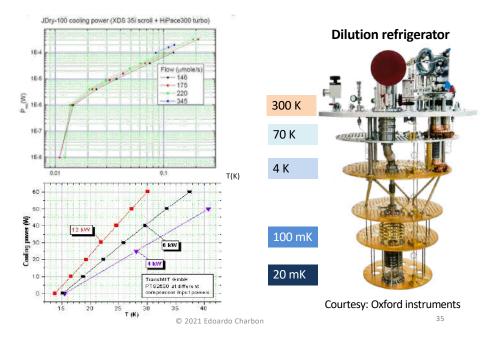
Image: Google Bristlecone. Taken from: J.C. Bardin et al., "An Introduction to Quantum Computing for RFIC Engineers", RFIC Symposium 2019

Our Proposed Solution

Proposed solution


- Electronics at 4 K
- Only connections to 4 K to 20 mK are needed

Ultimate solution

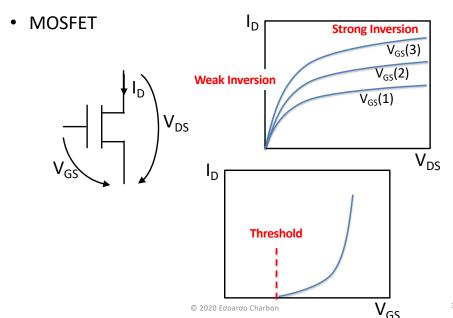

- Qubits at 4 K
- Monolithic integration

Electronic Readout & Control

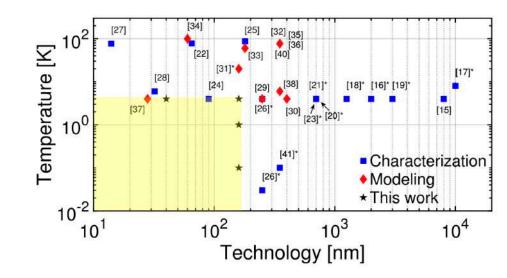
E. Charbon et al., IEDM 2016

Cooling Power Issue

Scalability Issue


•	Noise budget	.< 0.1nV/√Hz
•	Power budget (for scalability)	<< 2mW/qubi
•	Physical dimensions (for scalability)	30nm
•	Bandwidth (for multiplexing)	1-12GHz
•	Kick-back avoidance	

2. Cryogenic Electronics


Transistor Modeling at Deep Cryogenic

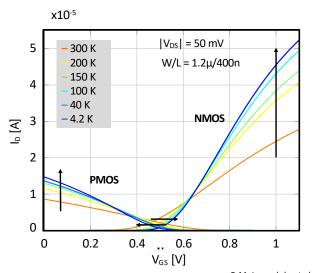
Temperatures

CMOS Modeling: Important Parameters

CMOS Modeling: History

R.M. Incandela et al., ESSDERC 2017 R.M. Incandela et al., J. of EDS 2018

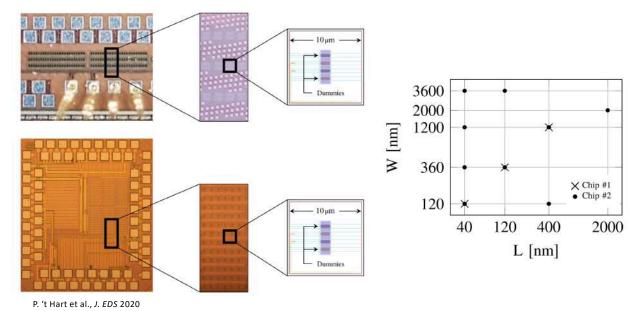
- [16] H. Hanamura et al., "Operation of bulk CMOS devices at very low temperatures," IEEE J. Solid-State Circuits, vol. 21, no. 3, pp. 484–490, Jun. 1986. doi: 10.1109/JSSC 1986.1052555.
- [17] F. Balestra, L. Audaire, and C. Lucas, "Influence of substrate freeze-out on the characteristics of MOS transistors at very low temperatures," *Solid State Electron.*, vol. 30, no. 3, pp. 321–327, Mar. 1987. doi: 10.1016/9038-110187/90190-0.
- [18] L. Deferm, E. Simoen, and C. Claeys, "The importance of the internal bulk-source potential on the low temperature kink in NMOSTs," *IEEE Trans. Electron Devices*, vol. 38, no. 6, pp. 1459–1466, Jun. 1991, doi: 10.1109/16.81639.
- [19] E. Simoen, B. Dierickx, and C. L. Claeys, "Low-frequency noise behavior of Si NMOSTs stressed at 4.2 K," *IEEE Trans. Electron Devices*, vol. 40, no. 7, pp. 1296–1299, Jul. 1993, doi: 10.1109/16.216435.
- [20] E. Simoen and C. Claeys, "Impact of CMOS processing steps on the drain current kink of NMOSFET's at liquid helium temperature," *IEEE Trans. Electron Devices*, vol. 48, no. 6, pp. 1207–1215, Jun. 2001, doi: 10.1109/16.925249.
- [21] E. Simoen et al., "Impact of irradiations performed at liquid helium temperatures on the operation of 0.7 μm CMOS devices and readout circuits," in Proc. Radiat. Effects Compon. Syst. (RADECS), 2003, pp. 369–375.
- [22] A. Siligaris et al., "High-frequency and noise performances of 65-nm MOSFET at liquid nitrogen temperature," IEEE Trans. Electron Devices, vol. 53, no. 8, pp. 1902–1908, Aug. 2006, doi: 10.1109/TED.2006.877872.
- [23] Y. Creten, P. Merken, W. Sansen, R. Mertens, and C. van Hoof, "A cryogenic ADC operating down to 4.2K," in *IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers*, San Francisco, CA, USA, Feb. 2007, pp. 468–616. doi: 10.1109/ISSCC.2007.373497.
- [24] S.-H. Hong et al., "Low-temperature performance of nanoscale MOSFET for deep-space RF applications," IEEE Electron Device Lett., vol. 29, no. 7, pp. 775–777, Jul. 2008, doi: 10.1109/LED.2008.2000614.
- [25] G. De Geronimo et al., "Front-end ASIC for a liquid argon TPC," in Proc. IEEE Nuclear Sci. Symp. Med. Imag. Corf., vol. 58. Knoxville, TN, USA, Oct. 2010, pp. 1658–1666, doi: 10.1109/NSSMIC.2010.5874057.
- [26] S. R. Ekanayake, T. Lehmann, A. S. Dzurak, R. G. Clark, and A. Brawley, "Characterization of SOS-CMOS FETs at low temperatures for the design of integrated circuits for quantum bit control and readout," *IEEE Trans. Electron Devices*, vol. 57, no. 2, pp. 539–547, Feb. 2010, doi: 10.1109/TED.2009.2037381.
- [27] M. Shin et al., "Low temperature characterization of 14nm FDSOI CMOS devices," in Proc. 11th Int. Workshop Low Temp. Electron. (WOLTE), Grenoble, France, Jul. 2014, pp. 29–32, doi: 10.1109/WOLTE.2014.6881018.

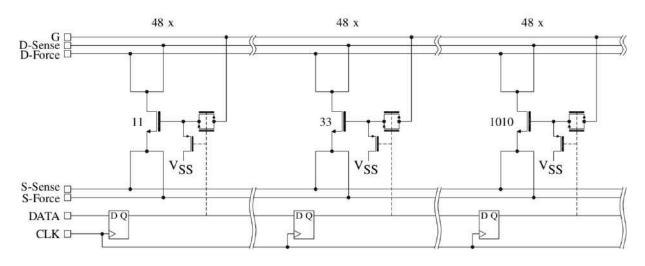

- [28] A. H. Coskun and J. C. Bardin, "Cryogenic small-signal and noise performance of 32nm SOI CMOS," in Proc. IEEE MTT-S Int. Microw. Symp. (IMS), Tampa, FL, USA, Jun. 2014, pp. 1–4, doi: 10.1109/MWSYM.2014.6848614.
- [29] Y. Feng, P. Zhou, H. Liu, J. Sun, and T. Jiang, "Characterization and modelling of MOSFET operating at cryogenic temperature for hybrid superconductor-CMOS circuits," *Semicond. Sci. Technol.*, vol. 19, no. 12, pp. 1381–1385, Oct. 2004, doi: 10.1088/0268-1242/19/12/009.
- [30] A. Akturk et al., "Impact ionization and freeze-out model for simulation of low gate bias kink effect in SOL-MOSFETs operating at liquid He temperature," in Proc. Conf. Simular. Semicond. Process. Devices (SISPAD), Sep. 2009, pp. 1–4, doi: 10.1109/ISISPAD.2009.5290227.
- [31] A. Akturk et al., "Compact and distributed modeling of cryogenic bulk MOSFET operation," *IEEE Trans. Electron Devices*, vol. 57, no. 6, pp. 1334–1342, Jun. 2010, doi: 10.1109/TED.2010.2046458.
- [32] Z. Zhu et al., "Design applications of compact MOSFET model for extended temperature range (60–400 K)," Electron. Lett., vol. 47, no. 2, pp. 141–142, Jan. 2011, doi: 10.1049/el.2010.3468.
- [33] P. Martin, A. S. Royet, F. Guellec, and G. Ghibaudo, "MOSFET modeling for design of ultra-high performance infrared CMOS imagers working at cryogenic temperatures: Case of an analog/digital 0.18 µm CMOS process," Solid-State Electron., vol. 62, no. 1, pp. 115–122, 2011, doi: 10.1016/j.ssc.2011.01.004.
- [34] Z. Chen, H. Wong, Y. Han, S. Dong, and B. L. Yang, "Temperature dependences of threshold voltage and drain-induced barrier lowering in 60 nm gate length MOS transistors," *Microelectron. Rel.*, vol. 54, nos. 6–7, pp. 1109–1114, Jun/Jul. 2014, doi: 10.1016/jmicrorel.2013.12.005.
- [35] H. Zhao and X. Liu, "Modeling of a standard 0.35

 µm CMOS technology operating from 77K to 300K," Cryogenics, vol. 59, pp. 49–59, Jan. 2014, doi: 10.1016/j.cryogenics.2013.10.003.
- [36] G. S. Fonseca, L. B. de Sá, and A. C. Mesquita, "Extraction of static parameters to extend the EKV model to cryogenic temperatures," in *Proc. SPIE Defense Security*, Baltimore, MD, USA, May 2016, Art. no. 98192B. doi: 10.1117/12.2219734.
- [37] A. Beckers et al., "Cryogenic characterization of 28 nm bulk CMOS technology for quantum computing," in Proc. 47th Eur. Solid-State Device Res. Conf. (ESSDERC), Leuven, Belgium, Sep. 2017, pp. 62–65, doi: 10.1109/ESSDERC.2017.8066592.
- [38] N. C. Dao et al., "An enhanced MOSFET threshold voltage model for the 6–300 K temperature range," *Microelectron. Rel.*, vol. 69, pp. 36–39, Feb. 2017, doi: 10.1016/j.microel.2016.12.007.

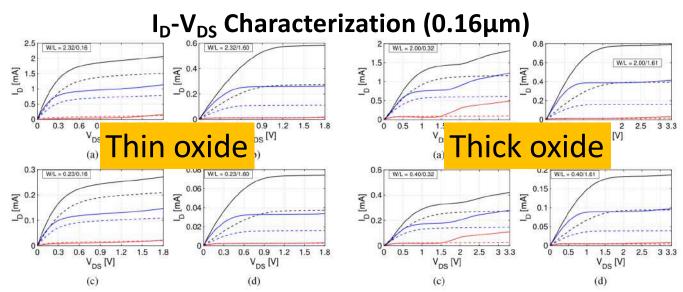
- [39] R. M. Incandela et al., "Nanometer CMOS characterization and compact modeling at deep-cryogenic temperatures," in Proc. 47th Eur. Solid-State Device Res. Conf. (ESSDERC), Leuven, Belgium, Sep. 2017, pp. 58–61, doi: 10.1109/ESSDERC.2017.8066591.
- [40] L. Varizat, G. Sou, M. Mansour, D. Alison, and A. Rhouni, "A low temperature 0.35µm CMOS technology BSIM3.3 model for space instrumentation: Application to a voltage reference design," in Proc. IEEE Int. Workshop Metrol. AeroSpace (MetroAeroSpace), Padua, Italy, Jun. 2017, pp. 74–78, doi: 10.1109/MetroAeroSpace.2017.7995541.
- [41] A. Rhouni et al., "First-ever test and characterization of the AMS standard bulk 0.35 μm CMOS technology at sub-Kelvin temperatures," J. Phys. Corff. Series, vol. 834, no. 1, May 2017, Art. no. 012005, doi: 10.1088/1742-6596/834/1/012005.

R.M. Incandela et al., J. of EDS 2018

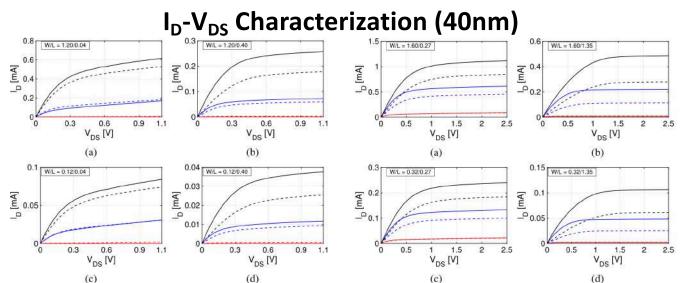

What Happens to CMOS at Cryo?


- Threshold voltage increases significantly
- A current kink may appear
- Mismatch in passives and actives is more prominent
- The substrate becomes practically floating
- The SS is higher but it saturates around 1K
- Leakage drastically reduces

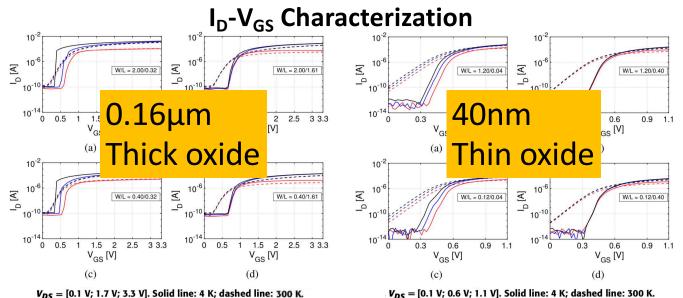
R.M. Incandela et al., ESSDERC 2017 R.M. Incandela et al., J. of EDS 2018


How to Characterize MOS Transistors?

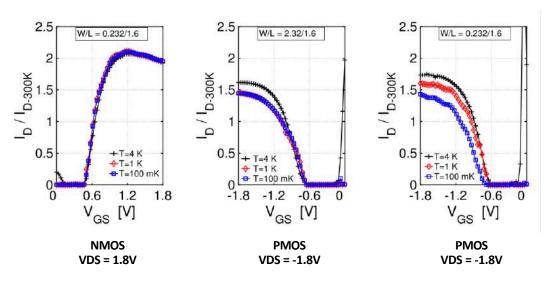
CMOS Characterization in Practice


P. 't Hart et al., J. EDS 2020

R.M. Incandela et al., J. of EDS 2018


V_{GS} = [0.68 V; 1.24 V; 1.8 V]. Solid line: 4 K; dashed line: 300 K.

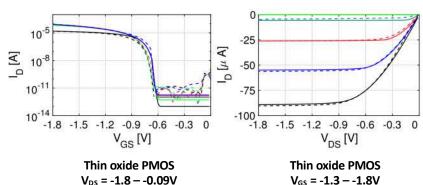
V_{GS} = [1.05 V; 2.17 V; 3.3 V]. Solid line: 4 K; dashed line: 300 K.


V_{GS} = [0.43 V; 0.76 V; 1.1 V]. Solid line: 4 K; dashed line: 300 K.

V_{GS} = [0.85 V; 1.68 V; 2.5 V]. Solid line: 4 K; dashed line: 300 K.

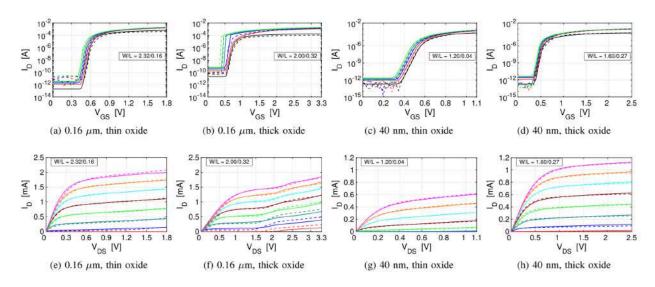
R.M. Incandela et al., J. of EDS 2018

I_D-V_{GS} Characterization in Sub-K Regimes



R.M. Incandela et al., J. of EDS 2018

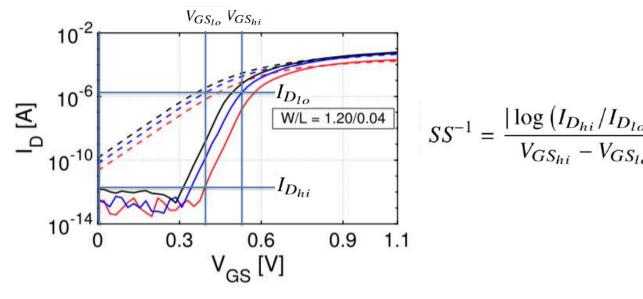
CMOS Modeling


	MOS11 pa	arameters for	0.16-μm CM	OS	
BETSQR	VFBR	THESRR	SDIBLO	ALPR	KOR
THESATR	THERR	A1R	A2R	A3R	
	PSP pa	rameters for	40-nm CMOS		
FACTUO	DELVTO	THEMUO	THESATO	RSW1	CFL
ALPL	MUEO	FBET1			

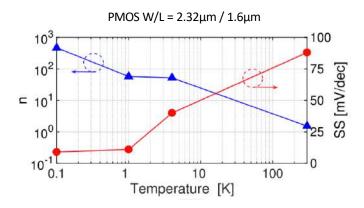
•

CMOS Modeling

Sub-threshold Slope (SS)

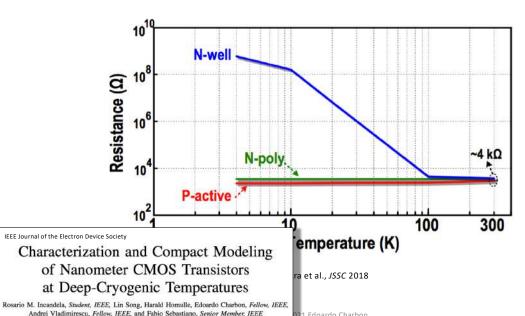

$$SS = \ln(10) \frac{kT}{q} \left(1 + \frac{C_d}{C_{ox}} \right)$$

 C_d = depletion layer capacitance C_{ox} = gate oxide capacitance

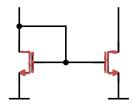

$$SS = \ln(10) \frac{kT}{q} \sim 60 \text{mV/dec}$$

$$C_d = 0$$
; $C_{ox} \rightarrow$: thermionic limit

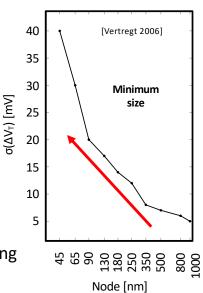
Sub-threshold Slope Characterization(SS)



Sub-threshold Slope (SS)


R.M. Incandela et al., ESSDERC 2017 R.M. Incandela et al., J. of EDS 2018

Substrate Resistivity


Mismatch Modeling at Cryo

Subthreshold Current Mismatch: Why Do We Care?

- Impacts performance of:
 - ADC/DAC
 - Differential pairs
 - SRAM

Worsens with technology scaling

Subthreshold Current Model

$$I_D = I_0 e^{(V_{GS} - V_{TH})/SS}$$

Taylor expansion is impractical at cryo due to the instability of ID and the exponential nature of it.

Solve wrt $log(I_D)$

$$\log{(I_D)} \propto \frac{1}{\ln(10)} \frac{V_{GS} - V_{TH}}{SS}.$$

Taylor expansion on V_{TH} and SS

$$\Delta \log (I_D) = \frac{1}{\ln(10)} \left(-\frac{1}{SS} \Delta V_{TH} - \frac{(V_{GS} - V_{TH})}{SS} \frac{\Delta SS}{SS} \right)$$

Subthreshold Current Model

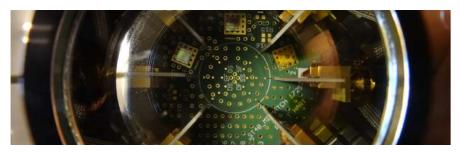
$$\sigma_{\Delta \log I_D}^2 = \frac{1}{\ln(10)^2} \left[\left(\frac{\sigma_{\Delta V_{TH}}}{\overline{SS}} \right)^2 + \left(\frac{V_{GS} - V_{TH}}{\overline{SS}} \frac{\sigma_{\Delta SS}}{\overline{SS}} \right)^2 + 2 \frac{(V_{GS} - V_{TH})}{\overline{SS}^3} \sigma_{\Delta V_{TH}} \sigma_{\Delta SS} \rho_{\Delta V_{TH}, \Delta SS} \right].$$
 (5)

The correlation factor ρ between $V_{\rm TH}$ and SS is generally negligible at 300K, 100K, and also at cryogenic temperatures.

Croon Model

$$\sigma_{\Delta I_D/I_D}^2 = \ln(10)^2 \sigma_{\Delta \log I_D}^2$$

$$\sigma_{\Delta \log I_D}^2 = \frac{1}{\ln(10)^2} \left[\sigma_{\Delta\beta/\beta}^2 + \left(\frac{\bar{g}_m}{\bar{I}_D} \right)^2 \sigma_{\Delta V_{TH}}^2 \right], \tag{7}$$


Pelgrom Scaling Law

$$\sigma_{\Delta V_{TH}} = \frac{A_{VT}}{\sqrt{WL}}$$
 $\sigma_{\Delta\beta/\beta} = \frac{A_{\beta}}{\sqrt{WL}}$ $\sigma_{\Delta SS/SS} = \frac{A_{SS}}{\sqrt{WL}}$

 A_{VT} : area scaling parameter for $V_{\rm T}$ A_{β} : area scaling parameter for β A_{SS} : area scaling parameter for SS

W, L: transistor geometry parameters

How to Characterize Mismatch?

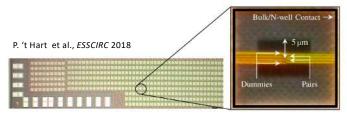
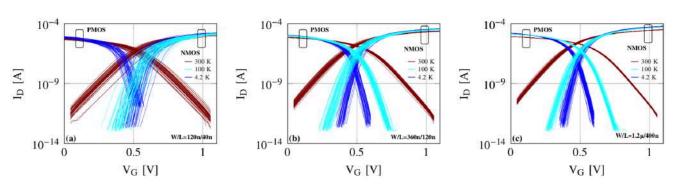
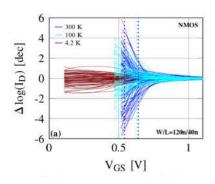
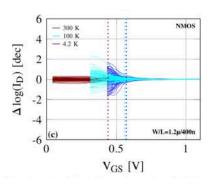



Fig. 1. Die micrograph (*left*) with close-up of a $W/L = 1.2\,\mu\text{m}/0.4\,\mu\text{m}$ matched pair (*right*).

Mismatch Measurements

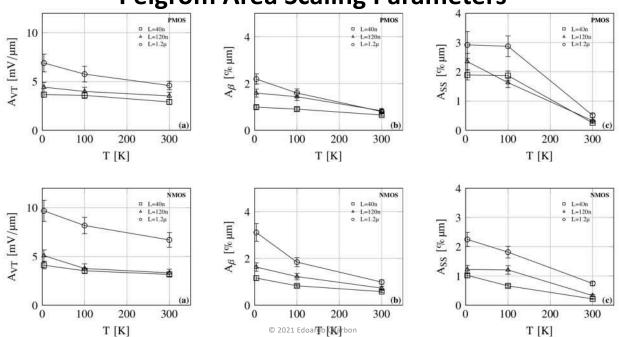

48 devices tested

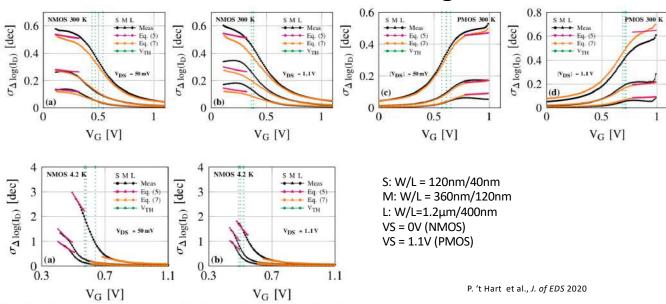
 $|V_{\rm DS}|$ = 50mV, $V_{\rm S}$ =0V (NMOS)


 $|V_{\rm DS}|$ = 50mV, $V_{\rm S}$ =1.1V (PMOS)

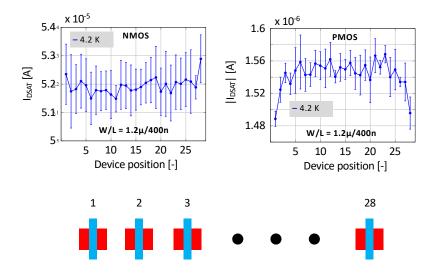
P. 't Hart et al., J. of EDS 2020

Mismatch Measurements (2)


6 - 300 K NMOS NMOS - 42 K NMO


72 device pairs tested V_{TH} in dashed lines $|V_{\rm DS}|$ = 50mV

P. 't Hart et al., J. of EDS 2020


Pelgrom Area Scaling Parameters

Mismatch Modeling

Position Dependence

Summary on Threshold Mismatch

Cryo-CMOS: mismatch follows Pelgrom and Croon models

Fixed V_{GS} biasing → matching deteriorates up to 10x

• Fixed G_m/I_D biasing \rightarrow matching deteriorates "only" 1.1x

Digital Modeling at Cryo

Lowerbound in Digital Design

$$V_{DD,min} \approx 2 \frac{kT}{q} \ln(2) = 36 \text{mV}$$

CMOS circuits operate in subthreshold wherever this equation holds

$$I_{DS} = I_0 \frac{W}{L} e^{\frac{V_{GS} - V_{TH}}{nv_t}} \left(1 - e^{\frac{-V_{DS}}{v_t}} \right); \ I_0 = \mu_0 C_{ox} \frac{W}{L} (n-1) v_t^2,$$

n is the sub-threshold slope (SS) factor and $v_t = kT/q$,

The net effect in sub-threshold regimes is a decrease of leakage currents by orders of magnitude, implying a significant increase in the I_{ON}/I_{OFF} ratio

Lowerbound in Digital Design

Assuming an ideal SS factor n = 1, at 4.2 K, according to well established room temperature models, one could theoretically achieve $V_{DD,min} \approx 2 \ln(2) v_t = 0.48 \text{mV}$.

However, at 4.2 K the consensus is that $n\approx34.9$. Thus, this fundamental limit is actually VDD, $min\approx2.47$ mV. Additional non-idealities include reverse short-channel effect (RSCE) and inverse narrow-width effect (INWE).

Both effects substantially modulate the threshold voltage.

Latchup

Latch-up has been found to be unpredictable in deep-cryogenic operation. Latch-up immunity typically improves at temperatures lower than RT, thanks to lower well and substrate resistance and to higher base-emitter voltages and lower current gain of parasitic bipolar transistors. However, shallow level impact ionization (SLII), a mechanism for carrier generation, emerges below 50 K

Recommendations

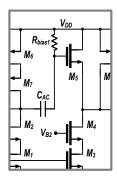
- A)create extensive substrate contacts and well-taps, so as to minimize the chance of latch-up at 4.2 K;
- B) resize the transistors, so as to reduce INWE and thus maximize V_{TH} modulation;
- C) add secondary power rails to enable forward back-biasing, so as to compensate for an increase of V_{TH} at 4.2, in addition use low- V_{TH} transistors;
- D)minimize the length of transistors (in contrast to conventional RT subthreshold standard cell design, where the opposite is generally done);
- E) when useful, make the layout aware of mismatch by increasing the overall height of the cells.

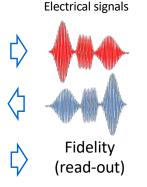
Summary of Issues 300K -> 0.1K

- Threshold voltage increases significantly
- A current kink may appear
- Mismatch in passives and actives is more prominent
- The substrate becomes practically floating
- The SS is higher but it saturates around 1K
- Leakage drastically reduces

Trends and Predictions

- How will devices perform in 5 years at 77K?
- How will FinFETs/nanowire FET behave at 77K (Lg<20nm)
- Will ballistic transport affect these devices?
- How different will optimization be at 77K?
- Is there a way to decrease V_T?

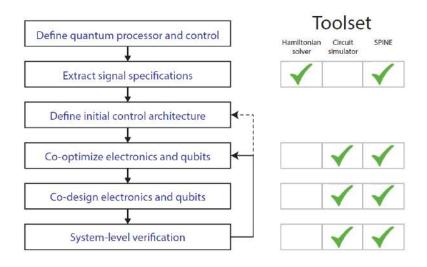

High-Level Modeling at Cryo


High-Level Modeling: SPINE (SPIN Emulator)

Objectives:

- Enable co-design qubit/electronics
- Derive specifications for Horse Ridge and other components
- Minimize power to achieve wanted fidelity

Circuit simulator



Qubit simulator (Hamiltonian)

SPINE

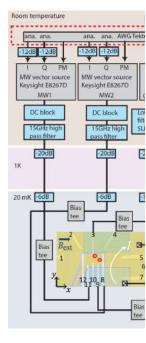
J. Van Dijk et al., DATE 2018

SPINE

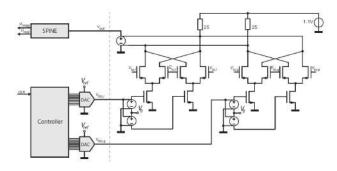
• Microwave Carrier: **Keysight E8267D**

22.4 kHz resolution 1 mHz

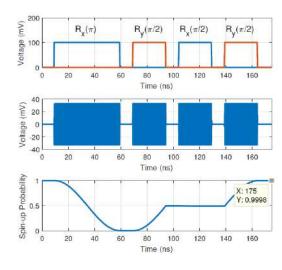
- \mathcal{L} (1 MHz) = -106 dBc/Hz >15 dB better


 $-S_n = 7.12 \text{ nV/VHz}$ 63 nV/VHz

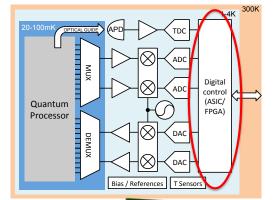
 \rightarrow > 20 dB attenuation


Microwave Envelope: Tektronix 5014C

8-bit resolution
 14-bit
 140 MS/s
 3.56 ns_{rms}
 40 dB SNR
 14-bit
 1.2 GS/s
 5.0 ps_{rms}
 better


With SPINE we checked that these specs are enough

SPINE


- Example of full simulation:
 - Sequence of rotations
 - Resulting RF signals
 - Qubit response, in terms of spin-up probability
- This involves spin emulation, M/S simulation, RF simulation

J. Van Dijk et al., DATE 2018

Cryogenic Reconfigurable Hardware

Cryo-FPGAs

Cryo-FPGAs

CryoCMOS Hardware Technology A Classical Infrastructure for a Scalable Quantum Computer

ACM Frontiers in Computing, Como 2016

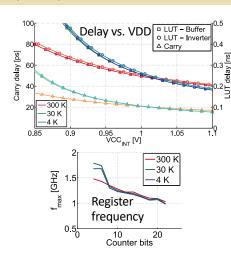
Harald Homulle¹, Stefan Visser¹, Bishnu Patra¹, Giorgio Ferrari², Enrico Prati³, Carmen G. Almudéver¹, Koen Bertels¹, Fabio Sebastiano¹, Edoardo Charbon¹

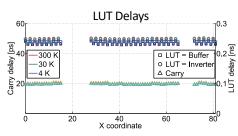
¹QuTech, Delft University of Technology, Delft, The Netherlands

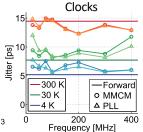
²Politecnico di Milano, Milano, Italy, ³Consiglio Nazionale delle Ricerche, Milano, Italy {h.a.r.homulle, f.sebastiano, e.charbon}@tudelft.nl

FPGA functionality

- All FPGA components are working in the cryogenic environment down to 4K
- · No modifications required

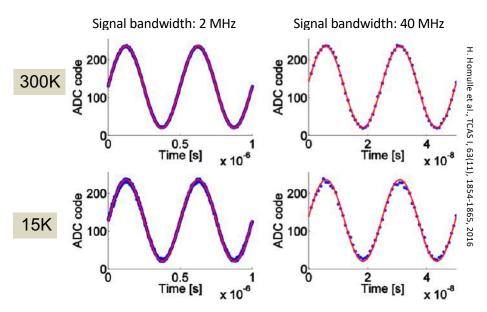

Component	Functional	Behavior
IOs	✓	
LVDS	\checkmark	
LUTs	✓	Delay change < 5%
CARRY4	\checkmark	Delay change < 2%
BRAM	✓	No corruption (800 kB)
MMCM	\checkmark	Jitter reduction of roughly 20%
PLL	✓	Jitter reduction of roughly 20%
IDELAYE2	\checkmark	Delay change of up to 30%
DSP48E1	✓	No corruption over 400 operations

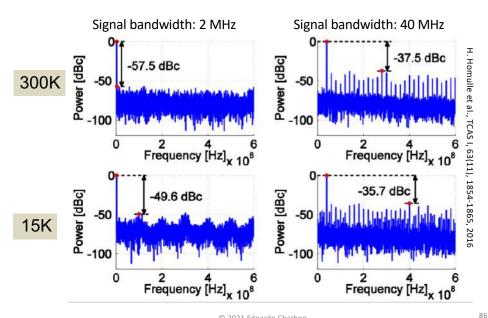

FPGA Performance

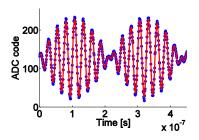

Specs:

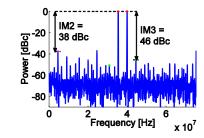
Carry: 20 vs. 8.4 ps at 300 K LUTs: 238 vs 235 ps at 300 K

Speed-up 2.4 vs 10.8% toward 300 K



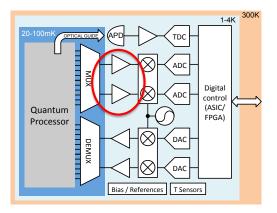


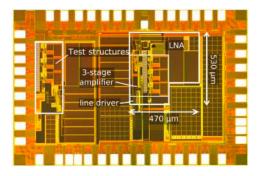

ADC on FPGA (1.2GSa/s)



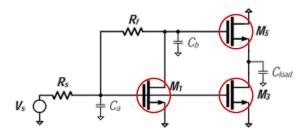
ADC on FPGA

- Two tones: ≈ 36 / 41 MHz
 - IM2 = 38 dB
 - IM3 = 46 dB
- Many secondary harmonics
- Interference with 100 MHz (sampling tone)

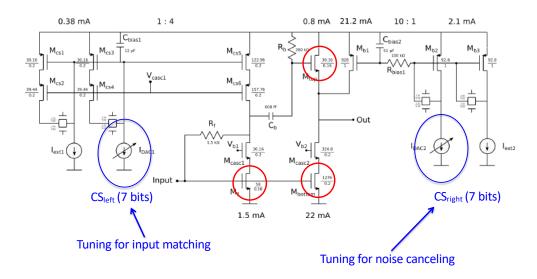


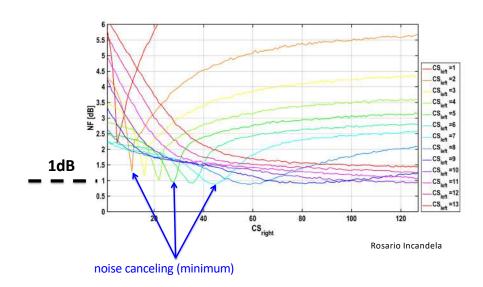


H. Homulle et al., TCAS I, 63(11), 1854-1865, 2016

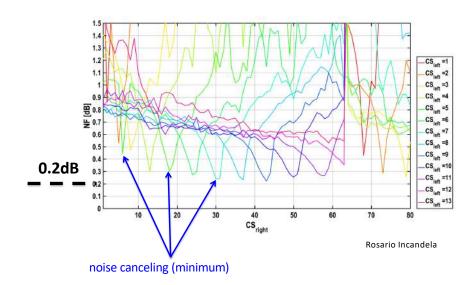


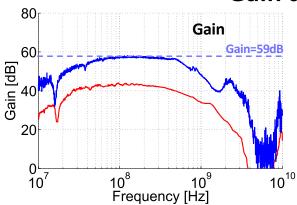
Low Noise Amplifiers (Cryo-LNAs)

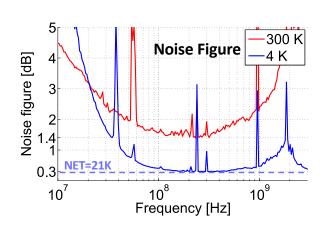

Cryo-LNA

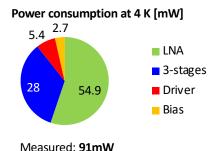

F. Bruccoleri et al., JSSC 2004

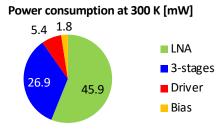
- Standard 160nm CMOS
- 500 MHz Bandwidth
- 0.1dB Noise figure
- 7K noise-equivalent temperature


Cryo-LNA


Noise Figure at RT


Noise Figure at 4K


Gain and Noise



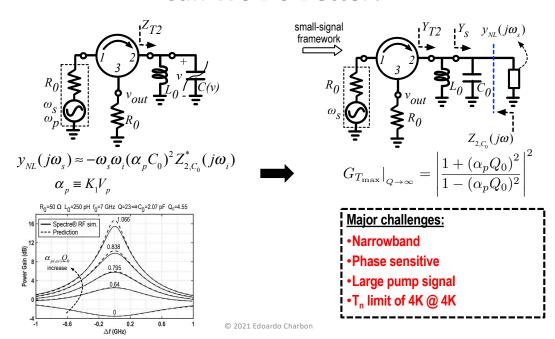
B. Patra, R. Incandela et al, JSSC 2018

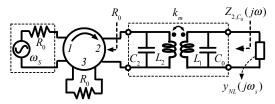
Power

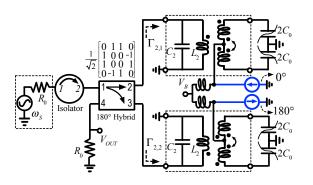
Measured: 80mW

Sharing 150x 1MHz-channels (one channel per qubit)

0.61mW per qubit

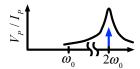

Rosario Incandela


Can We Do Better?


Amplifier Metrics	Cryogenic HEMT	JPA	TWPA 1.0	TWPA 2.0	
Power Dissipation	16 mW	100 pW	1 nW	5 nW	
Bandwidth (>15 dB gain)	11 GHz	100 - 200 MHz	6 GHz	5 GHz	
1-dB Compression point	0 dBm	-110 dBm (3 qubits)	-95 dBm (20-30 qubits)	-85 dBm (> 100 qubits)	
Noise Temperature	5 K	400 mK	400 mK	400 mK	
External Hardware	Isolator	Direct. Coupler, Circulator	Direct. Coupler	None	

Can We Do Better?

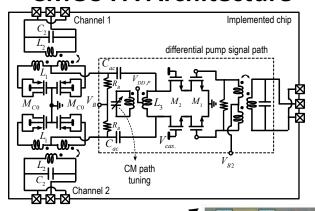
CMOS Parametric Amplifier



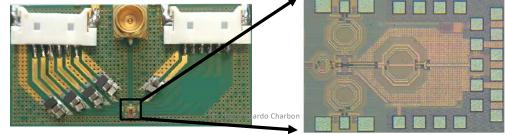
1) Transformer-based parametric amplifier

✓ Allow for broadband operation

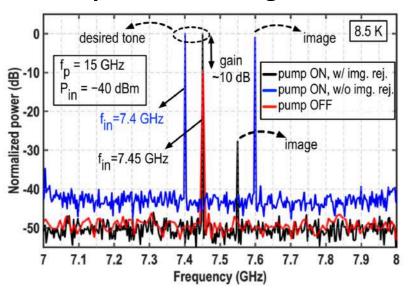
2) CM impedance peaking


- ✓ Suppress the pump signal leak
- ✓ Reduce pump power consumption

3) "image"-rejection architecture

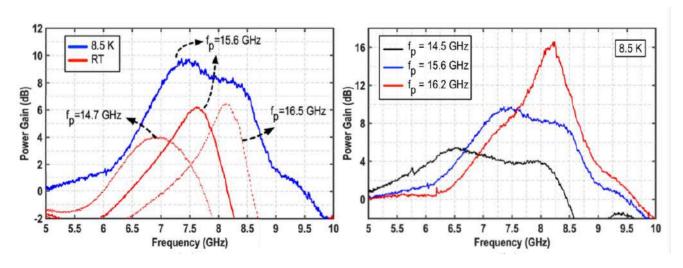

- ✓ Double the usable RF bandwidth.
- ✓ Phase-insensitive operation
- ✓ Allow for T_n limit of below 4K

CMOS PA Architecture

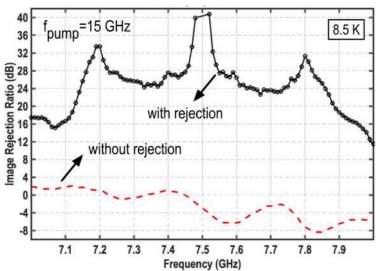


M. Mehrpoo, F. Sebastiano, E. Charbon, M. Babaie, *Solid-State Circuit Letters*, 2020

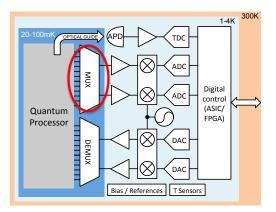
 $0.825 \ mm^2$

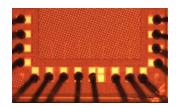


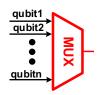
Spectrum of Single Tone

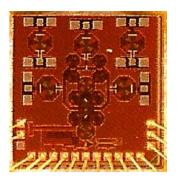

M. Mehrpoo, F. Sebastiano, E. Charbon, M. Babaie, Solid-State Circuit Letters, 2020

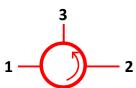
Power Gain vs. Pump Frequency and Temperature

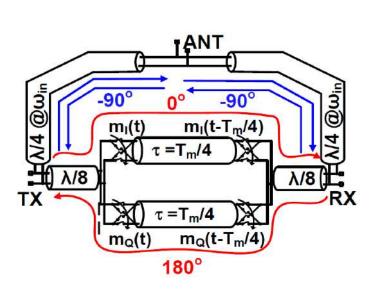

M. Mehrpoo, F. Sebastiano, E. Charbon, M. Babaie, Solid-State Circuit Letters, 2020

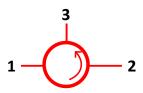

Image Rejection




M. Mehrpoo, F. Sebastiano, E. Charbon, M. Babaie, Solid-State Circuit Letters, 2020


CMOS Passive Circulators & Multiplexers



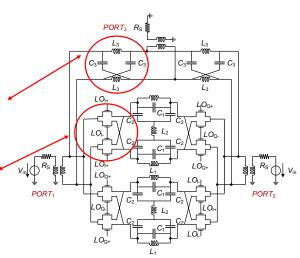


Transmission Line Circulator

S-parameters at ω_{in} = $3\omega_m$

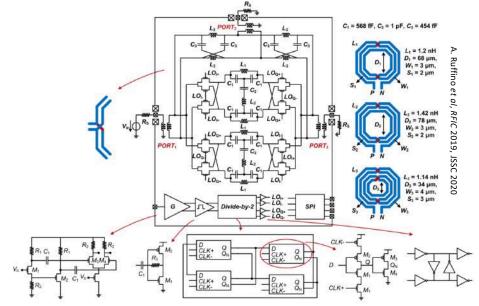
$$S = \begin{bmatrix} 0 & 0 & -1 \\ -j & 0 & 0 \\ 0 & -j & 0 \end{bmatrix}$$

Passive Circulator Architecture

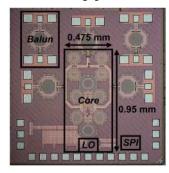

 Non-reciprocal behavior due to staggered commutation

Passive LC all-pass filters

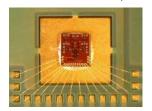
 Passive mixers with nonoverlapping I/Q phases


On-chip LO divider and I/Q generation

SPI control for tunability

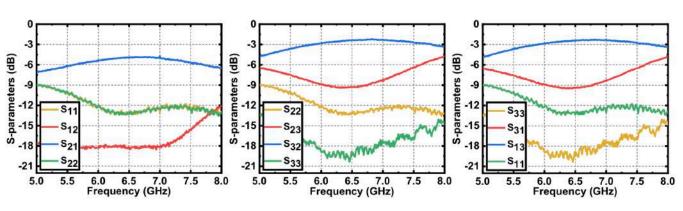

 $P_{DC} = 1.7 \text{ mW}$ $P_{AUX} = 8 \text{ mW}$

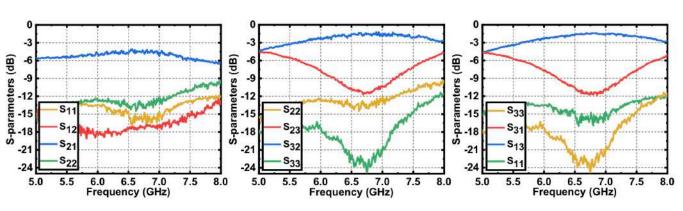
Passive Circulator Architecture



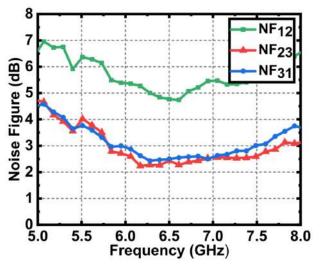
CMOS 40 nm Circulator Prototype

- TSMC CMOS 40 nm technology
- Tape-out, PCB design and measurements at 300 K and 4.2 K
- RF probing with LakeShore CPX probe station

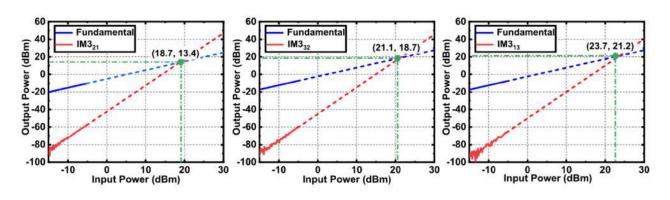

A. Ruffino et al, RFIC 2019, JSSC 2020



Measured S-parameters (300K)

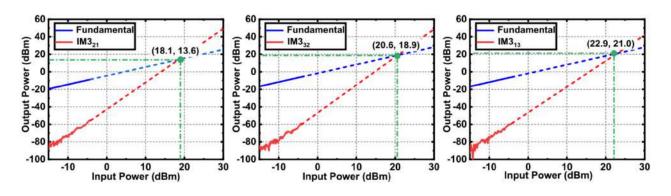

A. Ruffino et al, RFIC 2019, JSSC 2020

Measured S-parameters (4.2K)


A. Ruffino et al, RFIC 2019, JSSC 2020

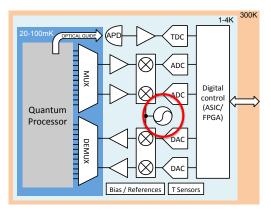
Circulator Noise Figure (300K)

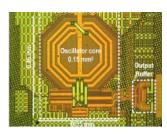
Minimum noise figure of 2.1 dB is measured, consistent with insertion loss measurements. There is no excess noise from clock generation path.


Circulator Linearity (300K)

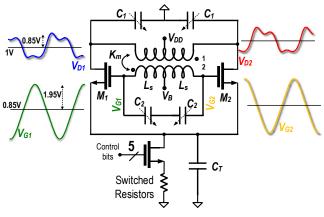
A. Ruffino et al, RFIC 2019, JSSC 2020

High linearity is measured in all directions, due to the quasi-passive nature of the circulator.

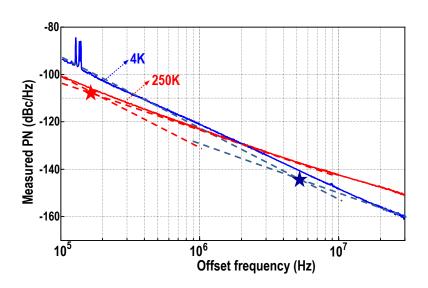

Circulator Linearity (4.2K)



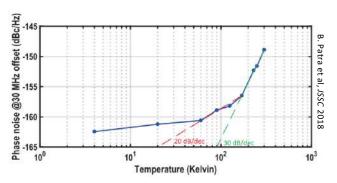
A. Ruffino et al, RFIC 2019, JSSC 2020


High linearity is measured in all directions, due to the quasi-passive nature of the circulator.

Cryo-Oscillators

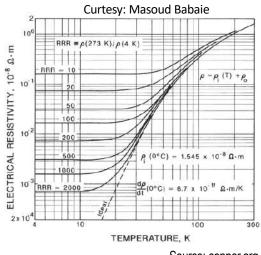


Cryo-Oscillator (Class F)

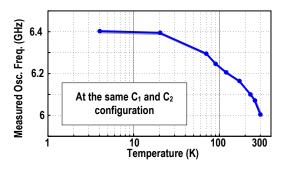


M. Shahmohammadi, ISSCC 2015

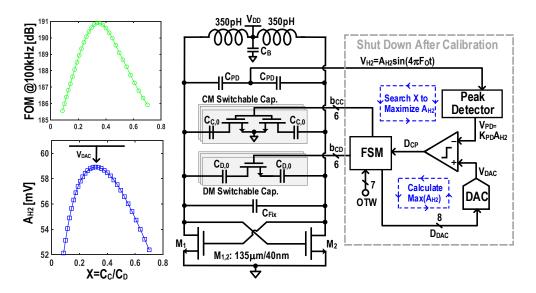
Phase Noise



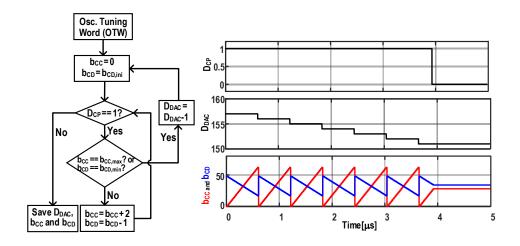
Measured Phase Noise


Sources of noise:

- Thermal noise
- Shot noise
- Impurities in copper

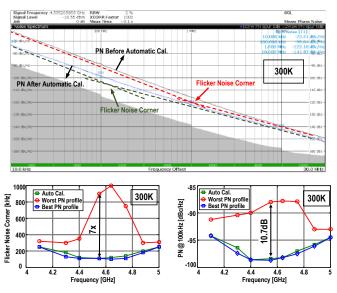

Source: copper.org

Frequency Stability

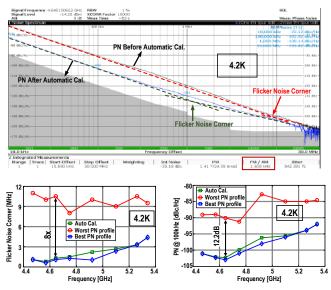


B. Patra et al, JSSC 2018

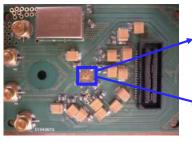
Improving Frequency Stability

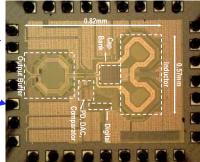


Improving Frequency Stability (2)


J. Gong, F. Sebastiano, E. Charbon, M. Babaie, ISSCC 2020

Phase Noise at 300K


J. Gong, F. Sebastiano, E. Charbon, M. Babaie, ISSCC 2020


Phase Noise at 4K

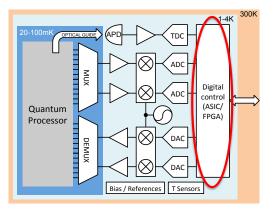
J. Gong, F. Sebastiano, E. Charbon, M. Babaie, ISSCC 2020

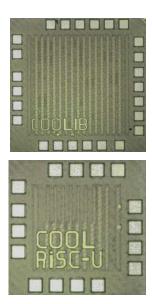
Implementation in 40nm CMOS Node

Measurements at RT:

Technology: 40nm CMOS

F_{out}: 4.05-5.16GHz (24.1%)


F_{ref}: 20MHz

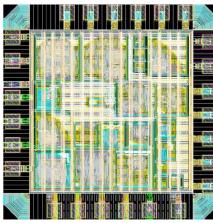

Supply: 0.5V (oscillator core) Power consumption: 3.2mW

PN @10MHz: -141.5dBc/Hz

PN@100kHz:-98.8dBc/Hz

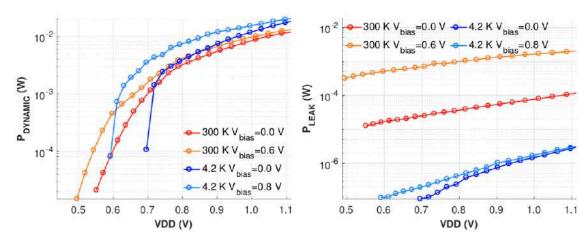
Cryo-Logic

Ultra-Low Voltage Library 'cooLib'

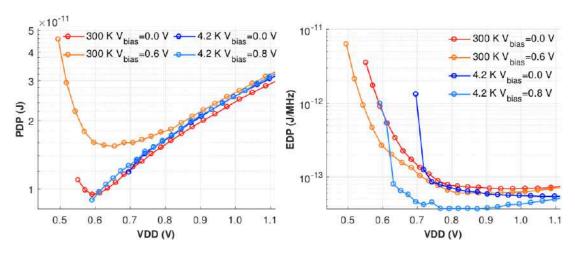

- Digital library optimized for 4K
- Ultra low voltage operation (100s mV)
- Sub-threshold bias of N/P MOS
- · Resilient to latchup and hysteresis-free
- Several logic families (static and dynamic CMOS)
- Compatible with commercial P&R tools

D-Flip-flop optimized for 4K (40nm CMOS)

12


Test Chip Implementation

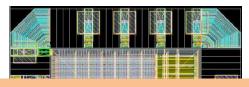
- Compare 'CooLib' cells to foundry supplied std. cells of TSMC40LP process
- Contains commonly encountered digital circuits
 - i.e. unsigned multiplier
- Four versions per circuit
 - Static 'CooLib'
 - Domino 'CooLib'
 - TSMC40LP, restricted
 - TSMC40LP, unrestricted
- One 'true' domino logic implementation



E. Schriek et al., IEEE Solid-State Circuits Letters 2020

Dynamic vs. Static Power at Cryo

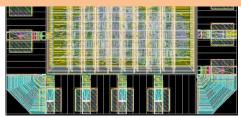
FOMs


PDP: power-delay product EDP: energy-delay product

Benchmarking

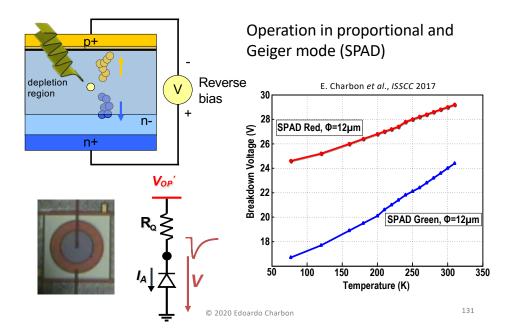
Benchmark	Temp.	$V_{DD,MIN}$ [V]		$F_{MAX} @ 0.6 \text{ V [MHz]}$			$F_{MAX} @ 0.7 \text{ V [MHz]}$			P_{AVG} @ 100 kHz $[\mu W]$			
		Pro- posed	A	В	Pro- posed	A	В	Pro- posed	A	В	Pro- posed	A	В
16X16 Multiplier	4.2 K	0.54	0.68	0.68	16.3	(5)	S#3	74.2	4.6	2.0	2.34	3.76	3.88
	300 K	0.3	0.49	0.44	100.4	9.7	17.4	145.2	34.0	39.7	0.61	2.68	1.92
EPFL Sine	4.2 K	0.58	0.68	0.68	1.95	-		20.9	2.2	1.1	3.91	4.00	4.46
	300 K	0.39	0.34	0.39	15.2	9.2	9.5	29.6	25.5	26.4	3.46	2.11	2.18
EPFL Int- to-Float	4.2 K	0.54	0.68	0.68	51.4	(4)	1923	178.1	42.5	11.7	0.80	1.57	3.41
	300 K	0.24	0.38	0.36	118.5	75.2	73.44	174.2	191.9	158.0	0.08	0.55	0.28
EPFL Round- Robin Arbiter	4.2 K	0.58	0.68	0.68	21.6	(+)	-	46.6	2.0	1.8	7.89	11.56	11.64
	300 K	0.32	0.32	0.31	33.7	10.0	34.7	59.9	37.3	80.8	1.72	3.20	2.25

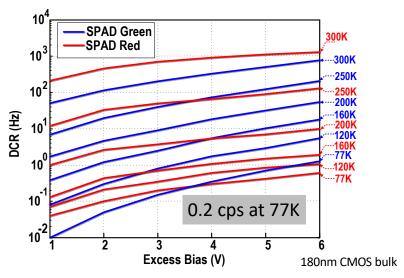
E. Schriek et al., IEEE Solid-State Circuits Letters 2020


'CooLib' RISC-V Implementation

FEATURES

 RISC-V (picorv32, open-source) implemented using 'CooLib'

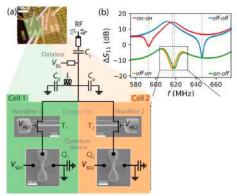

Fully functional μP operating at 4K

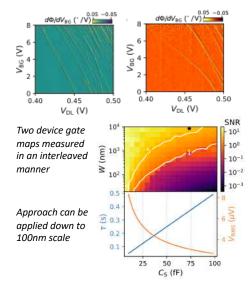

E. Schriek et al., IEEE Solid-State Circuits Letters 2020

- Interfacing by 'CooLib' level-shifters
- UART interface for serial in/output
- JTAG interface for SRAM write/read

Cryo-Single-Photon APDs (Cryo-SPADs)

Cryo-SPADs

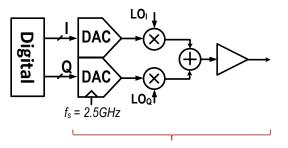


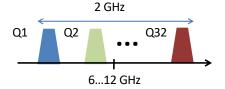

B. Patra et al., JSSC 2018

Qubits and Control in the Fridge

Step 1: Multiplexing Qubits

Step 2: Reading Qubits


- Single-shot dispersive readout
- Single electron transistor readout
- · (limited) use of 3D stacking
- Ideally bring qubits to 1-4K, make them CMOS-compatible

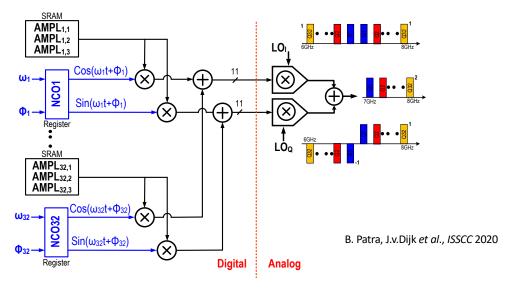

H. Homulle et al., QuRO interface Silicon Quantum Electronics Workshop, 2018

Step 3: Controlling Qubits

➤ Lower Speed DAC + Mixer

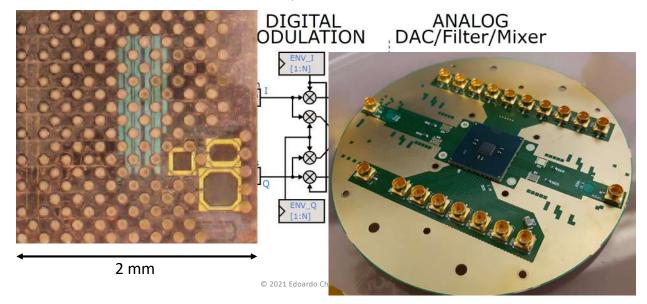
Analog: noise/linearity specifications known + feasible

Controlling Qubits: Specs

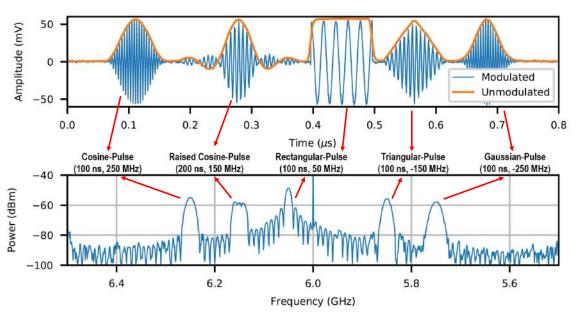

• Target fidelity: 99.99% for 1...10 MHz operation

Analog:

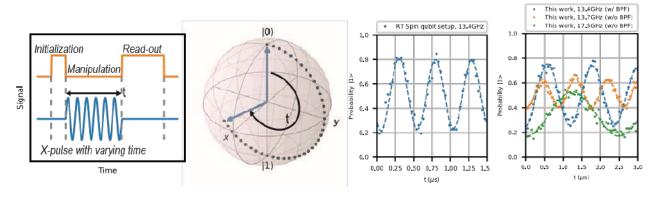
Error Source	Туре	Value	Contribution	
Microwave frequency	inaccuracy	35.4 kHz	1-F = 12.5 ppm	
(nominally 513 GHz)	noise	35.4 kHz _{rms}	1-F = 12.5 ppm	
Microwave phase	Inaccuracy	0.20 °	1-F = 12.5 ppm	
	noise	0.20 °	1-F = 12.5 ppm	
Microwave amplitude	inaccuracy	38.3 μV	1-F = 12.5 ppm	
(nominally 17 mV, -53 dB)	noise	38.3 μVrms	1-F = 12.5 ppm	
Microwave duration	inaccuracy	113 ps	1-F = 12.5 ppm	
(nominally 50 ns)	noise	113 psrms	1-F = 12.5 ppm	


F = 99.99%

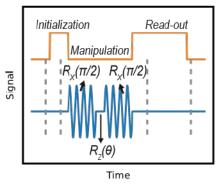
Controller Architecture: Horse Ridge

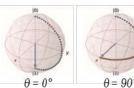


Controller Implementation


B. Patra, J.v.Dijk et al., ISSCC 2020

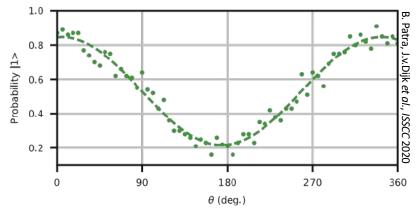
Pulse Shaping

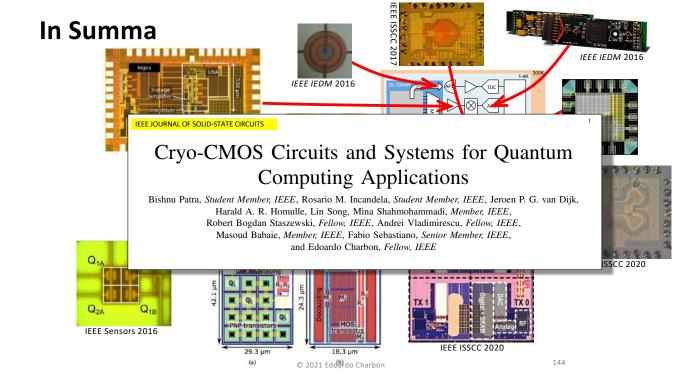

Rabi Experiment



B. Patra, J.v.Dijk et al., ISSCC 2020

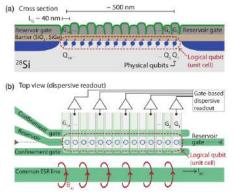
Qubit Manipulation



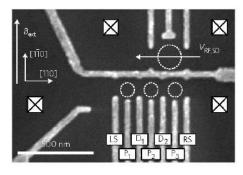


Comparison Table

	Horse Ridge (ISSCC'20)	ISSCC'19	RSI'17	Spin qubit setup
Operating Temperature	3 K	3 K	300 K	300 K
Qubit platform	Spin qubits + Transmons	Transmons	Transmons	Spin qubits
Qubit frequency	2 – 20 GHz	4 – 8 GHz		< 20 GHz
Channels	128 (32 per TX)	1	4	1
FDMA	Yes, SSB	No	Yes, SSB	No
Data Bandwidth	1 GHz	400 MHz	960 MHz	520 MHz
Image & LO leakage calibration	On chip	Off chip	Yes	
Phase correction	Yes	No	No	No
Fidelity (expected)	99.99%	-	-	-
Waveform/Instructions	Upto 40960 pts AWG	Fixed 22 pts symmetric		16M pts AWG
Instruction set	Yes	No	Yes	Yes
Power / TX	Analog: 1.7 mW/qubit * Digital: 330 mW ‡	Analog < 2 mW/qubit # Digital: N/A		850 W
Chip area / TX	4 mm ²	1.6 mm ²	Discrete	Rack mount
Technology	22 nm FinFET CMOS	28 nm bulk CMOS	components	

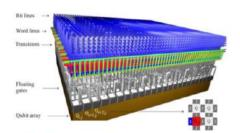

^{*} including LO/Clock driver; only RF-Low active # does not mention circuits included

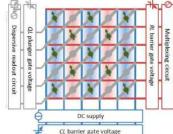

[‡] can be reduced with clock gating

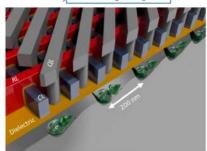


5. Conclusions

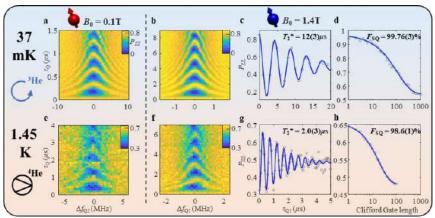
Realizations of 1D Qubit Arrangements




Baart et al, Nat Nano (2017)


Proposals for Scalable Fault-Tolerant

2D Qubit Arrangements

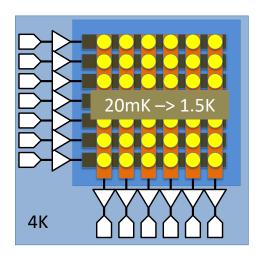

M. Veldhorst et al. (UNSW), Nature Comm. (2017)

R. Li et al., arXiv 1711.03807 (2017)

SiMOS QD Qubit Operation at 1.5 Kelvin

Silicon quantum processor unit cell operation above one Kelvin

C. H. Yang,^{1,*} R. C. C. Leon,¹ J. C. C. Hwang,^{1,†} A. Saraiva,¹ T. Tanttu,¹ W. Huang,¹ J. Camirand Lemyre,² K. W. Chan,^{1,‡} K. Y. Tan,^{1,‡} F. E. Hudson,¹ K. M. Itoh,³ A. Morello,¹ M. Pioro-Ladrière,^{2,4} A. Laucht,¹ and A. S. Dzurak^{1,§}


⇒ 1.5 K performance comparable to ^{nat}Si at 100 mK!

Courtesy: A. Dzurak

Platforms for the 2D Approach

- Single-shot dispersive readout could be the core of column readouts
- Use *imaging sensor* readout as inspiration
- Use tunneling barriers as selectors
- (limited) use of 3D stacking
- Ideally bring qubits to 1-4K, make them CMOS-compatible

Tradeoffs

1-qubit gate:

Oscillator phase noise Timing accuracy

...

<u>2-qubit gate:</u> Voltage drift Timing jitter ...

Power

(~ 1 mW/qubit)

Qubit read-out:

Amplitude noise

...

- Fidelity is usually expressed as a percentage, ofter referred to as x9's (e.g. 5 9's = 99.999%)
- Higher fidelity usually requires high power, which is budgeted, espcially at low temperatures (e.g. μW of thermal absorption at mK, while W at 4K)

Quantum Computing

- A quantum computer is a new computing paradigm and as such it holds the promise to handle today's intractable problems
- A qubit is fragile and thus needs to be constantly corrected to extend its coherence and to maintain fidelity
- Cryogenic electronics for quantum computing ensures compactness and scalability to much larger quantum processors

IceQubes: International Workshop on Cryogenic Electronics for Quantum Systems

June 2021, Neuchâtel - Switzerland

