# Programm

# Additive manufacturing (3d Printing) and application to micro-mechanics

#### Eric Boillat1

<sup>1</sup>Laboratoire de Métallurgie Thermomécanique Institut de Science des Matériaux EPFL

HIM, june 04, 2020

#### Five parts

| Part I   | Generalities on additive processes        |
|----------|-------------------------------------------|
| Part II  | Photoresist processes (SLA, DLP, PolyJet) |
| Part III | Extrusion processes (FDM, BPM)            |
| Part IV  | Powder processes (3dP, SLS(M), EBDM, DMD) |
| Part V   | Computer aspects                          |

Add. processes

Add. processes

# Part I

Additive processes

#### Additive processes

Generalities Classification Historical remarks

# 1.1.1. Classification of production processes

#### The production processes fall into three main classes

- The subtractive production processes where the part is manufactured by material removal:
- milling, electrical discharge machining,
- electrochemical machining,
- The **replicative** production processes where the part is manufactured by material **addition/deformation** in/on **a shape tool**. The shape tool has **a dedicated shape** and comes in contact with the part:
- plastic injection,
- sand-casting,
- deep drawing,
- classical sintering.
- The additive production processes where the part is manufactured by material addition without use of shape tools.

#### Current names for additive processes

· Rapid prototyping, Rapid tooling, Rapid manufacturing, 3d Printing.

#### Add. processes

# 1.1.3. Some disadvantages of additive manufacturing

#### Inferior mechanical properties

- The available materials to be applied in additive processes are limited.
- The consolidation might be problematic leading to poor density/resistance or to anistropy.
- Additive processes are still relatively random processes and they are difficult to control.

#### Expensive and slow processes

- Equipments and base material for additive processes are still relatively expensive.
- For large/uncomplicated parts or for very high series, there exist **traditionnal processes** which are **much faster**.
- In general, additive processes are not adapted to low-end applications.

#### 1.1.2. Some benefits of additive manufacturing

#### Direct from CAD to part, no tooling

- They require **fewer steps** and most of the fabrication time can be hidden.
- Additive processes are **cheap in labor** due to a high degree of automation.

#### Geometrical complexity for free

- Additive processes enable the fabrication of almost any kind of geometry.
- They offer a solution to produce freely optimized design and parts with integrated functions.

#### Fast, economical and fewer transportation

- For a large class of applications (e.g. small and complicated parts) additive processes are **faster** than traditionnal processes.
- In general they also imply less waste. They do not produce chips and, in principle, only the material going into the part is used
- The additive processes are not based on highly dedicated equipments and use generic raw material. They are adapted to localized production (spare parts in aircraft carriers, space stations, machinery industry)

(see Append. 3, 1,2, 4)

Add. processes

# 1.1.4. Classification of additive processes

#### Four main categories:

| Material       | Further distinctions   | Examples                                                                 |
|----------------|------------------------|--------------------------------------------------------------------------|
|                | Light deliver.         |                                                                          |
| Photoresist    | laser                  | Stereolithography (SLA)                                                  |
| UV-curing      | flash + selective dep. | Polymer jetting (PolyJet)                                                |
|                | structured flash       | Direct light processing (DLP)                                            |
|                | material               |                                                                          |
| Extruded solid | Amorph. thermoplastic  | Fused deposition model. (FDM)                                            |
|                | Wax                    | Ballistis part. model. (BPM)                                             |
| Jetted powder  |                        | Direct metal Deposition (DMD)                                            |
|                | consol. principle      |                                                                          |
| Powder bed     | Binding                | Binder jetting (3dP)                                                     |
|                | Thermal consolidation  | E-Beam direct manufacturing (EBDM) Sel. laser sintering/melting (SLS(M)) |

# 1.1.5. History of additive processes

#### Main developments

| Date | Inventor(s)                     | Process       | Material             |
|------|---------------------------------|---------------|----------------------|
| 1979 | R.Householder, H.Kodama, C.Hull | SLA           | Photoresist          |
| 1989 | S.Crump                         | FDM           | ABS wire             |
| 1989 | H.Marcus, C.Deckard (UTA)       | SLS           | Thermopl. powder     |
| 1991 | EOS™                            | SLS-SLM       | Metallic powder      |
| 2000 | -                               | Objet Polyjet | (Jetted-)photoresist |

#### Milestones

| Date | Event                     | and main consequences                                        |
|------|---------------------------|--------------------------------------------------------------|
| 2009 | Stratasys patent about FL | DM in the public domain                                      |
|      |                           | Development of inexpensive jet- or extrusion- based machines |
|      |                           | Popularization of the name 3d-printing instead of AM         |
| 2013 | Obama, State of union     |                                                              |
|      |                           | starting point of national competence centre on AM (NAMII)   |

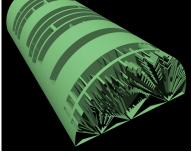
#### **APPENDICES**

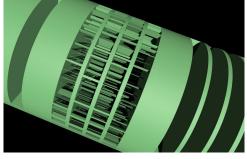
000000

# **A 1**: Integrated functions: innovation through AM

New generation of sundial.

Analog sundial (classic)


Digital sundial (3d-printed)

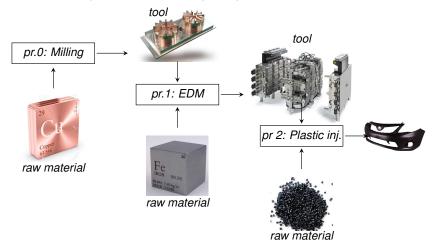





# **A 2**: Integrated functions: innovation through AM

New generation of sundial, only possible by 3d-printing.






00000

000•00

#### A 3: Process chain

#### Illustration of a process chain to get a part



- The combination of process 0, 1 and 2 is called a process chain.
- The use of additive manufacturing may simplify a given process chain!

# **A 4**: Faster through additive manufacturing

#### 3d printed (SLM) fuel nozzle



- 3 parts instead of ≈ 237 to be assembled (mostly welding).
- Manufacturing time: one day.
- · Material: nickel based alloy.
- Other benefits:
- (i) Fuel savings due to improved channels geometry (\$ 3 millions per year and per aircraft).
- (ii) Increased lifetime due to fewer welds (=weak points).

00000

# A 5: The NAMII National Additive Manufacturing Innovation Institute

#### A new industrial revolution



 Additive manufacturing is seen as a way to maintain the competitiveness and the sustainability of our industry in the future:

"the 3-D printing has the potential to revolutionize the way we make almost everything. There's no reason this can't happen in other towns."

Obama, State of Union address, 2013

#### National competence centers on additive manufacturing







Part II

Photoresist processes

Stereolithography

Direct light processing

Photopolymer jetting

 SLA
 DLP
 Polyjet
 SLA
 DLP
 Polyjet

 ●000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000
 0000000000
 000000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 00000000000
 000000000
 000000000
 000000000
 0000000000
 000000000
 000000000
 00000000000
 0000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 000000000
 000000000
 000000000
 0000000000
 000000000
 000000000
 0000000000
 000000000
 000000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 0000000000
 0000000000
 00000000
 00000

# Basic principle

- · A 3D part is built layer by layer from a photoresist.
- The resin is selectively consolidated by a UV laser deflected by galvanometric mirrors. The principle of consolidation is the curing of the photoresist molecules under the effect of UV light (UV-curing).

2.1.1. Stereolithography, basic

- A chemical substance (inhibitor) prevents the UV-curing to diffuse to all the photoresist.
- The intelligence of the process goes through the management of the galvanometric mirrors displacements.

#### Etymology and acronym (3dPrinting before time!)

- •-lithography means writing (γραφη) on the stone (λιθος)
- stereo- is a reference to tri-dimensionnal reconstruction (στερεος=solid)
- The common acronym for this process is <u>SLA</u>.

Stereolithography

# 2.1.2. Stereolithography, basic design

# 

# 2.1.3. Stereolithography, the machine

#### Details of the machine



 SLA
 DLP
 Polyjet
 SLA
 DLP
 Polyjet

 ○000 ●○○
 ○0000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○0000000
 ○000000
 ○0000000
 ○0000000
 ○0000000
 ○0000000
 ○0000000
 ○0000000
 ○0000000
 ○0000000
 ○0000000
 ○0000000
 ○0000000
 ○0000000
 ○0000000
 ○0000000
 ○0000000
 ○0000000
 ○0000000
 ○0000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○0000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○0000000
 ○000000
 ○000000
 ○000000
 ○0000000
 ○0000000
 ○0000000
 ○0000000

# 2.1.4. Stereolithography, parts

#### Example of parts

lost patterns prototypes/hobbies



occlusal protection dental models surgical guides



source: Formlabs™

# 2.1.5. Stereolithography, technical data

#### Mechanical properties of part (order of magnitude)

| Material                       | E, GPa     | $R_m$ , MPa | $\varepsilon_{\mathrm{rup}}$ , % |
|--------------------------------|------------|-------------|----------------------------------|
| VisiJet Flex<br>VisiJet HiTemp | 1.6<br>3.4 | 38<br>66    | 16<br>6                          |
|                                |            |             |                                  |

#### Equipment (type, dimensions)

| Laser                 | $\lambda$ , $\mu$ m | P, W  | <b>Build volume</b> , mm <sup>3</sup> |
|-----------------------|---------------------|-------|---------------------------------------|
| Helium-Cadmium (HeCd) | 0.325               | 0.025 | $250 \times 250 \times 500$           |

#### **Performances**

| <b>x-y resol.</b> , $\mu$ m | layer thick., $\mu m$ | <b>build speed</b> , mm <sup>3</sup> /s | layering time, s  |
|-----------------------------|-----------------------|-----------------------------------------|-------------------|
| 25 – 50                     | 50 – 100              | MCR = 5 - 10                            | $10 - 20/1 - 2^1$ |

(see Append. 7, 8)

| 1         |         |       |
|-----------|---------|-------|
| 1down-top | or top- | -dowr |

DLP

#### Companies

- •3DSYSTEMS™ (PROJET serie, IPRO serie, sPro serie)
- FORMLABSTM.

#### Advantages and applications

- Relatively precise (even better then 25  $\mu$ m)
- Transparent materials, assembly of several parts (bonding),
- · Master model for investment casting, for PUR molding (vacuum casting),
- Rapid manufacturing of parts in small series, fabrication of custom items.

#### Disadvantages and issues

- · Technique limited to photoresists,
- · Standard materials are expensive, toxic and difficult to store,
- Significant change in properties of the parts with time (aging),
- Post-processing required as well as supporting structures.

(see Append 9, 10, 11, 12, 13, 14 15, 16)

# Digital Light Processing (DLP)

 SLA
 DLP
 Polyjet
 SLA
 DLP
 Polyjet

 0000000
 0 ●00000
 00000000
 00000000
 00 ●0000
 00 ●0000
 000000000

# 2.2.1. Direct light processing

#### Basic principle

- · A 3D part is built layer by layer out of a photoresist
- The resin is selectively consolidated by a UV flash deflected by a network of mirrors. The principle of consolidation is **photocuring**.
- The details of the part geometry are transferred into the process through the management of the deflecting mirrors.
- The acronym of this process is **DLP**.

#### Direct light processing and stereolithography

 Direct light processing derives from the stereolithography by a modification of the consolidation tool and of the intelligence transfer.

# 2.2.2. The DLP process

#### Diagram Consolidation mechanism: cross-linking

Feeding of

Tank

 $e_{\downarrow}$ 

(photoresist)

photoresist

Projector DLP

# Construction plate Curing

# 2.2.3. Direct light processing

#### Typical equipments

# Sisma EVE Envisiontec TM B9 Creator TM envisionTec. Source: En

# 2.2.4. DLP (Envisiontec™), technical data

#### Use of material

| Material            | Application                                 |
|---------------------|---------------------------------------------|
| Standard resin      | prototyping, master models (vacuum casting) |
| Thermofusible resin | lost patterns (investment casting)          |
| Charged resin       | mold cavity                                 |

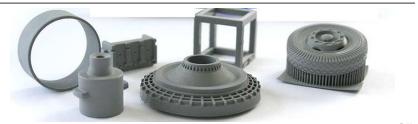
#### Equipment (type, dimensions)

| Build volume, mm <sup>3</sup> | Low Precision (LP Mode)    | High Precision (HP Mode)  |
|-------------------------------|----------------------------|---------------------------|
|                               | $120 \times 90 \times 230$ | $60 \times 45 \times 230$ |

#### Performances

DLP beamer with 1400 × 1050 pixels

| Mode | x-y resol. | layer thick. | build speed       | layering time |
|------|------------|--------------|-------------------|---------------|
| LP   | 86 $\mu$ m | 50 $\mu m$   | n.a. $(\infty)^2$ | < 10 s        |
| HP   | 43 $\mu$ m | 25 $\mu$ m   | n.a. $(\infty)^2$ | < 10 s        |


<sup>&</sup>lt;sup>2</sup> the build time is not sensitive to part volume but only to part height: fab.time =  $\frac{\text{height }^T \text{layer}}{\text{e } N}$  with e: épaisseur de couche, N: taille de lot.

# 2.2.5. Direct light processing

#### Examples of parts

| Thermofusible resist (PIC100) | Resist with ceramic filler(RC25) |
|-------------------------------|----------------------------------|
|                               |                                  |

#### Standard resist (R11)



# 2.2.6. Direct light processing

#### DLP characteristics/ providers

- No DLP system is based on a down-top construction which has only drawbacks (more material, recoating, ...) compared to the top-down strategy.
- Providers: Envisiontec™, B9 Creator™, Sisma™, Carbon3d™...

#### Advantages (compared to stereolithography)

- Price and simplicity of the machine, fabrication time possibly faster.
- Indirect production of ceramic parts (Lithoz™).

#### Disadvantages compared to stereolithography

- Less precise ( $\simeq 45 \,\mu m$  against  $\simeq 20 \,\mu m$ ), lower productivity.
- Smaller work surface ( $\simeq 60 \times 45 \, \text{mm}^2$  against  $\simeq 250 \times 250 \, \text{mm}^2$ ).
- Achieving the productivity and accuracy of SLA would require to increase the resolution of the DMD by a factor > 100 (175MPx against 1.5MPx now).

# 2.3.1. Photopolymer jetting

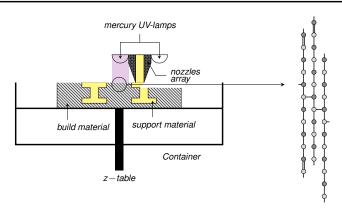
#### Basic principle

- A 3D part is built layer by layer out of a photoresist selectively deposited by an array
  of nozzles.
- The resin is consolidated by a UV flash and the principle of consolidation is UV-curing.
- The part geometry in transferred into the process through the management of the nozzles (displacement and feed rates).

#### Remarks

- Photopolymer jetting derives from stereolithography by a change in the consolidation tool and in the way to transfer the part geometry.
- Its recent development is due to the new nozzle technology for handling fluid with high viscosity.
- The nozzles deliver at least two different materials (construction/support).

 SLA
 DLP
 Polyjet
 SLA
 DLP
 Polyjet

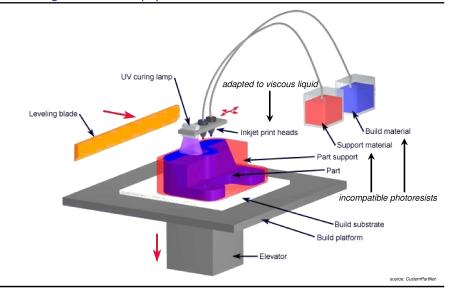

 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 000000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 000000000
 000000000
 000000000
 000000000
 000000000
 <td

# 2.3.2. Photopolymer jetting

Photopolymer jetting

#### Diagram

#### Consolidation mechanism: cross linking




#### Remarks

- The nozzles array translates along the x axis
- The build and support materials are two different photoresists. These materials are simultaneously cured by UV lamps.

# 2.3.3. Photopolymer jetting

#### Block diagram of the equipment



# 2.3.4. Photopolymer jetting

#### Equipments: Eden and Connec Serie (Objet<sup>TM</sup>)

# Eden 260 Connec 500



# 2.3.5. Photopolymer jetting

#### Example of parts 1





 SLA
 DLP
 Polyjet
 SLA
 DLP
 Polyjet

 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 000000
 000000</td

# 2.3.6. Photopolymer jetting

#### Example of parts 2









# 2.3.7. Photopolymer jetting

#### Example of parts 3





 SLA
 DLP
 Polyjet
 SLA
 DLP
 Polyjet

 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○0000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○0000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○0000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000
 ○000000

•000000000000

### 2.3.8. Photopolymer jetting, technical data

#### Mechanical properties of part (order of magnitude)

| Material | E, GPa  | $R_m$ , MPa | $\varepsilon_{ m rup}$ , % |
|----------|---------|-------------|----------------------------|
| RGD 515  | 2.6-3.0 | 55-60       | 25-40                      |
| RGD 525  | 3.2-3.5 | 70-80       | 10-15                      |

#### Equipment (type, dimensions)

| Build | <b>volume</b> , mm³         |    |                              |
|-------|-----------------------------|----|------------------------------|
| from  | $260 \times 260 \times 200$ | to | $1000 \times 800 \times 500$ |

#### Performances

| <b>x-y resol.</b> , $\mu m$ | layer thickness, $\mu m$ | <b>build speed</b> , mm <sup>3</sup> /s | layering time, s       |
|-----------------------------|--------------------------|-----------------------------------------|------------------------|
| 40 – 50                     | 15 – 80                  | $MCR = n.a.(\infty)^1$                  | $\simeq$ 20 $-$ 15 $s$ |

<sup>1</sup> the build time is not sensitive to part volume but only to part height: fab.time =  $\frac{height}{e} \frac{T_{layer}}{N}$  with e: épaisseur de couche, N: taille de lot.

#### **APPENDICES**

### 2.3.9. Photopolymer jetting

#### Characteristics of the jetted photopolymer process, providers

- The construction material and the support material are solid photoresists. They are incompatible (i.e not connected after UV-flashing).
- The photopolymer jetting process is a consequence of a recent development of nozzles able to deliver high viscosity fluid without being blocked. Traditional printhead are designed for jetting only low viscosity fluid like ink.

#### Compagnies

 This process, developed by an Israeli company (Objet™) 15 years ago, is now commercialized by Stratasys™(USA).

#### Advantages

- Price and simplicity of the machine (from 50 kFrs to 250 kFrs).
- Precision (comparable to SLA).
- · Simple management of the supports,
- · Possibility of combining materials.

# 0•0000000000

# A 6: Lithography

#### Originally a printing process (Aloïs Senefelder, 1796, Bavaria)

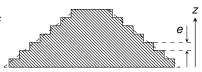
- (1) Drawing: Fat wax on a smooth limestone.
- (2) Etching: The stone is washed by a mixture of water and arabic gum:
  - $\implies$  The gum is repelled by the fat parts and absorbed by others.
- (3) Inking: The stone is inked:
  - $\implies$  The ink is retained by the fat parts but slips on the gum.
- (4) Reproduction: By pressing a paper sheet on the stone.







• by extension, one calls lithography any process where a part is partly protected (by fat, resine, ...) and then chemically etched (e.g fabrication of printed circuit board).


# A 7: Resolution of an additive process

#### Resolution in different directions

- Most of the additive processes build the part layerwise.
- Their resolution has to be considered differently in the build direction and in the layer plane.

#### In the build direction (z)

• The resolution is limited by a stair effect. It is proportional to the layer thickness e:



#### In the layer plane (x, y)

- the resolution is limited by two independant factors:
- (1) the dimensions of the smallest matter element to be added:
  - · UV-cured or molten volume, deposited liquid droplet,...
- (2) the positionning accuracy of the system depositing or inducing the consolidation of that element:
  - · nozzle, laser beam, binder jet.

# A 8: Build speed of an additive process

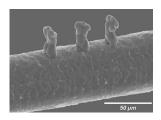
#### Build speed (material consolidation rate MCR)

- In AM, the fabrication time is essentially **proportional** to the volume of the part and **does not depend** on its geometrical complexity.
- The ratio between the fabrication time of a part and its volume is called build speed (MCR) is (unit: mm³/s):

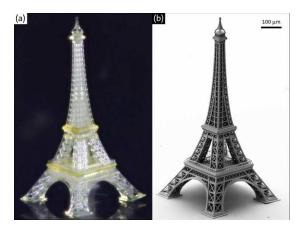
fab. time 
$$\simeq \frac{\textit{volume}}{\textit{MCR}}$$
.

- For a particular process, the build speed MCR varies between limits as a function of the used material.
- For most processes, the above formula only **underestimates** the fab. time. An accurate computation of the fabrication time of a part by an additive process also involves a term proportional to the construction height of the part:

fab. time 
$$\simeq \frac{\text{volume}}{\text{MCR}} + \frac{\text{height}}{\text{e}} \times \frac{\tau_{\text{layer}}}{N}$$
. (1)


000000000000000

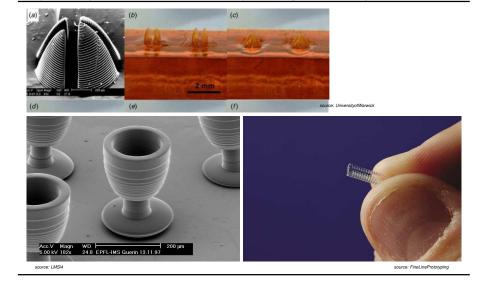
where e is the layer thickness and  $\tau_{\text{layer}}$  the **time to prepare a layer**: the ratio height/e represents the total number of layers. Note that the layering time can be **mutualized** between the N parts built in the same batch.


0000000000000

# **A 9**: Micro-stereolithography ( $\mu$ -SLA)

#### Very small parts can be obtained by scaling down the process








ource: Fraunhofer-Institut für Lasertechnik Aachen

# **A 10**: Micro-stereolithography ( $\mu$ -SLA)

#### Very small parts can be obtained by scaling down the process

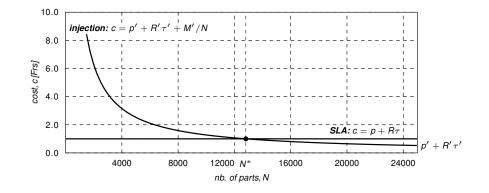


#### A 11: Manufacture of small series.

#### Electrical components



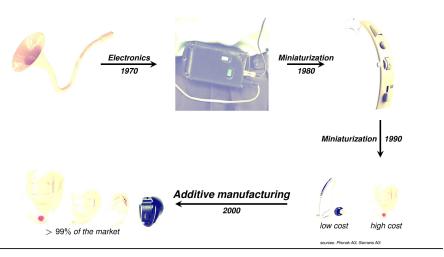



source: Fraunhofer-Institut für Lasertechnik Aache

- 16'000 parts to produce
- · The injection and SLA processes are considered
- · SLA proves to be slightly more expensive
- · SLA is finally **chosen** due to shorter lead time (2 weeks against 2 month)

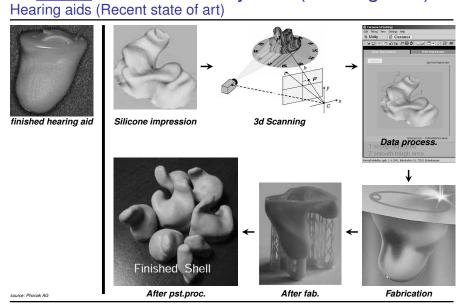
# A 12: Cost comparison SLA-injection.

#### Determining parameters and cost comparison


|           | material  | hourly rate        | fab. time, h | tool      |
|-----------|-----------|--------------------|--------------|-----------|
|           | cost, Frs | (men+mach.), Frs/h | time, h      | cost, Frs |
| SLA       | р         | R                  | au'          | _         |
| injection | р'        | R'                 |              | M'        |



00000000000000


# A 13: Custom items by SLA (Hearing aids)

Transformation of an economical model

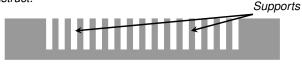


# A 14: Custom items by SLA (Hearing aids)

00000000000000



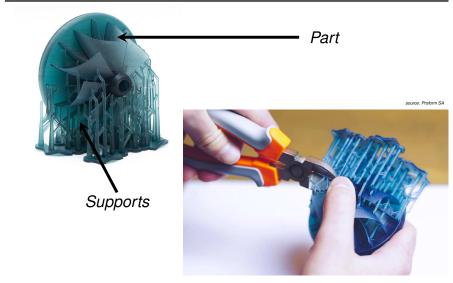
# A 15: Support structures


#### Request of support structures

- The polymerization decreases the specific volume of the resine and increases its density
- · Large overhangs have a tendency to sink inside the uncured resine

To fabricate a part with a large overhang:

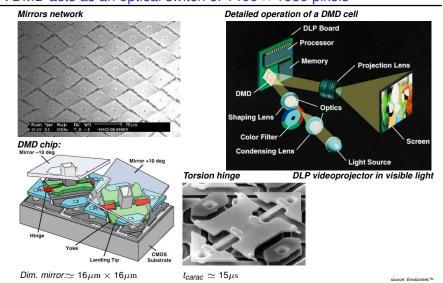



One has to construct:



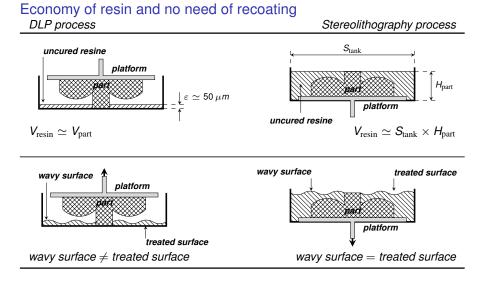
and to remove the supports afterwards

# A 16: Support structures


#### Example of support structures



00000000000000


# A 17: Digital micromirror devices (DMD)

#### A DMD acts as an optical switch of $1400 \times 1050$ pixels



# **A 18**: Some advantages to hang the part

0000000000000



# Part III

# Extrusion processes

Fused Deposition Modelling (FDM)

Fused deposition modelling (FDM)

Ballistic Particle (Multijet) Manufacturing (BPM/MJM)

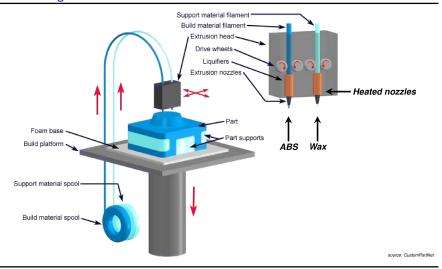
FDM •000000 FDM 000000

BPM

# 3.1.1. Fused Deposition Modelling

#### Basic principle

- · A 3d part is built out of a molten amorphous thermoplastic wire extruded from a heated nozzle.
- The original and most suited material is ABS (Acrylonitrile Butadiene Styrene).
- The part is built lines by lines and layer by layer. The principle of consolidation is liquid phase bonding.
- The details of the part geometry are transferred into the process through the management of the nozzles (displacement and feed rates).


#### Acronym and remarks

- This process is usually called FDM.
- FDM stations are generally equiped with two nozzles. The first one delivers the construction material (e.g. ABS) and the other a support material (typically wax).

<sup>&</sup>lt;sup>1</sup>Since they are less prone to shrinkage during re-solification, amorphous thermoplstics are better adapted to

# 3.1.2. Fused Deposition Modelling

#### Block diagram



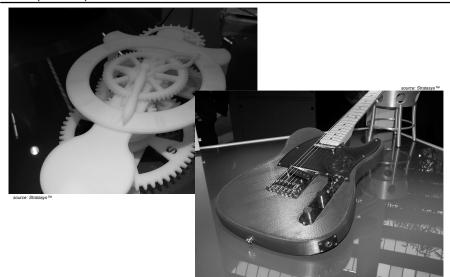
(see Append. 19)

BPM

FDM

00000

# 3.1.3. Fused Deposition Modelling


#### Examples of parts



FDM 0000•00

# 3.1.4. Fused Deposition Modelling

#### **Examples of parts**



# 3.1.5. Fused Deposition Modelling, technical data

#### Mechanical properties of part (order of magnitude)

| Material      | E, GPa | $R_m$ , MPa | $\varepsilon_{ m rup}$ , % |
|---------------|--------|-------------|----------------------------|
| ABS plus P430 | 2.3    | 37          | 3                          |
| ULTEM 9085    | 2.2    | 72          | 6                          |

#### Equipment (type, dimensions)

| Build volume, mm <sup>3</sup> |                             |    |                             |  |
|-------------------------------|-----------------------------|----|-----------------------------|--|
| from                          | $250 \times 250 \times 300$ | to | $915 \times 610 \times 915$ |  |

#### Performances

| <b>x-y resol.</b> , $\mu$ m | layer thickness, $\mu m$ | <b>build speed</b> , mm <sup>3</sup> /s | layering time, s |
|-----------------------------|--------------------------|-----------------------------------------|------------------|
| 130                         | 130-300                  | MCR <5                                  | O <sup>1</sup>   |

<sup>1</sup> The fab. time only depends on the part volume: fab. time  $= \frac{\text{volume}}{\text{MCR}}$ 

# 3.1.6. Fused Deposition Modelling

#### Companies

STRATASYSTM, MAKERBOTTM, ULTIMAKERTM, PRUSATM, REPRAP3DTM, ...

#### Advantages

- · Simple, clean and safe operation, parts with gradient of properties possible.
- · Patterns for the vacuum casting process,
- Fabrication of different type of custom items (shoes).

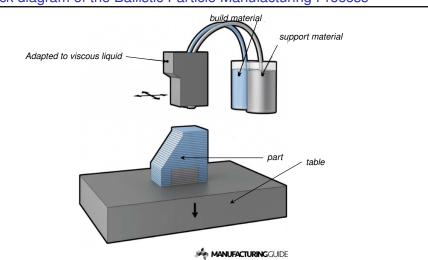
#### Disadvantages

- (Almost) exclusive use of ABS or PLA due to their particular ability to make hot bonds on top of already existing cold parts (this property is mostly connected to a favourable combination of wettability and viscosity in liquid phase).
- · Anisotropy of the part properties, less accurate then SLA or Polyjet.
- · Relatively low manufacturing speed.

(see Append. 20)

# "Ballistic Particle Manufacturing" (BPM)

FDM 0000000


#### BPM ○●○



#### BPM

# 3.2.1. Similar to FDM: the BPM™ process


#### Block diagram of the Ballistic Particle Manufacturing Process



# 3.2.2. Similar to FDM: the BPM<sup>™</sup> process

#### Companies, example of parts and comments

Companies: SOLIDSCAPE TM (part of STRATASYS TM) 3DSYSTEMS TM.







source: Solidscape™

- Compare to FDM, the materials are cheaper and the process is faster for equivalent accuracy.
- Ideal for jewelry applications (lost patterns for the investment casting process).
- FDM-like plastic can also be processed by the PROJET machines developed by 3DSYSTEMS ™. The main issue is to avoid blocking the printer head with the viscous polymer liquid.
- This process is also commercialized as MJM (MultiJet Manufacturing).

●00

# A 19: Liquid phase bonding

# 

|                       | Deposition of (part.) fused material | Wetting process             | After natural cooling |
|-----------------------|--------------------------------------|-----------------------------|-----------------------|
| l Suitable material   |                                      | cap. forces >> visc. forces |                       |
| Non-suitable material |                                      | cap. forces ≪ visc. forces  |                       |

# **APPENDICES**

A 20: Custom items (shoes) by FDM

000

Different types of shoes



Part IV

Powder processes

Binder jetting

Binder deposition

Selective Laser Sintering(Melting) (SLS(M))

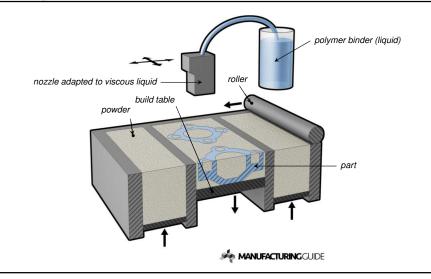
Electron beam direct manufacturing

Direct metal deposition

#### Principle

• A 3d part is manufactured layer by layer by assembling solid particles with a liquid binder (usually of polymeric type).

4.1.1. Binder jetting


- The liquid binder is distributed selectively using a inkjet print head and the consolidation principle is indirect bonding.
- The part geometry in transferred into the process through the management of the print head (displacement and flow rates).

#### Remark

 The development of this process was connected to new technologies of printhead able to deliver viscous material

# 4.1.2. Binder jetting

#### Block diagram



# 4.1.3. Binder jetting

#### Equipments: 3DSYSTEMS™ ZPrinter Serie

ZP-150 ZP-350 ZP-650



 3dP
 SLS/M
 EBDM
 DMD
 3dP
 SLS/M

 ○○○○●○○○
 ○○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○

# 4.1.5. Binder jetting

# 4.1.4. Binder jetting

#### Example of parts 1









#### Example of parts 2







EBDM

DMD

# 4.1.7. Binder deposition, technical data

#### Mechanical properties of part (order of magnitude)

| Material                   | E, GPa | $R_m$ , MPa | $\varepsilon_{\mathrm{rup}}$ , % |
|----------------------------|--------|-------------|----------------------------------|
| High Performance Composite | 7      | 43          | 4.5                              |

#### Equipment (type, dimensions)

| Build volume, mm³ |                             |  |    |                    |
|-------------------|-----------------------------|--|----|--------------------|
| from              | $200 \times 250 \times 200$ |  | to | 1200 × 1200 × 1600 |

#### **Performances**

| <b>x-y resol.</b> , $\mu$ m | layer thickness, $\mu m$ | <b>build speed</b> , mm <sup>3</sup> /s | layering time, s |
|-----------------------------|--------------------------|-----------------------------------------|------------------|
| 50 - 80                     | 100 – 200                | n.a.(∞)¹                                | 2 – 5            |

<sup>1</sup> the build time is not sensitive to part volume but only to part height: fab.time =  $\frac{\text{height}}{\rho} \frac{\tau_{layer}}{N}$  with e: layer thickness, N: batch size.

### 4.1.8. Binder jetting

#### Companies

 $3DSYSTEMS^{TM}$ , DIGITALMETAL $^{TM}$ , EXONE $^{TM}$ 

#### Advantages, applications and disadvantages

- Fast process (the specific consolidation time is  $\simeq 0$ ) in average 5 to 10 times faster than SLA. Cheap machines and equipment.
- Possible coloration and use of many materials, parts (relatively) isotropic.
- Application to metallic and ceramic powder in combination with the classical post-processing chain: debonding-sintering-infiltration.
- Manufacture of molds and cores for sand casting.
- **Disadvantage:** Poor accuracy (compared to SLA or polyjet) and poor mechanical property without post-processing.

#### Denomination

This process was originally named <u>3dP</u> for "**3d-P**rinting".
 Today the name 3d-Printing refers almost to any additive process or at least, to those where a material is jetted like a photopolymer, ABS, wax, or a binder ,...

#### **Principle**

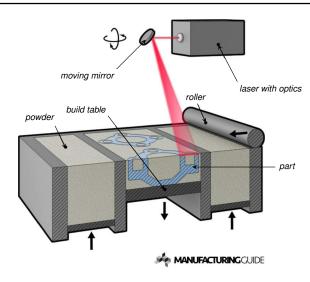
• A 3d part is manufactured layer by layer from a metallic, polymer or ceramic powder.

4.2.1. Selective Laser Sintering and Melting

- The powder is selectively consolidated by a laser beam moved by galvanometric mirrors. The physical consolidation principle is basically liquid phase sintering.
- The geometry of the part is transferred into the process by a coherent management of the galvanometric mirrors.

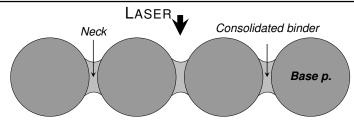
#### Acronym

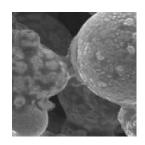
- This process is usually called <u>SLS</u> for "Selective Laser Sintering" or <u>SLM</u> for "Selective Laser Melting"
- Observe that the name sintering is used to qualify processes where the powder is only partly fused by the laser (e.g. in case of polymer or ceramic powders).
   Otherwise the name melting has to be used.
- According to new standardization rules, the names SLS and SLM should disappear in the future and be both replaced by <u>LPBF</u> for "Laser Powder Bed Fusion".

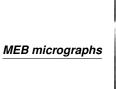

# Selective Laser Sintering and Melting

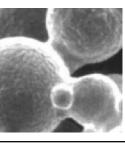
### 4.2.2. Selective Laser Sintering and Melting

# Consol. mechanism: liquid phase sint. Remark Easy recycling of unused powder - mostly for metals (sieving operations required) - less for polymers due to pre-heating


# 4.2.3. Selective Laser Sintering and Melting


#### Block diagram

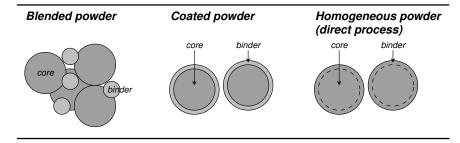




### 4.2.4. Selective Laser Sintering and Melting

#### Consolidation mechanism (details)

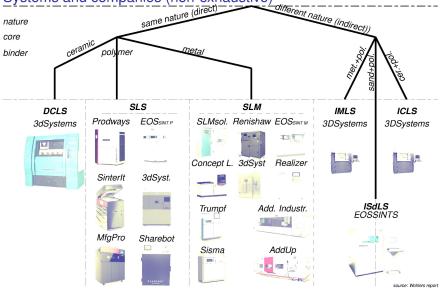









# 4.2.5. Selective Laser Sintering and Melting


#### Distinctions between different SLS(M) processes

- The SLS(M) processes are sub-categorized according to the chemical nature (metal, polymer or ceramic) of the binder and of the core particles:
- if the natures of the core and binder are the same, then the process is said to be **direct**. Otherwise the process is said to be **indirect**.
- At the powder level, the binder/core materials might be mixed in different ways:
- The binder might be the same as the core particles (direct process).
- The binder and core particles are different (blended powders).
- The binder is different but covers the core particles (coated powders).
- Observe that in indirect processes the binder is a polymer.



# 4.2.6. Selective Laser Sintering and Melting

Systems and companies (non-exhaustive)



#### 4.2.7. SLS, technical data

#### Mechanical properties of part (order of magnitude)

| Material     | E, GPa | $R_m$ , MPa | $\varepsilon_{\mathrm{rup}}$ , % |
|--------------|--------|-------------|----------------------------------|
| Peek HP3     | 4.2    | 90          | 2.8                              |
| PA2201       | 1.7    | 48          | 15                               |
| PrimeCast101 | 1.6    | 5.5         | 0.4                              |

#### Equipment (type, dimensions)

| Laser | $\lambda$ , $\mu$ m | P, W   |      | Build volu                  | me, ı | mm <sup>3</sup>             |
|-------|---------------------|--------|------|-----------------------------|-------|-----------------------------|
| CO2   | 10.6                | 30-100 | from | $200 \times 200 \times 330$ | to    | $700 \times 380 \times 560$ |

#### **Performances**

| <b>x-y resol.</b> , $\mu$ m | layer thickness, $\mu m$ | <b>build speed</b> , mm <sup>3</sup> /s | layering time, s |
|-----------------------------|--------------------------|-----------------------------------------|------------------|
| 100                         | 60 — 120                 | MCR = 10 - 100                          | 10 – 30          |

### 4.2.8. SLM, technical data

#### Mechanical properties of part (order of magnitude)

| Material     | E, GPa | $R_m$ , MPa | $\varepsilon_{\mathrm{rup}}$ , % | HRC |
|--------------|--------|-------------|----------------------------------|-----|
| Ti6A4V       | 110    | 1'150       | 11                               | 41  |
| Inconel 718  | 170    | 980         | 31                               | 30  |
| Marag. steel | 180    | 1'100       | 8                                | 33  |

#### Equipment (type, dimensions)

| Laser           | $\lambda$ , $\mu$ m | P, W     | <b>Build volume</b> , mm <sup>3</sup> |
|-----------------|---------------------|----------|---------------------------------------|
| Ytterbium Fiber | 1.06                | 100-1000 | $250 \times 250 \times 300$           |

#### Performances

| <b>x-y resol.</b> , $\mu$ m | layer thickness, $\mu m$ | <b>build speed</b> , mm <sup>3</sup> /s | layering time, s |
|-----------------------------|--------------------------|-----------------------------------------|------------------|
| 40 – 60                     | 50 – 80                  | MCR = 2 - 10                            | 20 – 60          |

# 4.2.9. Selective Laser Sintering and Melting

#### Advantages, overview

- Base material easy to recycle, especially for metals (SLM).
- Overhangs realizations without supports (the powder is self-supporting).
- ullet Can be applied to many materials (eq SLA).
- Free geometrical complexity (cost=f(Volume,Height)).

#### Applications (summary)

- · SLS, SLM:
- High level prototyping (functional prototypes, 1:1 models, ...)
- Small series of complex parts (robotics, fashion, jewelry, aerospace, ...)
- Customer fitted parts (medical, dental prostheses, ...).
- SLM:
- Rapid tooling (tools or prototype tooling for short runs).
- · Tooling with conformal cooling.

# 4.2.10. Selective Laser Sintering and Melting

#### Scaling down of the processes: $\mu$ -SLS

• Limiting factor: the average size d<sub>50</sub> of the powder grains:

resolution  $\propto d_{50}$ .

· For most metallic powders the rule is:

$$d_{50}\gg 1\mu\mathrm{m}$$
.

• Finer powder cannot be handled. They **agglomerate** to form bigger grains and do not **flow**:

$$\textit{powder flowability} \simeq \frac{F_{\text{gravific}}}{F_{\text{cohesive}}} \propto \frac{V_{\text{gr.}}}{S_{\text{gr.}}} \propto d_{50} \rightarrow 0 \textit{ if } d_{50} \rightarrow 0.$$

- Some exceptions: availability of nanometric powders for Mo, Ta, W . . .
- → Those materials have relatively low cohesive forces. Unfortunately they are **refractory** materials and their consolidation process is **slow**.
- A µ−SLS machine has been developed by EOS<sup>™</sup> in collaboration with MICROMAC<sup>™</sup>.

(see Append. 31, 32)

# Electron Beam Direct Manufacturing

# 4.3.1. Similar to SLM: the EBDM process

#### Equipments: Arcam™machine



# 4.3.2. Similar to SLM: the EBDM process Example of parts









# 4.3.3. Similar to SLM: the EBDM process Example of parts









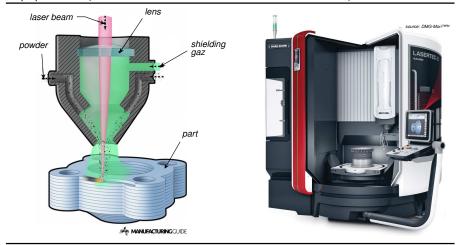
# 4.3.4. Similar to SLM: the EBDM process

#### Compagny

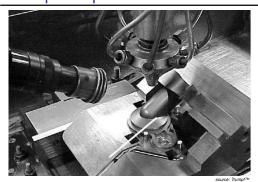
Arcam AB™(Swedish company), now a part of General Electrics (GE).

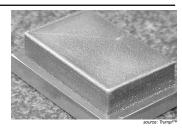
#### Advantages over SLS / SLM

- Slightly denser parts with somewhat higher mechanical properties.
- Higher building speed (> 30 mm<sup>3</sup>/s) due to higher nominal power.
- Less contamination (medical applications)


#### Disadvantages compared to SLS / SLM

- EBDM stations are more expensive than SLS/SLM stations.
- The use of the machine is more complex:
- X-ray emission,
- fabrication under ultra high vacuum.
- EBDM is limited to metals.
- · Less accuracy and resolution in EBDM.
- Potentially higher level of thermal stresses in EBDM.


# **Direct Metal Deposition**


# 4.4.1. Similar to SLS: the DMD process

#### Equipments (a laser mounted on a five axes machine)



# 4.4.2. Similar to SLS: the DMD process Example of parts









## 4.4.3. Similar to SLS: the DMD process

#### Advantages over SLS/SLM

- Machine with a lot of degrees of freedom (in theory: possibility to construct overhangs without supports).
- · Possibility to mix materials in all directions.
- Possibility to intgrate ablative processes inside the machine.

#### Disadvantages compared to SLS/SLM

• More expensive (laser and a 5 axis machine), less resolution, lot of thermal stresses.

#### Companies and remarks

- Optomec™, BeAM™ (Irépa Laser), DMG Mori™, Okuma™.
- The "Direct Metal Deposition" process is sometimes presented under the name "Laser engineered net shaping" (LENS) or "Laser cladding" when considered as a **reparation and coating** process only.
- The "Direct Metal Deposition" process only differs from "Laser Metal Wire Deposition" by the fact that the base material is a powder and not a wire.

•00000000000000

0•000000000000

# **A 21**: High level prototypes by SLS<sub>plast</sub>, DMLS or SLM

#### Prototyping: model for medical applications, functional prototyping









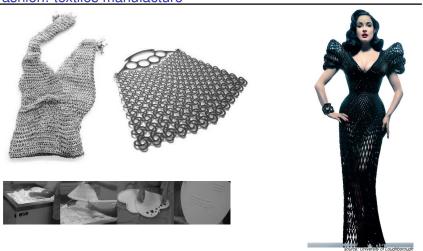
**APPENDICES** 

source: EOS™, ConceptLaser™, Phenix System

00•0000000000

# A 22: Small series of parts by SLS<sub>plast</sub>

Robotics: Trays handlers








# A 23: Small series of parts by SLS<sub>plast</sub>

Fashion: textiles manufacture



0000000000000

# A 24: Small series of parts by DMLS/SLM



# **A 25**: DMLS/SLM parts for the aerospace industry

Aerospace: Antenna, hollow or optimized structures, spare parts





00000•000000000





source: EOS™, ConceptLaser™

# A 26: Fabrication of customized parts by SLM

#### Efficient manufacturing of dental implants by SLM













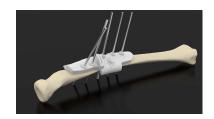

# A 27: Fabrication of customized parts by SLM

#### Efficient manufacturing of dentures by SLM

- SLM is an alternative to the traditionnal processes:
- it is faster,
- it is cheaper.






000000000000000

# A 28: Customized parts by SLS<sub>plast</sub> or SLM

#### Saw and drilling guides by SLS<sub>plast</sub>, prostheses by SLM

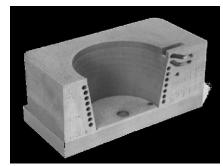








# A 29: Fabrication of tools by SLM


#### Conformal cooling

Optimised cutting tool (SLM)





000000000000000

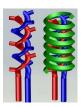


source: ConceptLaser™

source: EOS™, ConceptLaser™

# A 30: Fabrication of tools by SLM

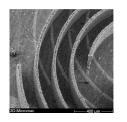
#### Conformal cooling (cutting tools / injection moulds)



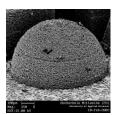




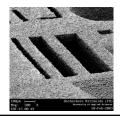


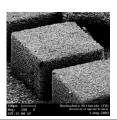







courtesy of ConceptLaser™ PhenixSystems™

# **A 31**: $\mu$ -SLS(M) process: example of parts


#### $\mu$ -SLS: example of parts (Tungsten)



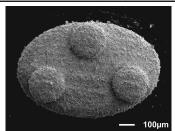






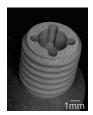


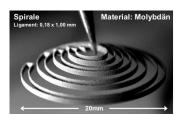




source: micromac™ TU Mitweida

000000000000000

000000000000000


# **A 32**: $\mu$ -SLS(M) process: example of part (c'tnd)


#### $\mu$ -SLS: example of parts (Molybdenum, tantalum)







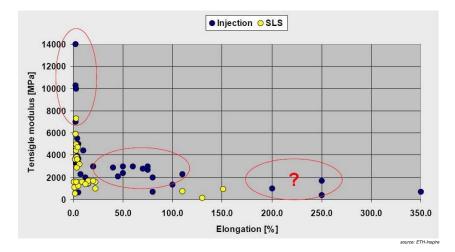




source: micromac™ TLI Mitweida

# A 33: Fabrication cost

#### Parameters influencing the manufacturing costs


| Related to | Name                                                                     | Symbol           | Unit                                     |
|------------|--------------------------------------------------------------------------|------------------|------------------------------------------|
| Material   | consolidation energy p.u.v price p.u.v.                                  | e<br>c           | J/mm <sup>3</sup><br>frs/mm <sup>3</sup> |
| Machine    | power<br>machine cost<br>layer thickness<br>deposition time of one layer | P<br>C<br>ε<br>τ | W<br>frs/s<br>mm<br>s                    |

$$t_{lasing} = rac{ ext{Volume} imes extbf{e}}{P} \quad ext{and} \quad t_{deposition} = rac{ ext{Height}}{arepsilon} imes au$$
 $Cost = \left(rac{ ext{Volume} imes extbf{e}}{P} + rac{ ext{Height}}{arepsilon} imes au
ight) imes C + ext{Volume} imes c.$ 

Interest of sharing t<sub>deposition</sub> among many parts to diminish costs

# **A 34**: Elastic properties of typical SLS plastic materials

#### Comparaison: plastic for injection **VS** plastic for SLS



# Part V

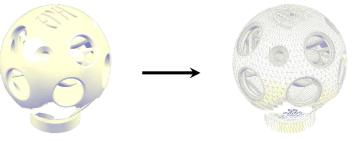
# Computer aspects

Computer aspects of Additive Manufacturing

Design for Additive Manufacturing

STL DFAM .STL DFAM

●○○○ ○●○○ ○●○○


Computer aspects of Additive manufacturing

Design for Additive manufacturing

# 5.1.1. Type of information

#### Layered manufacturing and .stl format

- In additive manufacturing, the part is (generally) built layer by layer (layered manufacturing).
- Therefore it is necessary:
- · To get a computer description of each layer,
- · To define the tool path (laser, printhead, nozzle) to generate each layer.
- The standard procedure to produce the layers is to cut a .stl description of the part.
- The .stl description is an approximation of the **surface** of the part by a **polyhedron**



The Part

Its .STL representation

norm ext.

1st vertex 2nd vertex

3rd vertex

# 5.1.2. Example of .STL file

| facet normal | -1.00000   | 0.00000  | 0.00000    |            |          |
|--------------|------------|----------|------------|------------|----------|
|              | outer loop |          |            |            |          |
|              |            | vertex   | 140.502634 | 233.993075 | -38.3103 |
|              |            | vertex   | 140.502634 | 229.424780 | -38.3103 |
|              |            | vertex   | 140.502634 | 242.525774 | -27.0978 |
|              | end loop   |          |            |            |          |
| end facet    | •          |          |            |            |          |
| facet normal | 0.903689   | 0.004563 | 0.428166   |            |          |
|              | outer loop |          |            |            |          |
|              | •          | vertex   | 134.521310 | 273.427837 | 30.34200 |
|              |            | vertex   | 134.521310 | 308.505852 | 30.7157  |
|              |            | vertex   | 140.502634 | 334.576026 | 18.3693  |
|              | end loop   |          |            |            |          |
| end facet    | •          |          |            |            |          |
| facet normal | -0.903689  | 0.004563 | 0.428166   |            |          |
|              | outer loop |          |            |            |          |
|              | •          | vertex   | 140.502634 | 334.576026 | 18.3693  |
|              |            | vertex   | 140.502634 | 294.929752 | 17.9469  |
|              |            | vertex   | 140.502634 | 273.427873 | 30.3420  |
|              | end loop   |          |            |            |          |
| end facet    |            |          |            |            |          |
|              |            |          |            |            |          |

(see Append. 35)

# 5.1.3. Known problems related to .STL format

#### Parts with high aspect ratio, multimaterial parts

 The STL format is not adapated to parts with large aspect ratio i.e large surface for small volume. They have very low local radius of curvature and their polyhedral approximation requests a lot of triangles. Popular examples of such situations are knitted fabrics, lattice structures, etc....

| knitted fabrics    | lattice structures   |
|--------------------|----------------------|
|                    |                      |
| source: 3dSystems™ | source: SLMSolution™ |

The STL format is not adapated to multimaterial parts either.

(see Append. 36)

.STL oooo

Triangle No 2

Triangle No 3

DFAM

.SIL

DFAM

# 5.2.1. Design for additive manufacturing (DFAM)

#### Typical mistake to be avoided

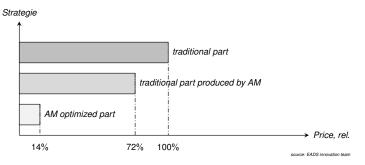
- (1) The part is designed traditionally
- (2) The part is eventually AM'd for some reasons



ightarrow The reasons could be: small serie, high complexity, etc..

#### A more efficient solution exists:

- (1) AM is choosen for some reasons (same as above)
- (2) The part is designed for AM.

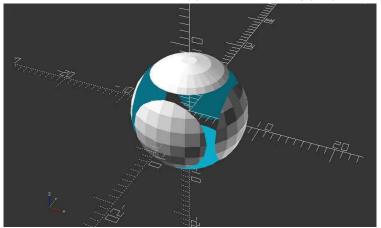



# 5.2.2. Design for additive manufacturing (DFAM)

#### **Expected gains**

- For the same functions and mechanical properties, an AM optimized part
- (1) is lighter and uses less material than the traditional part,
- (2) is much cheaper than the traditional part when it is produced by AM:
- (3) makes additive manufacturing even more profitable (see Fig. below).

#### Price analysis over an average part - aerospace application




(see Append. 37, 38, 39)

•00000

# A 35: Origin of the .STL format

The .STL format has been developped for rendering purposes



• The external normal was necessary to determine the brightness level of each triangles.

#### **APPENDICES**

000000

# A 36: Multimaterial applications

#### Possible solution: consider different parts

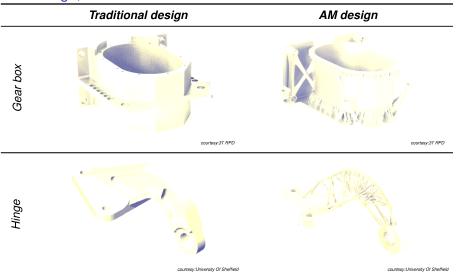


- Produce two .STL files:
- (1) one for the bones, (2) one for the soft tissue.
- · Slice the two .STL independently to get two .SLI files.
- Hatch the **two** .SLI files independently to get two .CLI files.

- Construct the part layer layer by moving the print-head according:
- (1) to the info in the first .CLI file with the bone material,
- (2) to the info in the second .CLI file with the soft tissue material.

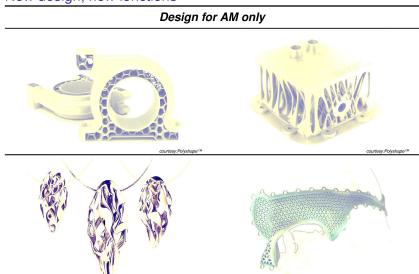
# A 37: Other examples of part designed for AM

000000


#### New design, new fonctions

|                      | Traditional design | AM design                    |
|----------------------|--------------------|------------------------------|
| Airducts (aircraft). | courtey:IRCyW      | courtesy:FRCO <sub>2</sub> N |
| Pump system          | courtesy:/RCO/N    | courtesy:FRCCyN              |

00000€


# A 38: Other examples of part designed for AM

#### New design, new fonctions



# A 39: Other examples of part designed for AM

#### New design, new fonctions

